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By J. J. W. van der Vegt!

1. Motivation and objective

The prediction of transition to turbulence in compressible boundary layers cur-
rently receives significant attention due to its importance in the design of high
speed transport vehicles. Drag, lift, and heat transfer strongly depend on whether
‘the boundary layer is laminar or turbulent. The study of transition in compressible
boundary layers by means of direct numerical simulation (DNS) provides informa-
tion not available from the commonly used linear and non-linear stability theories.
Non-parallel and non-linear effects in the boundary layer can be studied and in-
formation useful to modeling of transitional flows can be obtained. The extremely
high numerical accuracy and large computing resources necessary for DNS of com-
pressible boundary layers, however, are obstacles to the use of DNS in high Mach
number boundary layers.

In our previous report, Van der Vegt and Ferziger (1990), we discussed the devel-
opment and application of a numerical scheme for the computation of transition in
compressible boundary layers. Unfortunately, we encountered serious problems in
the application of this method. One problem was related to the generation of initial
disturbances, the eigenfunctions of the linear stability problem, needed to start the
direct simulations. In a separate paper in this report, Guilyardi et al. (1991), we
discuss the problems in solving the linear stability problem with high accuracy for
both eigenvalues and eigenfunctions. Previous research has concentrated mainly on
the accuracy of the eigenvalues, not on the accuracy in the eigenfunctions. The lack
of accurate initial data has seriously hampered progress in the direct simulations.
The use of the adaptive method discussed in Van der Vegt and Ferziger (1990) was
helpful in generating a grid with enough resolution in the critical layers, but experi-
ence with the linear stability problem using several grid adaptation methods showed
that the eigenvalue problem is extremely sensitive to the smoothness in the grid.
Significant progress has been made by studying the less expensive linear stability
problem and is reported in Guilyardi, et al. (1991). It is expected that the progress
made with adaptive grid generation in the linear stability problem will be helpful
in the future development of the DNS code.

In addition to the extensive study of the linear stability problem, a significant
effort has been made to increase the accuracy of the numerical algorithm used for
direct simulations. In our previous report, Van der Vegt and Ferziger (1990), see also
Van der Vegt (1991), we discussed improvements to the upwind numerical scheme
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which reduce the numerical dissipation in the boundary layer region. We want to
study flows with both strong shocks and boundary layers, but, unfortunately, most
shock capturing schemes are very dissipative in the boundary layer. We presented a
fully implicit finite volume method, and significant progress was made in improving
the efficiency of a fully implicit method without using the approximate factorization
method of Beam and Warming (1978). The finite volume method, however, is only
second order accurate, and it was felt that higher order accuracy is necessary in
order for success in DNS of transition. The construction of an implicit and time
accurate fourth order scheme is the subject of this report.

2, Accomplishments

In order to be useful for direct simulations of transition in boundary layers, the
numerical scheme must be higher order accurate and implicit. The severe time step
limitation, when using an explicit scheme with small grid spacing close to the wall,
would otherwise make the simulations prohibitively expensive. The construction
of higher order shock capturing schemes for the Euler and Navier-Stokes equations
is a non-trivial task and is currently the subject of intensive research. Significant
progress still has to be made. For instance, the numerical scheme used by Rai and
Moin (1991) for the direct simulation of bypass transition is higher order accurate,
but they are not able to capture shocks because they use a non-conservative formu-
lation. It is very difficult to combine shack capturing without numerical oscillations
and uniform higher order accuracy. Many finite volume methods based on the TVD
property of the one-dimensional Euler equations are capable of accurately capturing
shock and expansion waves with a few grid points. Unfortunately, high order TVD
schemes, also called high resolution schemes, break down to first order accuracy at
non-sonic local extrema in one dimension and are formally only first order accurate
in more than one dimension; see, for instance, Osher and Chakravarthy (1984).
In order to bypass this limitation, Harten et al. (1987) developed essentially non-
oscillatory (ENO) schemes, which have uniform accuracy away from discontinuities.
The application of ENO schemes will be discussed in the next part of this report.

A second important activity has been the implementation of a fully implicit and
time accurate integration scheme. This was already discussed in our previous report,
Van der Vegt and Ferziger (1990), but changes were made to convert the time
integration method to a full Newton scheme. This was necessary because it is not
possible to use higher order approximation of the derivatives for the implicit part
of the equations when the explicit part is approximated with higher order accuracy.
This would reduce the accuracy of the total scheme for time accurate problems,
and the higher order accuracy is obtained only when steady state is reached. This
approach has also been used by Rai (1987) and Rai and Moin (1991) to reduce the
approximate factorization error in their scheme. It turned out that the convergence
of the Newton scheme strongly depends on the implementation of the boundary
conditions.
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2.1 Numerical method

The present algorithm solves the two-dimensional compressible Navier-Stokes
equations in conservation form in an arbitrary coordinate system. These can be
written:
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Here p represents the density, © and w the Cartesian velocity components, p
the pressure, and e the total energy. The variables = and y represent Cartesian
coordinates, whereas { and 7 represent curvilinear coordinates. The coefficients
Re, M, and Pr are the Reynolds, Mach, and Prandtl number, respectively. The
components of the shear stress 7 and heat flux q in V and I are functions of
¢ and 7. All variables are non-dimensionalized using free-stream variables and a
characteristic length.

