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An a priori study of the accuracy of
an equilibrium wall model for dissociating air

in supersonic channel flows†
By M. Di Renzo AND J. Urzay

1. Motivation and objectives

Numerical simulations of supersonic and hypersonic flows are particularly challenging
because of the simultaneous presence of shock waves and turbulence, with transitional
zones in compressible boundary layers, and with large fluctuations of temperature, ve-
locity, and pressure (Bertin & Cummings 2006; Leyva 2017; Urzay 2018). In fact, the
high kinetic energies that characterize this kind of flows lead to the occurrence of high
temperatures in regions where the flow slows down, because of the close coupling be-
tween the transfer of momentum and thermal energy. The resulting high temperatures
may activate thermochemical processes such as vibrational excitation, dissociation, and
ionization (Park 1990; Anderson 2006; Candler 2019).

The intense computational resources required to solve the multiscale dynamics of high-
speed flows often forestall the computational analysis of many flow configurations of
practical and scientific interest. In this context, the formulation of models able to palliate
the computational complexity of the required calculations appears to be a very relevant
research topic. For example, a significant effort has been made in this direction with the
development of wall models (Kawai & Larsson 2012; Bermejo-Moreno et al. 2014; Bae
et al. 2018; Bose & Park 2018; Iyer & Malik 2019). The present work will discuss an a
priori assessment of the accuracy of a particular class of wall models, the equilibrium
wall models, in high-enthalpy conditions.

The equilibrium wall-models are based on describing the near wall region of the com-
putational domain using the Reynolds-averaged formulation of the transport equations
assuming a constant shear layer. A subregion where the wall-model equations are solved
is therefore defined within the computational domain of calculation and usually consists
of a thin layer spanning the size of the first few grid elements close to the wall. Com-
munication between the near-wall and the outer mathematical formulations happens at
the outer end of the wall-model region, which is usually referred as the matching loca-
tion, where the solution computed using an eddy-resolving formulation is injected to the
wall-model problem as a boundary condition, and at the wall, where the shear stress and
the heat flux computed using the wall-model equations are used to close the system of
equations defined by the outer formulation. Further discussion about the matching be-
tween the outer and wall-model problem for high-speed flows is provided by Yang et al.
(2017). Following this procedure, it is possible to relax the resolution requirements for
the near-wall region of the flow, significantly reducing the overall computational cost of
the simulation.

† This report is an editorial correction of the original version made on December 23, 2020.
Specifically, Eqs. (3.1)-(3.3) were incorrectly typed in the original version and have now been
corrected in this version.
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The equilibrium wall-model technique, which has been largely validated for flow in-
volving ideal gas, has been recently extended by Muto et al. (2019) to multicomponent
mixtures in chemical equilibrium. The present study takes another step forward in the
process of extending this class of models to the simulation of chemically reacting flows
by proposing a formulation of the wall-model equations that takes into account differ-
ential diffusion and finite-rate chemistry. The results of the presented formulations are
compared with the reference solution of a direct numerical simulation (DNS) performed
in a supersonic channel flow with dissociating air. This flow configuration, because of
its periodicity in the streamwise and spanwise directions, provides the most favorable
conditions to evaluate the accuracy of the wall-model formulation for multiple matching
locations.

The brief is organized as follows: the Section 2 defines the transport equations that
describe the flow of interest and that are solved in the DNS; the Section 3 provides the
formulation of the equilibirum wall-model equations for a multicomponent mixture in
chemical non-equilibrium; the setup of the DNS and wall-model calculations discussed
in this work is presented in Section 4; the Sec. 5 provides a comparison of the results
obtained with the DNS and with the equilibrium wall model focusing on the momentum
and energy flux at the wall and on the mean profiles of velocity, temperature, and species
molar fractions; and the Section 6 presents conclusions of this work.

