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An exact turbulent closure for
the hydromagnetic dynamo

By Hubert H. Shen

1. Motivation and objectives

The problem of turbulence in an electrically-conducting fluid, although central
to controlled fusion and many geo- and astrophysical processes, is in its infancy
compared to (nonconducting) hydrodynamics. “The understanding and manipula-
tion of magnetohydrodynamic (MHD) turbulence is more in need of theory than is
the case for Navier-Stokes fluids...” (Montgomery 1989). As pointed out by Mont-
gomery, there is a surprising, almost embarrassing gap in our understanding of what
the elementary or equilibrium states of a driven, dissipative MHD fluid are. Much
work has been done in the past couple of decades (as reviewed by e.g., Moffatt
1978, Soward & Childress 1986, Roberts & Soward 1992) on the closely- related
“dynamo” problem, namely, how fluid motion can overcome Ohmic dissipation to
induce and maintain magnetic fields in geophysical and astrophysical contexts. Dy-
namo models, however fruitful and illuminating, are often constrained to rely upon
phenomenological, statistical or perturbative assumptions or to limit themselves to
the so-called “kinematic” dynamo problem, in which one ignores the back- reaction
of the generated magnetic field upon the velocity. Work on the self-consistent and
fully-developed “hydromagnetic dynamo, though difficult and fraught with uncer-
tainties, needs to be extended. Dynamo theory is far from reaching its final form.”
(Cowling 1981)

In what follows we consider the hydromagnetic dynamo from the Hopf functional
point of view. This has recently been developed in the context of Navier-Stokes
turbulence (Shen & Wray 1991); here we incorporate buoyancy, rotation, electri-
cal conductivity, scalar diffusion, and source. No perturbative, phenomenoclogical,
or statistical assumptions or variational arguments are invoked; we seek an exact
turbulent closure of the MHD equations. This leads to closed-form analytic expres-
sions for correlation functions (such as the mean electromotive force (emf)) and
moment-generating functionals for the velocity, magnetic field, and scalar which
generalize the usual ideal, static, nonstatistical solutions. Equilibrium, stationary
nonequilibrium and time-dependent solutions are proposed. The incorporation of
compressibility and realizability are outlined. This method of testing the validity of
so-called alpha models (Moffatt 1978) for the generation of large-scale fields should
also be applicable to testing the validity of analogous non-MHD models (Frisch et
al. 1987 and references therein) for large-scale turbulent structure generation in
(non-magnetic) anisotropic, helical, or compressible flows. No claim is made for
uniqueness or completeness; however, the fact that (1) exact statistical solutions
can be obtained at all, and that (2) in fact more than one class of solutions ap-
pears to emerge from this approach, seems sufficiently promising to warrant further
investigation.
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2. Accomplishments

2.1. Functionel MHD equations

The equations which we consider here are the MHD equations consisting of the
Navier-Stokes equations with Lorentz force and buoyancy

(-3- - uvﬂ) u(x,1) = —u- Vu(x, ) - E}’ + e, 2) + (1.1)

J(x,t) x B
ot P

the induction equation in the usual nonrelativistic low-frequency regime

a 1, -
(a - ,_EV ) B(x,t) = V x (u x B) (1.2)

and the scalar (temperature) equation with diffusion and source term

a

S+ 7 (u)-V-(DV)=Q (1.3)
supplemented by incompressibility, Ohm’s law, the definition of the Lorentz force,
and the “pre-Maxwell” equations:

Vou(xt)=0 J=o¢(E+uxB) F=(GE+JxB) (1.4)
VxB=pJ V.B=0 VxEu—%? V-Emg (1.5)

Coriolis and baroclinic effects will also be briefly discussed. The pure thermal
convection problem (in the Boussinesq approximation) is, of course, recovered by
setting the magnetic field and electrical conductivity to zero and going to a potential
temperature formulation (Busse 1981).

We define the moment-generating functional

6= <eff‘;, dx [f(x)-u(x)+s(x)-w(x)+h(x)-B(x)+l(x)-uJ(x)+=(x)c(X)+rJ(x)Q(x)I> (1.6)

where the bracketsindicate ensemble average over all realizations of u(x), B(x), ¢(x)
and G(x). #{f(x), g(x), h(x), I(x), z(x), ¢(x)] is the functional Fourier transform of
the joint probability density. (The customary factor of “” in the exponent has been
absorbed into the dummy functions f, g, etc. for notational simplicity.) ¢ evolves
under the above dynamics to a stationary state given by the Hopf equations:

¢ § 1 8¢ ,.sqs]:o

)
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where A = steady-state frequency or growth rate of B. Solutions have been obtained
for the special case of isotropic flow neglecting buoyancy, the scalar equation, and
either all nonlinear or all dissipative terms (Stanisic 1985). We impose no such
restrictions; we first solve the vorticity and magnetic functional equations without
buoyancy and then incorporate buoyancy and the scalar equation.

2.2. Equilibrium solutions
In order to find a solution, we add and subtract “ghost” torques

Vx(uxaB)+VxVxaB/uo (2.1)

whose purpose is to “interpolate” between terms in the Hopf equations, so that the
resulting adjacent terms in the equations differ from each other by changing only
one ordinary or functional derivative. We recognize this type of equation as essen-
tially wavelike or convective in nature, thereby enabling us to write down a general
functional ansatz for its solution. Portions of each term are balanced pairwise by
portions of other terms to achieve an overall statistical steady-state. (Those who
prefer to visualize in topological terms may view this method as analogous to the
familiar decomposition of a knotted vortex tube into two or more linked tubes by
the insertion of equal and opposite flux tube elements between two points. The con-
dition of detailed balance corresponds to solenoidality of vorticity, i.e., the condition
that the knot form a closed loop.)

