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Streaks in turbulent boundary layers
By James M. Hamilton

1. Motivation and objectives

Elongated regions of low- and high-speed fluid are among the most prominent’
structures in wall-bounded turbulent shear flows. While the general mechanism
by which these streaks are produced is understood (the transport of streamwise
momentum by cross-shear flow), some of the details of the process remain unclear.
For instance, it is commonly observed that the low and high speed regions alternate
with a spanwise “wavelength” of about 100v/u,, where v is the kinematic viscosity,
and u, = /(U /0y)wan. Why this particular length scale should dominate has
not been satisfactorily answered.

Jang, Benney, and Gran (1986) attempted to explain the preferred streak spac-
ing as the result of a direct resonance mechanism. The Navier-Stokes equations
can be converted to a pair of equations for wall-normal velocity, v, and wall-normal
vorticity, wy, by invoking continuity, eliminating pressure, and linearizing about a
two-dimensional mean flow. When normal mode solutions are sought, the resulting
equation for v is the Orr-Sommerfeld equation. The wy equation has an inhomo-
geneous source term containing v. Direct resonance occurs when the eigenvalues of
a v-inode match the eigenvalues of an wy-mode corresponding to the homogeneous
equation; the v term in the wy equation then forces the wall-normal vorticity. The
resulting solution for w, is secular and may result in initial growth even with de-
caying modes. Waleffe and Kim (1991) have shown, however, that direct resonance
does not lead to appreciable scale selection. In addition, non-resonance modes may
grow faster than the direct resonance response as the resonance modes tend to have
large decay rates.

Waleffe and Kim suggest that instead of direct resonance, the streak spacing is
due to the complete sclf-sustaining mechanism of streaks, that streaks with spac-
ing less than 100 wall units cannot be maintained. This view is supported by the
finding of Jimenez and Moin (1991) that the smallest computational box in which
turbulence could be sustained had a spanwise dimension of 100 wall units. Waleffe
and Kim extended this idea by minimizing the height of the computational domain
as well as the span. They pointed out that, in a channel, the simplest self-sustaining
non-laminar flow would consist of a pair of counter-rotating streamwise vortices in
each half of the channel, and, in a Couette flow, the simplest structure would be a
single pair of vortices centered between the walls bounding the flow. Accordingly,
for circular vortices, the minimum wall separation for which turbulence could be
maintained should be about 100 wall units in a channel flow and 50 wall units in a
Couette flow. Assuming laminar mean streamwise velocity profiles, the correspond-
ing minimum Reynolds numbers are 1250 for the channel flow (based on centerline
velocity and channel half-height) and 625 for the Couette flow (based on wall ve-
locity and channel half-height). Simulations support this view, and, for Couette
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flow, Waleffe and Kim found that turbulence could not be maintained at Reynolds
numbers of 330 or below and was maintained at a Reynolds number of 400.

Waleffe and Kim use the term “marginal flow” to describe simulations in which
the domain is just large enough to produce and sustain the expected structures. A
marginal flow is advantageous for the study of the streak production mechanism
because it eliminates the unnecessary large scales. They note, however, that the
complete process is still too disordered to firmly establish the mechanisms involved
and suggest the imposition of symmetries to further constrain the flow.

The objective of the present study is to pursue this idea of imposing symmetries
on the marginal flow in an effort to identify and understand the basic processes
involved in the self-sustenance of turbulence.