2. Transport equations

The DNS presented in this work are performed integrating the compressible Navier-
Stokes equations subject to species transport in a chemically reacting mixture of ideal
gases, which can be written in compact form as

∂C

∂t
+
∂ [F(C) + Fν(C)]

∂x
+
∂ [G(C) + Gν(C)]

∂y
+
∂ [H(C) + Hν(C)]

∂z
= Ṡ (2.1)

in time t and Cartesian coordinates {x, y, z}. In this formulation, C is a vector of con-

served variables defined as C = [ρ1, . . . , ρNs
, ρu, ρv, ρw, ρe0]

T
, where the components cor-

respond to the following quantities: (a) the partial densities ρi = ρYi of the Ns species
in the mixture, with ρ and Yi being the mixture density and mass fraction of species i,
respectively; (b) the three components of the momentum per unit volume ρu, ρv, and ρw,
where {u, v, w} are the velocity components in the aforementioned Cartesian coordinate
system; and (c) the specific stagnation internal energy e0 = e+ |u|2/2, with e being the
specific internal energy of the mixture defined as

e =

Ns∑
i=i

Yihi − P/ρ, (2.2)

where P is the thermodynamic pressure and hi is the partial specific enthalpy of species
i given by

hi = hi,ref +

∫ T

Tref

cp,i(T
′)dT ′. (2.3)

The symbol hi,ref denotes a reference value taken at the reference temperature Tref. In
Eq. (2.3), cp,i is the specific heat of species i at constant pressure. These equations are
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supplemented with the equation of state

P/ρ =

Ns∑
i=1

YiR
0T/Mi (2.4)

for an ideal multicomponent gas, where R0 is the universal gas constant, and Mi is the
molecular weight of species i. In Eq. (2.1), F, G, and H are Euler fluxes given by

F(C) =



ρ1u
...

ρNsu
ρuu+ P
ρuv
ρuw
ρuh0


, G(C) =



ρ1v
...

ρNsv
ρvu

ρvv + P
ρvw
ρvh0


, H(C) =



ρ1w
...

ρNsw
ρwu
ρwv

ρww + P
ρwh0


, (2.5)

where h0 = e0 + P/ρ is the specific stagnation enthalpy of the mixture. Similarly, Fν ,
Gν , and Hν are the diffusion fluxes defined as

Fν(C) =



ρ1U1

...
ρNsUNs

−τ11
−τ21
−τ31

Ns∑
i=1

ρiUihi − λ
∂T

∂x
− τ11u− τ12v − τ13w


,

Gν(C) =



ρ1V1
...

ρNs
VNs

−τ12
−τ22
−τ32

Ns∑
i=1

ρiVihi − λ
∂T

∂y
− τ21u− τ22v − τ23w


,

and

Hν(C) =



ρ1W1

...
ρNsWNs

−τ13
−τ23
−τ33

Ns∑
i=1

ρiWihi − λ
∂T

∂z
− τ31u− τ32v − τ33w


. (2.6)
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In these expressions, τij (i, j = 1, 2, 3) are the components the viscous stress tensor

τ = µ
[
∇u +∇uT − 2 (∇ · u) I/3

]
, (2.7)

where I is the identity tensor and µ is the dynamic viscosity of the mixture. Additionally,
{Ui, Vi,Wi} are the components of the diffusion velocity vector

Vi = −Di∇ (lnXi) +

Ns∑
j=0

YjDj∇ (lnXj) (2.8)

in the Cartesian coordinate system defined above. The right-hand side of Eq. (2.8) for
the diffusion velocity is composed of two terms. The first one is a Fickian term, whereas
the second one is a mass corrector (Curtiss & Hirschfelder 1949; Coffee & Heimerl 1981;
Ern & Giovangigli 1994). In the notation, Xi and Di are the molar fraction and mass
diffusivity of species i, respectively.

The chemical mechanism is formally given by the set of j = 1, 2, . . . ,M elementary
steps

∑Ns

i=1 ν
′
ijRi ⇀↽

∑Ns

i=1 ν
′′
ijRi, withR the chemical symbol of species i, ν′ij the stoichio-

metric coefficient of reactant i in step j on the reactant side, and ν′′ij the stoichiometric
coefficient of reactant i in step j on the product side. The source term in Eq. (2.1) is

defined as Ṡ = [ẇ1, . . . , ẇNs
, 0, 0, 0, 0]

T
in terms of the chemical rates of mass production

of species i per unit volume,

ẇi =Mi

M∑
j=1

(ν′′ij − ν′i)
Ns∑
i=1

Fij

(
ρYi
Mi

)[
kf,j

Ns∏
i=1

(
ρYi
Mi

)ν′
ij

− kb,j
Ns∏
i=1

(
ρYi
Mi

)ν′′
ij

]
, (2.9)

where Fij is the chaperon efficiency of species i participating as a collider in reaction j,
and kf,j and kb,j are, respectively, the forward and backward rate constants of chemical
step j.

Further details about the calculation of the mixture properties, the numerical method,
and the solver deployed for the solution of the described transport equations are provided
by Di Renzo et al. (2019).

