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Some feedback procedures for control of flows

By Roger Temam!

In this article, we present some avenues concerning the application of the math-
ematical methods of control theory to the difficult and challenging problem of the
control of turbulent flows. The effective implementation of these methods for the
Burger’s and Navier-Stokes equations is in progress at this time, with very sat-
isfactory results already obtained in the case of the stochastic Burgers equation.
Effective implementation and discussion of the physical relevance of the results will
be presented elsewhere (see Choi, Temam, Moin and Kim, 1991).

1. Introduction

The control of turbulent flows has been identified as an important problem with
many potential benefits in science and engineering: aeronautics first of all, but also
combustion, laser, fusion, chemistry, etc. At a time where the available computing
power is increasing and expected to continue to increase rapidly, the problem of
controlling turbulent flows does not seem out of reach any more.

In aeronautics, the main objective is to reduce skin-friction and drag by limiting
the counter productive effects of turbulent boundary layers. This can be achieved
in fluid mechanics by using passive means (passive control) such as riblets or large
eddy break-up (LEBU) devices. On the other hand, active control of turbulence is
achieved by active (mechanical) devices which tend to change the kinematics of the
fiow. When the physics of the problem is well-known, in particular the appearance of
organized patterns, one can think at destroying these patterns or at least impeding
their formation by preassigned kinematical modifications. Such a procedure based
on the modification of wall velocities has been proposed and studied in Moin, Kim
and Choi (1989). When the physics of the phenomenon is not known or is too
complicated, we are tempted to appeal to the more systematic but less intuitive
methods of control theory.

We show in Sec. 2 how to cast the problem of controlling turbulence for a channel
flow into a problem in optimal control theory and on this occasion we introduce the
formalism and language of control theory. Similarly several physical problems of
fluid mechanics and thermodynamics have been formulated in Abergel and Temam
(1990} into problems of control and studied with the methods of optimal control
theory.

As we recall hereafter, the methods of control theory presented in Abergel and
Temam (1990) are not practical, in some sense because these methods are too good,
i.e., we try to find the best control producing, for example,the mazimal reduction
of drag. For engineering applications, we would be, however, satisfied with less
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perfection; for example, some reduction of drag may have significant practical ef-
fects. This is the object of the methods proposed here. They pertain to suboptimal
control and feedback theory. As we will see below, they consist of restricting the
class of controls to some specific (simple) subclasses and replacing the global in time
procedures as in Abergel and Temam (1990) by time evolutive procedures.

2. Introduction to control theory: Some model problems
in control of flows

Although we keep in mind that turbulent flows are time dependent, we will dis-
tinguish between stationary and time dependent flows and start with the somehow
academic but instructive case of stationary flows.

2.1 Stationary channel flow

Consider the stationary channel flow. The streamwise direction is the = direction,
the spanwise direction is the z direction, and the walls are at ¥ = +1. The mass
flux is prescribed equal to M. Periodicity of velocities and pressure is assumed in
the z direction; periodicity of velocities with (unknown) drop of pressure is assumed
in the # direction. Let u = (uy,u2,u3) denote the velocity vector in the fluid and
assume that we control the flow through the wall boundary of the normal velocity

¢ = ta|w. (2.1)

It can be shown that the stationary Navier-Stokes equations reduce to a functional
equation for u (see e.g. Temam (1984, 1991)) involving ¢:

vAu + R(u,¢) = 0. (2.2)

Here v > 0 is the kinematic viscosity, A is the so-called Stokes operator, and R
corresponds to inertial and boundary terms; in particular R depends on M although
the dependence is not made explicit.

A typical optimal control problem for (2.2) is the following (see J. L. Lions (1969)):
to find the best ¢ such that some observation z = Cu of u achieves some desired
value zg or is at least as close as possible from z4. In the language of control theory,

u describes (is) the state of the system, and (2.2) is the state equation.

¢ is the control,

z is the observation.

The cost function could be, for instance, the function J = J(¢) 1

7(6) = TP + 310w - zal”. (23)

Here some norm of Cu — 24, ||Cu — 24]|, accounts for the cost of z being different
from z4; m/2 |I$|* (m > 0, ||$|| = some appropriate norm of ¢ ) accounts for the

! 4 is & function of ¢ through (2.1}, u = 'u.((,b) Hence J is a function of ¢, Note that u is the
traditional notation for the control in control theory, and it is also commonly used for the velocity
in fluid mechanics!
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cost of the control itself: m = 0 or small for cheap controls, m large for expensive
controls. For example, this term will account for the price of achieving high val-
ues of the velocity ¢ or, for time dependent problems, the price of realizing fast
responses demanding fast electronic chips. We keep in mind, howeve,r that (2.2)
is an academic problem which, due to the absence of turbulence, would only make
sense physically for very viscous fluids.