2. Accomplishments

The simplest flow for the study of streak formation is the plane Couette flow,
which has only a single sign of mean spanwise vorticity. The symmetries to be
imposed on this flow are consistent with the expected structure, a side-by-side pair
of counter-rotating streamwise vortices centered between the bounding walls, as
illustrated in Figure 1. The coordinates z, y, and z correspond to the streamwise,
wall-normal, and spanwise directions, respectively. The associated velocities are
u, v, and w. The computational domain is periodic in = and z, with dimensions
L; and L. These lengths are made dimensionless by half the wall separation, 2h,
thus the walls are located at y = +1. The computations are made with a slightly
medified version of the spectral code of Kim, Moin, and Moser (1987). In addition
to being consistent with streamwise vortices, the imposed symmetries must satisfy
continuity, the Navier-Stokes equations, and the boundary conditions. The three
symmetries to be considered here are:

u(ma Y, Z) =u(a:, Y, "'z)
v(z,y,z) =v(e,y, ~2) (1)
'LU(IE, Y, 2.’) = w(ma Y, —-Z)
a reflection about the plane 2 = 0,
u(:a,y, z) =u(a: + Lz/2,y, “z)
U(CL‘,'g,Z) xv(:c +LZ/2’ya_z) (2)
w(z,y,2) = —w(z+ L;/2,y,—2)
a translation in z followed by a reflection about z = 0, and
u(z,y,2) = — u(—z,—y, —z)
TJ(.’E,'y, z) = v(—ms—yf“z) (3)
w(z,y,2) = — w(—z, ~y, —2)

a reflection about the point (z,y,2) = 0 (note that while this last symmetry is not
strictly consistent with the streamwise vortex arrangement of Figure 1, a simple shift
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FIGURE 1. Basic symmetric vortex structure.

of the vortex centers in the figure to 2 = 0 and z = +L,/2 produces a compatible
flow)}. As an example of an inappropriate symmetry, consider symmetry (1) above
as a reflection about the plane y = 0 rather than z = 0. Use of such a symmetry
might be tempting, as if gives the correct behavior for v and w in accordance with
Figure 1. Such a symmetry would fail to satisfy continuity, however, as 8u/dz and
dw /8 are even functions of y, but 8v/dy is odd. The symmetry would also fail to
satisfy the base Couette flow and the boundary conditions, u(z,y = £1,2) = 1.

While each of the symmetries (1) through (3) is compatible with side-by-side
streamwise vortices, the more important consideration is how the flow evolves away
from this state. After all, if only z-independent streamwise vortices were allowed,
the vortices would simply decay, and turbulence would be impossible. As a baseline,
the temporal evolution of the spectral energy ( fil[uz(kz,y, k) + v¥(ks,y, ky) +
w(ky,y, k;)]dy) of a flow with no imposed symmetry is plotted in Figure 2. The
solid line in the figure corresponds to the mode with no z-dependence and spanwise
period L, the fundamental mode for a single pair of counter-rotating streamwise
vortices extending through the domain. This mode follows a quasi-periodic cycle,
with an average period of slightly more than 100 h/Uyan (compare this value to the
average period of 100 h/U observed by Jimenez and Moin in their minimal channel
computations, where U is the centerline velocity of the equivalent laminar flow).
The initial conditions for this flow were obtained from developed flow at a higher
Reynolds number: a flow was started with random initial conditions at Re=6285,
allowed to evolve for about 450 time units, and Re reduced to 500 for an additional
450 time units to produce the input flowfield for the Re=400 case.

This particular flow is of special interest because it closely follows the translate-
and-reflect symmetry (2), even though no symmetry is imposed. This can be seen
easily in Figure 3, velocity plots of two 2z-y planes spaced a distance L, /2 apart.
Note that Figure 3(b) is nearly a mirror image of Figure 3(a). The symmetry
apparent in Figure 3 is typical of this flow though it is not seen in flows with
different initial conditions, Reynolds numbers, or domain sizes.
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FIGURE 2. Temporal evolution of energy in several spectral modes of a marginal
flow with no imposed symmetry, Re=400, L, = 2r, L, = %w‘.