Balancing a fraction a; of the dissipative term against a fraction (1 — ay) of the
transfer term yields

VXVX"“‘E%S:VX (ﬁ?x_)x(l_az)gg%s) (2.2)

The remainder of the transfer term is in turn balanced by a fraction (1 — a3) of the
magnetic term, mediated by one of the ghost terms: :

5§ (1-—as) 66 § §¢
VXA < e 6h(x)“v"(6f(x)"“‘ah(x)) (25)

§ 56 \ _ 6 . 6
Vx(Sf(x)xazsg(x))“v"(sf(x)x “sh(x)) (24)

Finally, the remainder of the magnetic term is balanced by the remainder of the
dissipative term, mediated by the other ghost term:

o 99
po §h(x)

Vxva(l——a;)%:VxVx (2.5)
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The fractions a; are to be determined by imposing self-consistency upon the dy-
namics, as we will see.

This pairwise balancing procedure enables us to organize previous deterministic
or linearized solutions (Taylor 1986, Shercliff 1965) and generalize them to resis-
tive, nonperturbative, and statistical (nonfactoring correlation functions) solutions.
For example, the usual magnetostatic equilibria in which velocity vanishes and the
Lorentz force balances pressure would correspond to setting ag = 0. The kine-
matic dynamo, for which one neglects magnetic backreaction but has in general
nonvanishing transfer and dissipation, would correspond to setting ay = a5 = ay =
0,01 = 1. Alfven waves, for which u is parallel to B, would correspond to setting
@3 = 1,03 = 0. Hartmann flows or weak-field dynamos, in which magnetic forces
balance viscosity, and Eulerized flows (exhibiting depressed nonlinearity) would be
generalized by setting oy = a4 = 0,3 = 1, while Stokes flows would correspond to
the case a; = 1,a5 = a3 = 0. Magnetostrophic flows or strong field dynamos (in
the absence of buoyancy), in which Coriolis torques balance Lorentz torques, would
follow from decomposing g - w in equation (1.6) into mean and fluctuating vorticity
(with a separate dummy function for each) and setting oy = 1 — ;. Ideal flows
(Gilbert & Sulem 1990) would correspond to setting a = a3 = 1; in order to satisfy
V X (u x B} = 0, the ghost in equations (2.3} and (2.4) would have to be replaced

by a nonvanishing ghost (no pun intended) such as +V x (WJY)' X g 6: x)).

V x XV x

(2.6)

Recognizing equations (1.8) and (2.2)-(2.6) as equations for characteristic curves
(albeit in function space) leads us to immediately write down forms for their solu-
tion. For equation (2.2),

6¢ —_1.... = x)-
EE(?)—ualG(H(x)+[def( ) 3

where the “phase shift” Z{1) of the traveling wave solution (“propagating” in f and
x rather than in x and t) is governed by

Vi,

hﬂ+#ﬂ) (2.7)

Vx(ZM xGY=0 (2.8)

Equations (2.3) and (2.6) imply

b _ E‘IW(M(x) + f dx 1(x) - 232 [VM + zm]
—00 —aog

Sh(x) ~ a5
+ /_ ~ dx f(x) Qﬁ [va5, +20)) (2.9)

where

Vx(Z® x W) =0 (2.10)
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Equation (1.8) yields

where

Vx(Z® xL')=0 (2.12)

(The arguments of G and L in the above equations have additional contributions
from 1(x) as in (2.9).) “Prime” denotes derivative with respect to argument. Equa-
tion (2.4) implies

b 64 (4)
@5l = e * 2 (2.13)
where
4)

VX g X 20 =0 (2.14)

while equation (2.5) implies

) )

(1—aq)2 o 5 (2.15)

og(x) " vpo §h(x)

where
VxVxZ® =0 , (2.16)

Solenoidality of velocity and magnetic field will be guaranteed if

e (n)
v. -v. Y

=0, n=0,1,- (2.17)

[43] (231
implying
v. gy Z®0] =v- 22 [vmr +20] =0 (2.18)
— 0 a3
These equations have a solution:
i
Ne=w L=£ (2.19)
o1 g
My, MM 1-
\% (—-1 + ;) _ o “3)VM1 (2.20)
poe V pooagog
H=M =N, Z®P=2W=9 (2.21)
7)) _ 7(3) _ g(5) “%% (2.22)

pois
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Self-consistency of (2.7) with (2.9) and (2.13) with (2.15) respectively constrains
the fractions a; to satisfy

ajazas = (1 —a1)(1 — a2)(1 — a3) (2.23)

oy g
ppe— =
o ay 1—ay

(2.24)

If B is stationary (A = 0, DC dynamo), we have the further condition

o _1-0as (2.25)
(231 3 )

2.5. Effect of scalar equation

2.3.1 No scalar diffusion or ezplicit source

In the absence of scalar diffusion and source, the stationary scalar Hopf equation
(1.9) becomes