The mathematical formulation of the problem is the following:

To find ¢ which minimizes J subject to {2.2):
InfsJ(¢). (2.4)

The control ¢ can be unrestricted or restricted to some admissible set of controls
U,q taking into account some physical and technological restrictions.

The methods of calculus of variations tell us that a problem such as (2.4) possesses
at least one solution, and they give us some characterizations of the best ¢ through
the adjoint state and some algorithms to reach the best (optimal) control.

Feedback theory consists in looking for ¢ as a function of u or of some observation
of u. Although feedback problems are mainly relevant to time dependent problems,
we can formulate such a problem here,

For instance, if we look for a feedback control, then, E being a scalar and F a
vector, we would look for

QS = .E + F'M. (2.5)
Now problem (2.4) with (2.5) substituted into (2.2) becomes:
To find E, F which minimize J(¢) = J(E, F) subject to (2.2), (2.5):

Infg pd(E,F). (2.6)

More general shape functions could be considered 8, (u), ..., #.(%) with

$=Y_ Eibi(u). (2.1
f=1
2.2 Time dependent channel flow

The state equation is the Navier-Stokes equation including the boundary con-
dition (2.1) and the other boundary conditions. It is classical that all these con-
ditions/equations amount to an evolution equation in infinite dimension for the
velocity field v = u(z,t). It reads {compare to (2.2))

) + vAu(t) + REu(), $(1) = 0. (28)

Here u(t) is the vector field {z — u(z,?)} ; again R accounts for the inertial and
boundary terms and depends on the constant mass flux M, although the dependence
on M is not made explicit.
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We are interested in properties concerning the statistical solution of (2.8). This
solution is described by a measure which is not a solution of a simple state equation
(in fact, it is a stationary solution of the Hopf equation !). Instead of considering
the equation for the measure, we will consider the time averaged solution of (2.8) on
a long interval of time (0,T) with the hope that this average accurately represents
the statistical solution.

The drag is essentially measured in average by D = D(u):

Ou Hu
f //[am: :Bg——-l 33:14\33:1] dﬁld:ﬂad’t. (2_9)

Here #; = 2,x3 = 9,23 = 2, and &3 = y = +1 is the wall.

The choice of the cost function is at our disposal, depending on the costs that
we want to reduce. If we choose to reduce the drag as expressed by (2.9), then the
cost function could be

() = f / f [#dordasdt + 2 |DP, (2.10)

where D is a function of ¢ through v which is itself function of ¢.
A control problem like (2.4) can be set:
To find ¢ = ¢(x1,23,%) which minimizes J subject to (2.8) and (2.9)
Inf4J(9)- (2.11)

The method of control theory and calculus of variation (J. L. Lions (1969)) as
developed in Abergel and Temam (1990) yield the existence of an optimal control
(the best ¢) and produce algorithms for its determination. However, these classical
methods and algorithms necessitate the resolution iteratively (i.e., several times) of
the Navier-Stokes equation in (2.8) and its adjoint (see below) on the whole, large
interval (0,T'); such computations are out of reach at this time. Furthermore, the
optimal control depends on the initial distribution of velocities |;=0, although one
can hope that the effect of initial velocities dissipates as T becomes large.

If equation (2.8) were linear, the optimal control would be given by a linear
feedback law:

¢ = Pu+E, (2.12)

where P is solution of a Riccati type equation (J. L. Lions (1969)), and E is easily
determined. When equation (2.8) is nonlinear, there is no satisfactory feedback con-
trol theory even for finite and small dimensions (as in flight control), not mentioning
high or infinite dimensional problems.

We describe hereafter some empirical and not yet fully mathematically justified
procedures proposed to address this problem.
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3. Suboptimal control and feedback procedures

We start by considering the stationary case,

3.1 Stationary problem

Equation (2.2) is considered as an abstract equation, totally independent of the
original Navier-Stokes equation. Then (2.2), (2.3}, (2.4) is an optimal control prob-
lem which can be satisfactorily resolved by a gradient algorithm (conjugate gradient
would be better, but we restrict ourselves to a gradient algorithm).