If the flow closely follows a symmetry when none is imposed, it is useful to
impose the symmetry and observe the effect on the flow. The flow of Figures 4 and
5 has the translate-and-reflect symmetry imposed, with the same initial conditions
(though symmetrized) as the flow of Figures 2 and 3. From Figure 4, it is clear
that the energy in the fundamental, z-independent mode of the forced-symmetry
flow exhibits a quasi-periodic eycle much as in the unsymmetric flow though the
average period is shorter (about 80 time units) in the forced-symmetry case. This
similarity can also be seen in a comparison of the details of the flowfield in the two
cases. At times corresponding to peaks in the energy of the (k;,k,) = (0,2=/L.)}
mode (the solid line in Figures 2 and 4), the flow is dominated by a pair of side-by-
side streamwise vortices as expected. The velocities in Figures 3 and 5 occur near
minima of this mode, and, as can be seen, relatively strong, meandering, spanwise
flows develop in both cases, and the vortices are no longer side-by-side. Thus, while
imposition of the symmetry does have some effect on the evolution of the flow, the
general features are unchanged.

The same initial conditions used above, when applied to flows with either of the
symmetries (1} or (3), result in the rapid decay of turbulence. If, however, the
symmetry is imposed at a higher Reynolds number and the Reynolds number then
progressively reduced, a flow conforming to symmetry (3), reflection about a point,
will sustain turbulence down to Re=400. The resulting flow has the same cyclic
behavior of a flow with no symmetry imposed. Symmetry (1), reflection about the
plane z = 0, does not seem to produce self-sustaining turbulence even at Reynolds
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FiGURE 3.  Velocity feld for flow of Figure 2 at t = 107 at (a) £ = 0 and
(b) 2 = L, /2. Shading indicates streamwise velocity with black lowest and white
highest, and vectors indicate cross-flow velocities.

numbers as high as 625. This symmetry may, however, require a subharmonic-type
flow, that is, a basic flow structure consisting of fwo pairs of streamwise vortices,
and hence require a larger value of L, than has been considered to date.

3. Future Plans

Initially, it was hoped that one or more of the above symmetries would not al-
low sustained turbulence and that the remaining symmetries would produce a very
“clean” flow in which the self-sustenance mechanism became obvious. Indeed, sym-
metry (1) does not seem to maintain turbulence in marginal flows, though the
possibility of a subharmeonic structure remains to be investigated. Even with the
imposition of the other symmetries, however, a truly “clean” flow has remained
elusive. Still, there is cause for hope in the nearly periodic, eyclic nature of the
marginal flows. This cycle consists of three parts. Streamwise vortices produce low-
and high-speed streaks with little z-dependence in the flow. Large z-dependence
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FIGURE 4. Temporal evolution of energy in several spectral modes of a marginal
flow with imposed translate-and-reflect symmetry (symmetry (2) above), Re=400,
L,=2xr,L,="2%nr.
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FIGURE 5. Velocity field for flow of Figure 4 at ¢ == 291 and « = L,/4. Shad-
ing indicates streamwise velocity with black lowest and white highest, and vectors
indicate cross-flow velocities. Vector length scale same as Figure 3.

develops, and the flow breaks down, producing enhanced mixing and the disap-
pearance of well defined streaks. From this disorder, elongated streamwise vortices
emerge, and the cycle repeats.
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Of these three steps, only the first, the production of streaks from streamwise vor-
tices, is well understood. The third step, the appearance of elongated vortices, is
not understood but appears to be a very robust process; even decaying flows rapidly
evolve to long, counter-rotating streamwise vortices. The mechanism(s) which ac-
tively determines the length-scales of the streaks has not yet been identified but
surely occurs during flow breakdown or the re-coalescence of streamwise vortices.

Future plans include continued efforts to examine marginal and forced-symmetry
marginal flows to further refine the details of the three step cycle described above
with particular emphasis on the latter two steps. The breakdown of the nearly z-
independent vortex-and-streak structure bears some resemblance to an instability,
and it may be worthwhile to model this flow and study its stability. The fact
that flows with and without forced symmetries behave with remarkable similarity
suggests that any instability may contain the symmetry. This may lead to additional
insight into the process.
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