§ 5
5(x) V&z(x) =0 (3-1)
Hence the buoyancy term in the vorticity Hopf equation becomes
. 69 é
vV x g&z(x) = —§ X (m X n) (3.2)
for some functional n where
V x ‘5‘@ xn=1>_0 (3.3)

in order for ﬁf—;; % n to represent the gradient VE%. Add and subtract a “ghost”

torque
. é 6
o (3t * &) e

where a¢ depends upon x and replace (1 — a3) by (2 — oz) above. Then we may
obtain a solution by imposing the condition that buoyancy is balanced by part of
the transfer term (mediated by the ghost term), yielding

(o) e (g ly) oo

This will be satisfied if

(VH +20) x G' = Ve exp(— / agd - dl) (3.7)
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g x (EI‘(% X n) = § X Vipy exp(— -/x agd - dl) (3.8)

Equation (3.8) is readily satisfied by n of the form

g f dx f(x) x [wl exp(—~ f LR dl)+y¢2(x)] (3.8q)

The three scalar functions in the above expression are determined by the three
equations (3.3).
If Coriolis forces are present, we obtain instead that

) . 5
Vv x (6f( ) X ﬂq&) —agd X (ﬁ‘( ) X ﬂq&) (3.9)
g% (ﬁ X n) = agd§ X (6f( ] X qu) (3.10)
This will be satisfied if
—Q x GV = V) exp(— fx agg -+ db) (3.11)
§
P (6f( ) X n) =g X V1/11 exp(— f agd - dl) (3.12)

where G = V x G(-1) defines G{-1),

2.3.2 Scalar diffusion and source

In the presence of scalar diffusion, we let part of the diffusion be balanced by
convection and part by the scalar source. The former condition may be expressed

as
é 6 &

DesVix) = () 5509

Letting % = 0 for simplicity yields a buoyancy term

86§ 6V _ &
VX g&z(x) " Dag 62(x) vz X Sg(x)

+V X9 (3.13)

(3.14)

Replacing (1 — a;) by (2 — @) and letting the buoyancy be balanced by part of
viscosity yields

& Dagy | 2
——§+VV 3.15a
f2) " T (3.152)
The first moment is given by
)
L v 2 %9 _ (3.16a)
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In conjunction with (3.15) and (2.2}, this allows us to determine ag. Alternatively,
if Coriolis forces are present to balance the buoyancy (geostrophic balance), we have

é
52(x)

)

5 (3.15b)

—:‘q——-ﬂx
9

This gives us a prescription for the scalar moments. Compare with the prescription
implied by (3.2) and (3.6):

.Y )
m = Ef'(";j Xn (3.165)
é ] )
Vi) ~ 5 < sax) (3:15¢)
Similarly, taking into account the source term yields

§
=~V D1l—-as)V—— 3.17
s~V (20 -e0v) 447

which provides us with a prescription for the source moments. If there is no explicit
source, we may let ag = 1. The scenario in which buoyancy is balanced by Lorentz
forces to yield a guiding-center drift current which is perpendicular to gravity and
the magnetic field is already implicit in equations (2.3, 2.4, 3.5, 3.6).

2.3.% Compressibility

If there is a baroclinic term VP x Vp in the vorticity equation, the statistical
description must be augmented to include the pressure and density explicitly. Let us
add the term [ny(x)P(x)+ny (x)p(x)] to the integrand in the exponent in equation
(1.8). Suppose that the equation of state prescribes P as a position-dependent
functional Pi[u,c,p,x] of velocity, scalar and density. Then the argument of G in
equation (2.7) has the additional integrals

fm¢%4gﬂ@+muﬁuﬂ+mmﬂy

—00

&,]}wm)

P, is related to the first (vector) argument of Py in the same way that density is
related to velocity in the steady-state continuity equation V- (pu) = 0 (which holds
here in a statistical sense):

V. (BIVE+ZY) =0 (3.19)

(see equations (5.10, 5.17-5.19) for one explicit formal solution.) Balancing the
baroclinic term solely against buoyancy § x Vp would yield

V.Pl = '—ﬁ' -+ n3(X)VP2 (320)
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This gives us three additional equations for three additional unknowns n3, g (ap-
pearing in equation (3.20) through Py), and H (appearing in P, and implicitly in
P,, through equation (3.19)). The incompressibility condition (2.18) used previ-
ously to determine H and the Boussinesq equation of state p ~ T used previously
to determine g through equations (3.15) or (3.16) no longer apply, of course. More
generally, buoyancy is balanced against a combination of baroclinic, transfer, Cori-
olis, and viscous forces, leading to more unknowns and equations via the procedure
outlined above. The adiabatic and isothermal subcases, in which the steady-state
equations of state take the form u- V(P/pY) = 0 or u: V(P/p) = 0 respectively,
may be treated by a procedure analogous to §2.3.1.

2.5.4 Arbitrary explicit force

If the dynamo is driven by an arbitrary explicit force (Braginsky 1964) instead
of the Boussinesq-type buoyancy forces described above, other approaches may be
useful. For example, if the force is solenoidal, the external torque may be written
as V x V x i for some vector function 4. If this force is balanced by viscosity,
we obtain that the 7 moments are proportional fo the corresponding moments of
vw (within a function whose curl vanishes) where w is the vorticity. If the force is
nonsolenoidal, we may let the dummy field which is conjugate to the force (in the
definition of the generating functional) be a pseudovector “angle” #(). Then using
the angular momentum identity

6 _ & &
§6(x)  86(x) = 86(x)

(3.21)

and balancing the force against part of transfer by adding and subtracting a ghost
torque

5 5
X e X e 3.22
P P (3.22)
yields
Y _9M; + ZY = Beltrami (3.23)
1-—a

This particular choice of dummy field is awkward to implement in practice because
of the noncommutativity of the functional derivative ;é%. However, it may be
viewed as justification for the use of Beltrami flows for the velocity in kinematic
dynamo models.