The gradient algorithm consists in computing the Fréchet derivative

DJ
Dg(®) (3.1)

and looking for a sequence of controls ¢* recursively defined by
R (3:2)
By Taylor's formula and (3.2),
T T+ D(#") 67 - 47,
J(¢™H) m J(¢™) - p l (¢“)I

so that the sequence J(¢") is clearly decreasmg. As in Abergel and Temam (1990),
we infer from optimization theory that the sequence ¢™ will converge to an optimal
control for suitable p's and if the initial value ¢° is chosen sufficiently close from
this optimal state.

Furthermore, the introduction of the adjoint state and adjoint state equation
produces a convenient way to compute the Fréchet differential (3.1).

Indeed, define first

(3.3)

n= 45 - ¢, (3.4)

where the right hand side of (3.4) is the Fréchet differential of » with respect to ¢
applied to a test function ¢ (of the same type as ¢). Then by linearization of (2.2),
we promptly see that 5 is solution of equation

v+ o)+ Bl )1 =0. (3.5)

We do not discuss here the fact that the solution of (2.2) may not be unique or
the fact that (3.5) may have no (or many) solution: this difficulty will not be
encountered in the case of interest for us (see below).

Now, by Fréchet differentiation of (2.3), using (3.4) and (3.5), we obtain

5@ =m ($,8))+((Ou#)—22,Cn)).
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Define then the adjoint state ¢ through the following equation called the adjoint
state equation

VA*C + (%ii"(u, $)'¢ = C* (Cu(4) — z4). (3.6)

In (3.6) and hereafter, stars * indicate adjoint operators (with respect to the scalar
product under consideration ({+,-)) ). Then

(( Cu($) — 24,Cn )) = (( C*(Cu($) ~ za)ym ))

= (( vA*¢ + (%?(u,qb))'c,n )]

= (¢vAn+ (o $))n )
= (by (3.5))

PR .
= —(( ¢, _ﬁ(u’ ¢)¢’ ))

- —(( (%%(u,m)‘c,és ).

From this calculation, we conclude that

DJ - PR *
“ﬁg(uf‘#) ¢ = "(ﬂ'(usqb)) C (3'7)

and we are in position to implement the gradient algorithm (3.2):

Once ¢™ is known, we compute u™ by solving the state equation (2.2) with ¢ = ¢~.
Then we compute the adjoint state (™ by solving equation (3.6) with ¢ = ¢™, u = u™.
We obtain ¢™*? from (3.2), and we can continue.

Suboptimal feedback laws

Suboptimal feedback laws can be implemented in the same way. For example, for
a linear feedback law as (2.5),
¢ = E + Fu,

J becomes a function J of E, F through (2.5) and (2.2). The analog of the gradient
algorithm (3.2) consists in constructing two sequences E™, F”, recursively defined
by

o (3.8)
Frtl _ - —p2 ﬁ(En,F"’).

Note that the relaxation parameters p > 0 are chosen differently in the two equations
(3.8). One can define an adjoint state ¢ through an equation similar to (3.6) and
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compute in a convenient way the Fréchet derivatives DJ/DE and DJ/DF. Details
will be given elsewhere (see Choi, Temam, Moin and Kim (1991), hereafter referred
to as [CTMK]).

3.2 Time dependent problems
The suboptimal procedure that we propose consists of the following:

(1) Time discretization of the state equation
(2) At each instant of time, the discretized equation is a stationary one to which we
apply the procedure above.

Of course, there is no reason which guarantees that the controls will be optimal, but
at least (3.3) shows that the cost function tends to decrease. Numerical experiments
conducted in the case of the stochastic Burgers’ equation shows that indeed the
cost function decreases significantly (see Sec. 4). A mathematical analysis of the
procedure will be conducted elsewhere.

Consider the evolution state equation (2.8): again this could be the original
Navier-Stokes equation for the channel flow or an abstract equation originating
from a totally different problem.

For step (1) we consider here a simple time discretization scheme, the implicit
Euler one. More accurate and more involved schemes will be considered in [CTMK].
Hence

u” —y"T

1
ot vAu™ + R(u™,¢") =0, (3.9)

which we rewrite as

Au + R(u,¢) =0, (3.10)
with u = u”*,¢ = ¢",

Au™ = o™ + vAtAu",

3.11
R(un,¢n) — _un—l + AtR(u“,qb“). ( )
At each step n, the cost function J is still given by (2.3)
m 1
76" = T + gllcw” -zl (3.12)

with u” function of ¢™,u™ = u™(¢") through (3.9) - (3.11); hence J actually depends
on n, J = J™ because equation (3.9) depends on n due to the term ™1, Note that
for At sufficiently small, there exists a unique solution u™ to (3.9). Therefore, the

difficulty of non-uniqueness of solution for (2.2) does not arise anymore for (3.10).
The adjoint state is defined as in (3.5), (3.6)

n DR n 4nyj DR n ony 0
An +§$(u , ¢ )¢+mu,¢)n =0, (3.13)

are+ (PR wn, gm)"¢ = G*(Cu™ - 22) (3.14)
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The gradient algorithm (3.2) now reads
D
w4l ank nyk
By Taylor’s formula, as in (3.3)