The Navier-Stokes equations are solved using a finite volume method because we
seek a weak solution in order to capture shocks in high Reynolds number flows.
The finite volume method is also the most natural way to satisfy the conservation
properties of the differential equations. Applying Gauss’ theorem and integrating
equation (1) over a small volume gives the finite volume formulation of the com-
pressible Navier-Stokes equations:
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where a barred quantity with index i, 7 is an average of the unbarred quantity over
the cell with index 4,7 and indices i + & and j & } refer to values at the cell faces.
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2.2 Spatial discretizalion

The computation of the fluxes across the cell faces is the most important part of
the numerical scheme. Flux vector or flux difference splitting is used because, in up-
wind schemes, they automatically generate the proper amount of numerical viscosity
in discontinuities, guaranteeing that stable non-oscillatory solutions are obtained
when an entropy condition is satisfied, see for instance Osher and Chakravarthy
(1984). The upwind method is also very beneficial for the implicit part of the al-
gorithm because it yields a more diagonally dominant matrix suitable for iterative
solution. Both Steger-Warming, see Steger and Warming (1981), and Osher flux
splitting, see Chakravarthy and Osher (1983), are used. For the implicit part, how-
ever, the Steger-Warming splitting is always used because the direct linearization of
the Osher flux vector is very expensive and the use of Newton iteration, discussed
in the next section, will reduce the error caused by the approximate implicit con-
tribution, see Rai and Chakravarthy (1986). The Steger-Warming splitting has the
benefit of being relatively inexpensive, but the Osher splitting is less dissipative.
The Osher flux splitting also has the benefit of being Lipschitz continuous, which
is important when computing the Jacobian of the flux vector for the implicit con-
tribution. When the Steger-Warming splitting is used, an upwind biased scheme
is necessary to reduce the numerical dissipation in the boundary layer, for more
details see Van der Vegt (1991).

In order to obtain a higher order scheme, we have to approximate the fluxes at the
cell faces by a higher order polynomial. One problem with higher order interpolation
in finite volume methods is that we are solving equations for the averaged values
in the cells, while needing point values at the cell faces to compute the fluxes.
This is referred to as the reconstruction problem by Harten et al. (1987). Using
a higher order Newton interpolation scheme based on divided difference tables,
they construct a polynomial from the averaged values which is both higher order
accurate and conservative. In order to prevent the scheme from using points across
a discontinuity, which would give oscillations in the interpolations, they use the
divided difference table of the interpolation to determine the stencil which gives
the smoothest solution. The ENO scheme, therefore, dynamically adapts its stencil
to give uniform higher order accuracy outside discontinuities, and, when combined
with a Riemann solver, it captures both shock and expansion waves accurately. The
ENO scheme consists of three steps: a reconstruction step, the computation of point
values from cell averaged values; the solution of the Riemann problem at the cell
faces; and the averaging of the solution to give the cell averaged values,

In one dimension, these methods have been very successful, Harten et al. (1987),
especially when used with methods which recognize a shock such as Harten’s subcell
resolution scheme, Harten (1989). In higher dimensions, however, serious problems
occur because the reconstruction becomes very complicated and should in principal
be accompanied by a true multi-dimensional Euler solver; the latter are not well
developed. Recent progress by Harten and Chakravarthy (1991), however, seems
promising.

In order to bypass the problems in formally extending ENO to multi-dimensional
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problems, Shu and Osher (1988-1989) proposed the point-ENO method, which ap-
plies the ENO method to a series of one-dimensional problems. Their formulation is
considerably simpler although less rigorous than that of Harten and Chakravarthy
(1991). It has been successfully applied to the study of compressible free shear
layers by Shu et al, (1991), As a first step, the higher order scheme is implemented
without stencil switching because the boundary complicates the search algorithm
and has not been used in the point-ENO method of Shu and Osher. Using an
upwind biased fixed interpolation makes it easier to accommodate the boundary
and has considerably less numerical dissipation in the boundary layer than a fully
upwind scheme. Due to the use of flux splitting, only second order accuracy can
be obtained at the boundary. The fact that we do not use the stencil switching
temporarily limits the code to flows without shocks.