2.4. Closure

From the above solution, one can write down exact expressions for correlation
functions. For example, the mean emf is given by

1—(!3

(u(x) x B(x)) = — [Vt + Z0] x W' (4.1)

30y
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_ (1 - as)as

= [ug P V] x {B(x)) (4.2)
since W' is paraliel to W by solenoidality. (Equation (4.2) may be taken as the
definition of ug.) This may be viewed as an anisotropic inhomogeneous « effect (e.g.,
Krause & Rddler 1980). One may compare this exact result with the conventional
MFE prediction:

-3 [(u-w)(B) + («*}V x B)] =

TR
3&5(1 - ag)

where v = phenomenological correlation time of turbulent velocity. If we superpose

solutions with different (nonparallel) W, then ug x {B(x)) will be replaced by a term

which is in general not perpendicular to (B(x))}, permitting generation of toroidal

current (and hence poloidal field) from toroidal field, as desired for dynamo action.
The size of the magnetic fluctuations

(B?) _ enaf(l - as) o, W
(BF = “as(amer * <7 W

Whether this ratio is 3 1 or < 1 determines the regimes of validity of Ohmic
diffusion and first-order smoothing, respectively. Other correlation functions (e.g.,
(B - Vw) and (B(x)B(x'))) may also be computed to shed light upon questions of
quenching (e.g., Malkus & Proctor 1975, Kraichnan 1979), inverse cascade (e.g.,
Frisch et al. 1975), or the formation of current sheets {e.g., Parker 1989).

2.5. Steady state without detailed balance

Consider again the vorticity Hopf equation without buoyancy. We rewrite it
schematically as:

[vE +29]. [e'W + Vv x w] (4.3)

(4.4)

where the three terms correspond to the viscous, transfer, and Lorentz force terms
respectively (equations (6.6) - (6.8)). This has the general solution

$(¢,m¢) = /dbldbz p(b1,82) $(b1€ + b2 — (b1 + b2)¢) (6.2)

However, one may gain much more insight by decomposing equation (5.1) into three
simultaneous equations:

(algfé - az)-%) b= Rlgl (5.3)

(az% +(1~ aa)a%.) ¢ = F2[9] (5.4)



Ezact turbulent closure 3856
d a
(aaa—c + (1 - al)“a"z) ¢' = F3[¢] (5.5)

where the Fj;[¢] are in general operators on ¢ satisfying the stationarity condition

Y Filgl=0 (5.6)

i=1
For
F[g]=0 (5.7)
this reduces to the earlier, detailed balance case. If, in addition, we restrict ourselves
t
’ 3(;5 ?ﬂ ¢ =0 (5.8)
8 oy o ’

we recover the ideal magnetostatic deterministic solution, which is most often used
as a starting point for stability studies but whose fundamental inadequacy has been
discussed at length (Montgomery & Phillips 1989), Hence we see that the sought-
after generalization of this static solution to resistive, turbulent, nonequilibrium
solutions can be achieved within the framework of the decomposmon (5 3.5.5) with
nonzero o; and Fj.

The physical mterpretatlon of this decomposition may be further clanﬁed by
going to a probability (rather than moment-generating functional) description. We
may write the stationary Hopf equation in “Vlasov-equation” format (dropping the
magnetic and scalar variables for notational simplicity) as

%té =f1;[du(x) dxif - u P[u]e“ff‘“
= fHdu(x) dx 1t P[u] ,:s_‘s;eifr.u

- f [] du(x) dx '8{"1 (4 Pu))e S = 0 (5.9)
x
Inverse functional Fourier transforming with respect to f(x) yields

§ .
- f dx = (uP[u]) =0 (5.10)
Separating the dissipative (D), transfer (T') and magnetic (M) contributions yields
dP . .
0= > (“J{). = > (w) (5.11)
=D, T,M 1 j=D,T\M

The (@), are just the functional Fourier transforms of 8—2’_—. We now rewrite this as
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d
0= i Z P; (5.12)

where the “partial probabilities”

P-(t)=/t ar (4F +p-(—oo)——f dt'jd 2 (@), Plu) + Pj(—oo)

M= \ar ), T . *Fu i AT
(5.13)

The constants of integration P;(—oo) are arbitrary; if we choose them to satisfy

> Pi(-o0)=1 (5.14)

j=D,T,\M
then
Y. Pt)=1 (5.15)
j=D, M
for all t. Similerly, P;(¢) will remain bounded in the interval [0,1] for all ¢ if initially
so bounded, just as

Plu(x, )] [] du(x,t) = Plu(x,0)] [] du(x,0) (5.16)

guarantees the boundedness of P[u].