Jn(¢“'k+1) < Jn(¢“'k)1 for all n,k,

and as k — oo, $™* converges to ¢" which achieves the minimum of J™. It is not
necessarily true that the minimum of J™ decreases as n increases, i.e.,

TY$™) < TG, for all n. (3.16)

In our computations, we observed that (3.16) is not always true. However, an
overall sharp decrease of this infimum occurs (see Sec. 4). The explicit calcula-
tion of DJ /D¢ (¢™*) using sequences u™F,gmk ¢mk kb = 0,1,... (and n fixed) is
straightforward; see [CTMK].

4. Application to the stochastic Burger’s equation

The following is a short excerpt from [CTMK].
We consider the randomly forced Burgers’ equation with non-zero velocity bound-
ary conditions,

g o* i)
E%_ngj‘;-{_u%:x’ 0<z <L, (4.1)

u(0,1) = ¢o, u(L,t) = ¢r. (4.2)

If x = 0, (4.1) is the classical Burgers’ equation for the velocity u in the = direction
which represents a balance of time dependence, nonlinear convection, and diffusion.
The parameter v represents the viscosity. In the absence of forcing (x = 0,¢¢ =
¢ = 0), the solutions of (4.1) decay to zero from any bounded initial data (and
even from any initial data with finite spatial mean-square value),

The forcing function x is 2 white noise random process in z with zero mean
(see Chambers et al. 1988, Bensoussan and Temam 1972, 1973). The mean-square
value of the dimensional forcing, o2, defines a velocity scale U = /oL where L is
the length of the computational domain. We denote by Re the Reynolds number
UL/v. Burgers’ equation in nondimensional form using U and L as the typical
velocity and length reads

Su 1 8% u
—a—; — EE‘; + u"(,",“"“x' = X, 0<3<1’ (43)

‘U;(O,t) = ¢0& u(]-}t) = qbl) (4.4)
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where now z, ¢, u,x are nondimensional and
<x>=0, <x*>=1. (4.5)

We consider the space and time discretization of (4.3) - (4.5) using as in (3.9) an
implicit Euler scheme. The space mesh is Az = 1/N, N an integer, and the time
mesh is At. The approximate values of v and x are

u} & u(jAz,ndt), x7 = x(jAz,nAt).

The time mesh discretization for x is Ai, usually larger than At. Actually At,
and Az are chosen first, and Atf is then chosen as large as possible so as to ensure
accuracy of the numerical scheme. Hence at each instant of time nA¢#, the x7,j =
2,..,.N — 1, are totally uncorrelated random variables; x} is constant on a time
interval (kAt,., (k — 1) At,), where k is an integer, and if nAt and n’' At belong to
two consecutive or different such intervals, all the xI are totally independent of all
the x7 (n' > n), with < x} >=10, < (1) >=1
The analog of (3.9) reads

.1 At 1 At
uf —uf! ReAwg(“;M 2u} +“-1)+4A (uf” —u)s®) (4.6)

=x}At, 1<j<N-1,

ug = ¢y, uy = 47 (4.7)
We easily write (4.6), (4.7) in the form (3.10) - (3.11).

At each instant of time, the cost function considered here is
m 2 2 My (Ul —ug |2 | (UN T UN-1 2
J(#5,97) = 5 {I6ol” +i81P}+ 5 {12+ = )
ma N
+ 2As Z l“? - u?——llzs
j=1

with m; > 0 and in most cases my > 0,m2 > 0.
Algorithm (3.15) can be implemented with an appropriate descent parameter p.
Although quite involved, the computation of DJ /D¢ follows from (3.13) and (3.14).
The following figures correspond to the case where Re = 1500, N = 1/Az =
2048, At = 0.001,At, = 0.01,m; = 1,my = Az,ms = 0. Figure 1 shows the
evolution of the cost function J in the above control case. The velocity gradient at
the wall du/dz(x = 0) is shown in Fig. 2.

(4.8) .
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FiGURE 1. Time evolution of the cost function J (Eq. (4.8)). , no control;

—---~, boundary control.
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FIGURE 2. Time evolution of the velocity gradient at the wall u/8z (= = 0).
, no control; ---- , boundary control.