In order to simplify the development of the numerical scheme, the method of lines,
which uncouples the spatial and temporal discretization, is used. The numerical
scheme consists of several steps, First, the flux vector is split into a positive and a
negative part, depending on the sign of the eigenvalues of the Jacobian matrix of
the flux vector:

~
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The positive and negative fluxes at 7 4 1 29 j are obtained using a fourth order in-
terpolation formula. The finite volume scheme, however, will always be formally
second order accurate, as can be easily checked by Taylor series expansion. The
fluxes, therefore, have to be corrected to obtain higher order accuracy in the total
scheme, Shu and Osher (1988) derived the following relation:
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point ¢, 7. It has the great benefit of giving a conservative scheme, which converges
to a weak solution, This is not necessarily the case when fourth order differences are
used. This relation is separately applied to the posﬂ;we and negative flux vectors
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Similar relations can be derived for the vector G, ;, 3
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2.8 Implicit lime integration

Time accuracy is crucial for direct simulations. Unfortunately, most implicit
schemes do not have this property. In an effort to improve time accuracy, Rai (1987)
proposed to use a Newton iteration to improve the time accuracy of approximate
factorization schemes. This was applied by Rai and Moin ( 1991} in their simulations
of bypass transition in a boundary layer at Mach 0.1. By recomputing the Jacobian
matrix, they reduce the approximate factorization error and increase time accuracy.
We do not use approximate factorization or ADI to solve the implicit matrix but
the zebra line Gauss-Seidel method. This method converges very rapidly (in two
to three iterations) and gives a solution of the full system of linear equations. We
do not need Newton iteration to remove the inaccuracy introduced by approximate
factorization, but because the Jacobian matrix is only approximated to first order
in the implicit part, we do not achieve time accuracy and lose the higher order
spatial accuracy of the scheme. Linearization of the equations with a higher order
implicit spatial discretization is not feasible because it requires a prohibitively large
amount of storage. The Newton time integration method, therefore, is needed to
maintain time accuracy. It is obtained by including the flux vectors at time level
n+1 in Equation (2) and applying the Newton-Raphson iteration process. To save
space we only discuss the one-dimensional form:
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Where T and « depend on the time integration method used. For instance, a first
order implicit time integration uses a = 1 and

T (U?,U") = (U? — U™)

whereas as second order time integration uses o = -‘2; and
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The flux vectors on the right-hand side of Equation (4) are approximated with the
higher order scheme, whereas the terms on the left-hand side are only approximated
to first order. By iterating the solution of Equation (4) and updating both the
implicit and explicit parts each time, we can reduce the error UPT? — UP to zero
and thereby obtain a higher order implicit and time accurate scheme. In practice
only a few iterations are needed.

Higher order time integration methods can be obtained by using higher order
difference approximations for %ITJ’ but their application becomes more complicated
due to the number of time levels, which have to be stored. In two dimensions,
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we experimented with accuracy up to fourth order, but the results were not satis-
factory. Spurious modes, which arise in multi-level schemes, created instabilities.
The spurious modes arise because the characteristic polynomial of the time inte-
gration scheme has multiple zeros. A scheme which does not have this problem
is the implicit Runge-Kutta method, see for instance Gear (1971). It also has the
benefit of having 2m order accuracy with only m time levels, see Butcher (1964).
A fourth order implicit Runge-Kutta method, which uses only two time levels, is
currently being investigated as an alternative. It requires the solution of a large set
of non-linear equations and fits in naturally into the Newton scheme. However, it
doubles the number of non-linear equations compared with higher order multi-step
methods.

Another aspect of the Newton scheme is the fact that the boundary conditions
have to be implemented in a Newton form. This can be done straightforwardly
using the approach of Chakravarthy (1983). For the inviscid part of the flow field,
this procedure can be summarized as follows: Multiply the equations by the left
eigenvector of the Jacobian of the inviscid flux vector component normal to the
boundary. It is then possible to transform the equations from conservative to char-
acteristic variables. Retaining only the equations which relate to waves which leave
the domain and replacing the other equations with boundary conditions yields the
equations which have to be solved at the boundary with the Newton method:

((f_‘%)) LGN (%g_ . %—f) +(3) =0

with: (CﬁS)k the k = 1,...,q rows of the left eigenvector of the Jacobian of the

flux vector B related to outgoing waves; and (—g—g— ,and By, the I =g+1,...m rows

of g—% and the vector B related to the boundary conditions. A similar approach
can be followed for the viscous boundary conditions, but an ad hoc decision must
be made on which equations to replace by boundary conditions because there is no
theory equivalent to the characteristic approach for the inviscid equations available.

3. Discussion

The numerical scheme discussed in this report has been programmed and is cur-
rently being tested. The Newton scheme converges, but the residue reduces only
linearly instead of quadratically. This is because the implicit part only uses a first
order accurate approximation to the spatial derivatives, which are approximated
with higher order accuracy on the right hand side. Convergence problems, however,
sometimes occur due to the corner contributions; removing them requires additional
attention. Another problem which still is under investigation is point to point oscil-
lations which occur in low Mach number inviscid flow. These oscillations disappear
as soon as the viscous contribution is incorporated, even with a very low viscosity,
but they also should not occur at all. The convergence of the Newton scheme is a
very good test of the code because it is very sensitive to any error in the code.
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4. Future plans

The present version of the code will have to be tested further, and work has
to be completed on the elimination of the weak instability. When the code is
operational, both spatial and temporal simulations of boundary layer transition
will be performed. The experience gained using the adaptive grid method in the
linear stability code will also be applied. It is expected that the increased accuracy
of the DNS and linear stability code will be sufficient to perform DNS simulations
of transition in compressible boundary layers at reasonable cost.
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