Hence we see that the time rate of change of the probability contributed by dissipa-
tion, transfer, and magnetic processes (with total probability change = 0 in steady
state) is formally equivalent to the time rate of change of the probability contributed
by dissipative, transfer, and magnetic “states” (with total probability change = 0
in a closed system.) In other words, we have shifted our perspective slightly, from
solving for stationary probabilities with independent variable u and parameter j, to
solving for nonstationary probabilities with independent variable j and parameter
u. The F;’s represent the net probability flux or transition rate between pairs of
states, Note that when %? vanishes, we obtain that »V?w weakly vanishes (its en-
semble average with any n-point function of u, B, c, and their derivatives vanishes)
implying that Pp vanishes. In other words, Pp may be interpreted as a measure of
the intensity of vortex reconnection, Py as a measure of vortex stretching, and Py
as a measure of magnetic stretching.

One could try to solve the Vlasov-type equation (5.10) directly. For example, for
the one-point velocity pdf, one could transform to the local principal axes frame
where

du;

Fa; ~ B (5.17)

Then one may verify that

P(u(x)) = 1'[ ;L + j “dveonxi (5.18)
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where 1
nj(u) = H —+ jth component of null eigenvector of
it
taks taksy —trky — tighs
( ’I.sz] —1}.1’61 —1'.!.3]5‘.3 113’63 ) Bk'“ (5.19)
—ttgka — ttaks urks 1y ks

However, this becomes intractable (and not particularly illuminating) if one is in-
terested in more than just the velocity at one point. Moreover, this solution satisfies
equation (5.10) pointwise; one may have to consider not the local condition (inte-
grand of equation (5.10)) but the global one (equation (5.10)) in order to obtain
stationary solutions of interest.

2.6. Driven steady stale for particular generating functional

Consider the case in which the Fj[¢)] are arbitrary (subject to equation (5.6)) but
¢ = &(B1(€)B2(7)B3(¢)). Then equations (5.3)-(5.5) become

41 1- ay H kl Fl 1
0 (2 5] 1-— o3 kg = Fg —;ﬁ (6-1)
1 - [:4] 0 (433 ks Fs (,‘b

Bi(¢5)
B;(¢;)
B = B1(¢)B3(n)Bs(()

If the determinant of the & matrix vanishes, detailed balance can occur. More
generally, the stationary ensemble exhibits a net probability flux between pairs of
states or a nonzero cyclic flow of probability through the three states. Equivalently,
one may write the matrix equation as

k] -—kz 0 [£5] F] /qu - kz
0 kz —ka (03] = Fg /QS'B - ka (6.2)
—k; 0 ka a3 Fa/tﬁ’B - k1

Because the determinant of the k matrix vanishes, one may solve for the net tran-

sition rates
F ks
F2 = ka ¢’B (6.3)
y ky

251
when (a;) = null eigenvector of k matrix (6.4)
O3

k; = constant by eqn.(5.1)

In general, one cannot set the net transition rates equal to zero because k 3 null
eigenvector of the o matrix (i.e., regardless of the choice of k;, one cannot solve for
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a; given vanishing F;j because the k matrix is noninvertible.) Hence, these solutions
differ fundamentally (Graham 1973) from the previous ones which exhibited detailed
balance because the entropy production

§ = z PjlogP; #0 for F;#0 (6.5)
=D, T,\M

Translating back into hydromagnetic language, we have

8 §
a—éﬁVXVXVE'(x—) (6.6)
i) § é
6_7] —+V x —*6f(x) X “—-——-—65(x) (6-7)
d v 8 1 & (6.8)

8¢~ T A < pp thlx)
By equation (6.1), B; = exp(k;¢;) where

kit — f ” dxg(x) -V x Ap (6.9)
kanp — -/;“’ dx [g(x) -V x (AT - AD) + f(x) . AT] (6.10)
kst — [° dx [h(x) - Apg +1(x) - V % Apg] (6.11)

These expressions are the minimum required to exhibit nonvanishing 8B;(£;)/8¢;;
they incorporate Ampere’s Law and the definition of vorticity.
By imposing that the derivatives satisfy

O(kmém) _
ot = kmbmn (6.12)
we obtain

ki =VXxVxuvVxAp (6.13)
ks =V x (Ar x V x (A7 ~ Ap)) (6.14)

Ay
ks =V x(Vx —=)xApm (6.15)

e
VXVXVX(AT—AD)MO (6.16)

V x (AT x V x AD) =10 (6.17)
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“Uncurling” equations (6.13)-(6.17) yields “constants” of integration:

—V?Ap = Vép + ki x x/3v (6.18)

—ViAp = Vér+ ki x x/3v (6.19)

Ap = n,(x)V XAp+ P, PAxVxAp=Vi (6.20)

Ap = ng(x)v XAp+ P, Py xVxAr = Vi + k2 xx/3 (6.21)

Ay = ns(x)V X AM + Ps, Py xVxAy= V‘qba + ,upks X JC/3 (6.22)
while the magnetic equation (1.8} with A = 0 becomes

Ap x Aps =V x Apg + Vify (6.23)
(Compare this with the MFE prediction:)

Ap x Apyp = aAp 49V X Ay (6.23&)

" This gives us enough unknown fields to satisfy the equations (6.18)-(6.23).
Solencidality will be satisfied if

V.Ar =V Ay =0 (6.24)

which suggests a vector potential or stream function representation for Apr and A7,
For the case in which ¢ is linear in B, the stationarity (vorticity) condition is simply

ky + kg + ks =0 (6.25)

For ¢ analytic in B or containing negative powers of B, cancellation of each power of
B requires that additional conditions be imposed, which we will not discuss further
here. '

In the context of our “partial probability” picture, a solution with nonzero tran-
sition rates corresponds to a probability packet cycling consecutively between w
stretching, B stretching (and reconnection, by the induction equation), and w re-
connection. If instead one writes the Hopf equations in terms of u-Vu and B- VB,
depletion of state “M” implies zero magnetic tension, which may have implications
for coronal mass ejection (Low 1990).

2.7. Driven steady state for particular delailed imbalance

Consider the case in which there is no detailed balance and the (hence nonvan-
ishing) F; = Fj(¢). Then equations (5.3)-(5.5) become

(cr + (1 - ax) ) = @) (1)
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i)
(aggl— +(1- aa)gé) ¢ = Fo(d) (7.2)
(avgp +- ez ) 8= R@) (7.3)
again with the stationarity condition
3
> Fi(¢)=0 (7.4)
=1
Rewrite this as as Py
al-—a?] +(1- ag)—a# =1 (7.5)
az% + (1 - as)%% =1 (7.6)
asa—aséi + (1 al)%—sg = 1 (7.7)
where i
Si(¢) = f Fi9) (7.8)

Solving, we obtain

51 =5 (fcdé'(l—az)—./ondn'al)+/€%§ (7.9)

¢ '
Sz = Sz (f” d'q' (1 - 0.’3) —-‘/; dc‘ az) + ! d—ﬂ- (7.10)

o3

S3 = 83 (/¢JC'(1—a1)m££dE'a3)+/c% (7.11)

where Bal _ Bag . 60.'3

a¢ on 8’
and oy,a; and a3 are independent of 5,{ and ¢ respectively. We translate back
into hydromagnetic language as in the previous section except that we choose

o;(0)=1 (7.12)

kyé — /:oo dxg(x)-V x 4p (7.13)

0o 2
konp — % ([_w dx [g(x) -V x (Ar — Ap) + £(x) -AT]) (7.14)
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ks¢ — -g ([_: dx [h(x) - Apr +1(x) - V x AM])2 (7.15)

The quadratic powers are the minimum required to give nonvanishing 8(kan)/dn
and 8(k3({)/9¢. Stationarity implies

); Bi = (7.16)

which is satisfied if
$(S1,52,83) = (5151 + 5252 — (b1 + b3)Ss) (7.17)
or more generally
8(51, 52, 8) = ] dbydba p(bs,bs) $(bsS1 +82Sa — (br +52)S0)  (7.18)
Normalization of probability imposes the constraint
(0,0,0) = 1 (7.19)

For the case of constant «;, condition (6.12) implies that §; is linear in the ar-
guments displayed in (7.9)-(7.12) (not to be confused with (7.8)). The resulting
solutions are analogous to the secular solutions of the wave equation, just as the
solutions of §2.2-2.4 are analogous to the propagating solutions of the wave equation,

2.8. Realizability

For the solution described in §2.6, in the case that ¢ is linear in B, the probability
density for the velocity and magnetic fields is a sum of (functional) delta functions,
each of the form [], §(u(x)— Ax(x))5(B(x) — Ap(x)) multiplied by similar factors
for the vorticity, current, scalar, and scalar source (and pressure and density, if
the flow is compressible). Realizability imposes the constraint that the coefficients
multiplying the delta functions be positive. For the solution described in §2.7,
for the case of constant aj, realizability constrains the functional dependence of ¢
upon the argument displayed in equation 7.18. For example, if ¢ is chosen to be
exponential, the probability density for the velocity, vorticity, magnetic field, and
current would be joint Gaussian, hence positive everywhere as desired. Realizability
remains to be verified for the solutions exhibiting detailed balance.

More generally, it has been suggested (Kraichnan 1991) that realizability could be
imposed upon the probability P[u] by introducing a complex probability amplitude
®[u] and its complex conjugate such that

Plu] = 4" [u]([u] (8.1)

which is positive semidefinite as desired. Although the Hopf equation could be
written in terms of ¥[u] or its functional Fourier transform [f] where

¢lfl= ) 4"[g - flélg] (8.2)
{8}
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it is not immediately obvious how to solve this infinite system of coupled equations
or, equivalently, under what circumstances a given solution of the Hopf equation
can be represented in the form (8.2). )

One may, however, consider the equation of motion for 1[f] rather than for ${f].
If one imposes the single- valuedness of evolution under equations (1.1)-(1.3) upon
the probability amplitude (a condition analogous to but slightly-more stringent than
equation (5.16)), then, letting T' denote the time evolution operator, we have (sym-
bolically)

Tﬁﬂ=fTwum@giﬁm=/HTAM¢W4MJJN.
e fdv 'qb[v]e"iff'T' (8.3)

Hence, %[f] obeys the same Hopf equation as #[f). In other words, any solution of the
Hopf equation (e.g., the solutions exhibiting detailed balance) can be inserted into
equation {8.2) to obtain a realizable ¢. Guaranteeing realizability in this manner
does have a drawback, however; the functional integration in equation (8.2) must
be performed (at least in the vicinity of f = 0) in order to evaluate moments (unless
the moments are of at least first order in all vector components of all physical fields
in the exponent of equation (1.6)).

A certain class of moments can be evaluated without performing functional inte-
gration. Consider moments obtained by taking functional derivatives of

P(f] = ¢*[flf] (8.4)

rather than of ${f]. P[f] may be interpreted as the probability density for the
conjugate field f; its density in velocity space is analogous to the Wigner distribution
function. One may verify that

6P[f]

t——r|r=0 = u(x)¥"* [u + v]jy[v] (8.5)
58(x) {E&gg

= Tr[pAu(x)] = (Au(x)) (8.6)

(ﬁ)u,u = ¢[u]¢*[v], (Au)u,u =ZEu~-v (87)

If the (probability) density matrix p is diagonal in the velocity-realization basis,
then there is no phase correlation between states with different u(x) and

{Au(x)) =0 (8.8)

In other words, {Au(x)) is a measure of the coherent velocity spread at a given
point or of the phase coherence or interference between different realizations. The
probability amplitudes satisfy the Hopf equation and hence can exhibit “propaga-
tive” behavior in the variables f and x, analogous to the propagation of conventional
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wavefunctions in x and ¢. However, because the conjugate fields are dummy vari-
ables, it is not clear that interference between different realizations (analogous to
the Aharonov-Bohm effect) would be physically observable.

In order to compute moments without having to perform a functional integration,
we require that ¢[f] be local in f yet that P[u] be positive semidefinite. Consider
(in one dimension for notational simplicity) the following piecewise prescription:

Plu) = ‘/:o df ¢[f] e foru >0

0
= f df ¢[fle ™ foru <0 (8.9)
-

where ¢[f] takes the form given in equation (8.4). This expression for Plu] is
positive semidefinite for all real v. At w = 0, P[u] is undefined; however, this
does not affect moments since P[0] is weighted by v = 0 in the integral over .
One may verify (using the Cauchy theorem) that taking functional derivatives of
#[f] and then setting f = 0 yields moments of the absolute value of u. Given the
evolution equation (5.10) for Pfu], ¢ will satisfy the Hopf equation if surface terms
#[f = 0] and §¢[f = 0]/6f vanish (these arise from the functional integration by
parts which is implicit in 4P.) The vanishing of the surface terms can be achieved
by subtracting the constant ¢[f = 0] from #{f], which does not alter the validity
of the Hopf equation for 9. ¢ will satisfy the Hopf equation if 4 does and if cross
terms involving functional derivatives of ¥ and %* vanish, which in turn can be
achieved if equation (2.19) is satisfied and if one requires that the real part

Re{V x (G x G)} =0 (8.10)

Normalization of probability (7.19) is replaced by the condition

olfl _
L5 (8.11)

which, by linearity of the Hopf equation, can be satisfied by multiplying ¢ by
the appropriate constant factor. Whether this approach can be modified to easily
generate moments of non-absolute- valued quantities remains to be seen.

2.9. Time dependence

Time dependence may be incorporated into the framework of §2.5-7 by adding
a term proportional to ¢ to the arguments of ¢ in equations 5.2 and 7.18 and by
relaxing the stationarity constraints (5.6, 6.25, 7.16). The coeflicient of ¢ in the
argument of ¢ is chosen to be minus the sum of the coefficients of {,7 and (.

Alternatively, one may take a simpler approach for the class of flow ensembles
exhibiting “limited statistical linearity” (defined below). Consider the incompress-
ible MHD equations without the buoyancy term or scalar equation. If we add a
multiple # of the induction equation to the velocity equation, we obtain
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0 _ Vp 1., B o2
~ [u(x,?)+8B(x,t)] = u-Vu—-B-VB+8u.VB—3B-Vu+ p RV u— RMV B
(9.1)
Setting § = £1 and defining
v=u+B, w=u-B (9.2)
we obtain
——-Qwv(x, t)y=w:.Vv+ Ve _ aViv ~ bVw (9.3)
ot p
—gt—w(x,t) =v.-Vw+ -—Y; —aViw - bV?y (9.4)
Where 171 1 1/1 1

Pressure may be eliminated by using incompressibility and the solenoidality of the
magnetic field and inserting the projection operator {1 — (VV/V?)} in front of the
nonlinear terms.

A solution of the Hopf equations corresponding to equations (9.3-4) may be ob-
tained by choosing a moment-generating functional

Blf,2,1] = <e* S ax ff(x)-v(x>+s(x)-w(x)1> (9.6)

which manifestly closes the equations, i.e., a ¢ whose off-diagonal second functional
derivatives are linear combinations of its first functional derivatives, A moment-
generating functional for v, w which satisfies this requirement is

HEgt) = ulf 1] o= 5 4 golg o) w0 (9.7)
where ¢; and ¢; are arbitrary. One may readily verify for this ¢ that

¢ 8 R
50a0) ) T gy ?

(9.8)

This implies that
(u(x,?) x B(x,1)) = (e3 — €1) x {u(x,?)) — (ca + 1) X (B(x,t)) +c1 x ¢z (9.9)

which offers another rigorous alternative to the conventional MFE model. Note that
diagonal second functional derivatives such as §24/6f;6f; do not reduce to linear
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functional derivatives; correlation functions such as {ui(x)u;(x)} or (B;(x)B;(x)}
cannot in general be written in terms of (u;(x)) and (B;(x)).

The resulting closed system of 2 linear equations for the first functional derivatives
of ¢ is readily diagonalized. For constant ¢; and cz, the term in the Hopf equation
corresponding to w+ Vv + !PB in equation (9.3) simplifies:

{1 - (VV/V})}V- 3‘%% ey v%% (9.10)

(similarly for equation (9.4)) Hence, one obtains propagating diffusive modes (an
admixture of velocity and magnetic field) governed by a dispersion relation w(k)
which satisfies

(w —¢1 - k —iak*}w — ¢z - k — iak®) + b%k* =0 (9.11)

For ¢1 = ¢z, the eigenmodes reduce to excitations which are purely kinetic or
magnetic, diffusing on purely viscous or resistive time scales, respectively. For R =
Ry, v and w decouple, corresponding to modes whose velocity and magnetic field
oscillate in and out of phase, respectively. The case of nonconstant ¢; and ez and
higher-order correlation functions may be computed by solving analogous but larger,
inhomogeneous closed systems of equations, involving a diffusive kernel. Whether
these modes are purely statistical (appearing only in the ensemble-averaged flow)
or play a role in individual realizations remains to be clarified.

3. Future plans

The Hopf functional approach offers a new exact method for obtaining stationary
MHD states, both with and without detailed balance, which generalize the usual
ideal static or force-free, equilibrium, nonturbulent states. The treatment of time
dependence beyond the usual, initial linear stability regime also appears possible.
Closed-form analytic expressions for the mean emf and other correlation functions
emerge without making perturbative, phenomenological, or statistical assumptions.
Recognizing the wavelike character of the functional differential equations enables
one to reduce them to a system of ordinary differential equations, a reduction of
the number of degrees of freedom in the problem from N 3L° {0 L where N and
L are large numbers on the order of the number of permitted values for velocity
at a given point and the spatial extent of the system, respectively. The solutions
obtained are not necessarily unique or complete but merely illustrative. The possi-
bility of superposition indicates that matching to the mean flow may be necessary
to determine relative strengths of different solutions unless it is possible to close the
equations by substituting, for example, the mean emf and Lamb vector back into
the stationary vorticity equation. Initial conditions or a variational criterion may
play a role in selecting the correct ensemble or discarding spurious ones. Compu-
tation of moments and of the probability of arbitrary realizations of the velocity,
magnetic field, scalar, and scalar source is currently under investigation.




308 H. H, Shen

Acknowledgements

The author is grateful to Alan Wray for stimulating discussions and Stephen
Childress for informative comments. He also wishes to thank Paul Roberts and
David Montgomery for preprints of their work.

REFERENCES

BRAGINSKY, S. I. 1964 Self-excitation of a magnetic field during motion of a highly-
conducting fluid. Soviet Phys. JETP. 20, 726,

Bussg, F. H. 1981 in Hydrodynamic Instabilities and Transition to Turbulence,
$5, Springer Verlag.

Cowring, T. G. 1981 Present status of dynamo theory. Ann. Rev. Astron. Astrop,
19, 115,

FriscH, U., POUQUET, A., LEORAT, J., & MAZURE, A. 1975 Possibility of an
inverse cascade of magnetic helicity in MHD turbulence, J. Fluid Meck. a8,
769.

Friscu, U., SHE, Z. S., & SULEM, P. L. 1987 Large-scale flow driven by
anisotropic kinetic alpha effect. Physica. 28D, 382.

GILBERT, A. D, & SuLEM, P. L. 1980 On inverse cascade in alpha-effect dynamos.
Geophys. Astrophys. Fluid Dyn. 51, 243.

GRraHAM, R. 1973 in Quantum Statistics in Optics and Solid State Physics, p. 32,
Springer -Verlag,

KRralcHNAN, R. H. 1979 Consistency of the alpha effect turbulent dynamo. Phys.
Rev. Leti. 42, 1677; private communication, 1991,

KRrAUSE, F., RfiDLER, K. H. 1980 Mean Field Magnetohydrodynamics and Dy-
namo Theory, Pergamon Press.

Low, B. C. 1990 Equilibrium and dynamics of coronal magnetic fields. Ann. Rev.
Astron, Astrop. 28, 491,

Maikvus, W. V. R. & ProcTor, M. R. E. 1975 Macrodynamics of alpha effect
dynamos in rotating fluids. J. Fluid Mech. 67, 417.

MorraTT, H. K. 1978 Magnetic Field Generation in Electrically Conducting Flu-
ids, Cambridge University Press.

MONTGOMERY, D. & PHILLIPS, L. 1989 MHD turbulence: relaxation Processes
and variational principles. Physica. D37, 215.

MONTGOMERY, D. 1989 in Trends in Theoretical Physics, Vol. I, pp. 239-262.

PARKER, E. N. 1989 Spontaneous discontinuities and the optical analogy for sta-
tionary magnetic fields. Geophy. Astrop. Fluid Dyn. 46, 105.

RoBERTs, P. H. & SowARD, A. M. 1992 Ann. Rev. Fluid Mech. (in press)

SHEN, H. H. & WRAY, A. A. 1991 Stationary turbulent closure via the Hopf
functional equation. J. Statistical Phys. 65, 33-52,




Ezact turbulent closure 397

SHERCLIFF, J. A. 1965 A Teztbook of Magnetohydrodynamics, Pergamon Press.

SowaRD, A. M. & CHILDRESS, S. 1986 Analytic theory of dynamos. Adv. Space
Res. 8, 1.

StaNisic, M. M. 1985 Mathematical Theory of Turbulence, Springer Verlag,

TAYLOR, J. B. 1986 Relaxation and magnetic reconnection in plasmas. Rev. Mod.
Phys. 58, T4l.