3. Equilibrium wall-model equations for a reacting mixture

The formulation of the equilibrium wall model for a chemically reacting flow can be
obtained by (a) Favre-averaging the transport equations described in the previous section;
(b) imposing the constant shear layer flow conditions, which, taking x and y as the
stream-wise and wall-normal directions, read as ∂/∂t = 0, ∂/∂x = 0, and ∂/∂z = 0; and
(c) using an eddy-viscosity model to represent the Reynolds stress tensor. The resulting
conservation equations for momentum, enthalpy, and species partial density are

d

dy

[
(µ̃+ µt)

dũ

dy

]
= 0, (3.1)

d

dy

[
ũ (µ̃+ µt)

dũ

dy
+ λ̃

dT̃

dy
+

µt
Prt

dh̃

dy
−

Ns∑
i=1

ρ̃iṼy,ih̃i

]
= 0, (3.2)

d

dy

(
−ρ̃iṼi +

µt
Sct

dỸi
dy

)
+ ˜̇wi = 0 for i = 1, . . . , Ns, (3.3)
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where the tilde superscript represents the Favre-averaged quantity. The Favre-averaged
mixture properties (µ̃, λ̃, c̃p, and D̃i), wall-normal diffusion velocities (Ṽy,i), and produc-

tion rates (˜̇wi) are evaluated by computing the constitutive relations of the mixture and
Eq. (2.8) using the local Favre-averaged mass fractions and temperatures. Two different
mixing length models will be deployed in order to estimate the turbulent viscosity. The
first, EWM1, estimates µt as

µt = kρy

√
τw
ρ

[
1− exp

(
− y

+

A+

)]2
, (3.4)

where k = 0.41 is the von Kármán constant, τw is the shear stress at the wall, y+ =
y/(νw/

√
τw/ρw) is the dimensionless distance from the wall, νw and ρw are the kinematic

viscosity and the density at the wall, and A+ = 17 is the van Driest damping factor. The
second model, EWM2, differs from the first in the way the van Driest damping factor is
computed. In this second model, the turbulent viscosity is computed from

µt = kρy

√
τw
ρ

[
1− exp

(
− y∗

A+

)]2
, (3.5)

where y∗ = y/(ν/
√
τw/ρ) is the distance from the wall normalized in semi-local units (Huang

et al. 1995). In the present work, the turbulent Prandtl number Prt and the turbulent
Schmidt number Sct are assumed equal to 0.9.

4. Computational setup

The configuration analyzed in the present study consists of a supersonic channel flow
where air, dissociating according to the five species mechanism proposed by Park (1990),
flows with a constant mass flux. A uniform pressure gradient is imposed along the
streamwise direction in order to keep the flow at a constant bulk Reynolds number
Reb = ṁ′′bh/µw = 5000, where ṁ′′b is the mass flow rate through the channel per unit
cross-sectional area, h is half of the channel height, and µw is the dynamic viscosity at
the walls of the channel, which are kept at uniform temperature. The compressiblity
of the flow is controlled by setting the bulk Mach number Mab = ub/cw = 3.0, where
ub = ṁ′′b /ρb is the bulk velocity, ρb is the bulk density, and cw is the speed of sound com-
puted at the wall. The walls are assumed to be perfectly non-catalytic [(∂Yi/∂y) |w = 0];
consequently, µw and cw are non-linear functions of the local pressure and mixture com-
position for the considered chemically reacting mixture. For this reason, it is not possible
to directly set the desired values of Reb and Mab during the setup of the calculation. It
is instead necessary to iteratively rescale the physical dimensions of the channel and the
value of ṁ′′b in order to reproduce the desired dimensionless configuration. Depending on
the initial guess provided to computed the first simulation, this procedure has shown to
converge within two or three iterations.

The presence of chemical reactions in the channel introduces additional scales into the
problem, making the bulk Reynolds and Mach numbers insufficient to completely identify
the computational setup. A bulk Damköhler number is required in order to define the
ratio between the fluid dynamic and chemical timescales of the mixture. This dimension-
less group is, however, a strongly non-linear function of the bulk thermodynamic state of
the mixture, which is part of the solution to the problem. In order to avoid the complex
and computationally expensive optimization procedure that would be necessary to set
the bulk Damköhler number to a desired value, it has been decided in this study to close
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the definition of the computational configuration by setting the values of temperature at
the wall and of bulk density inside the channel to Tw = 1500 K and ρb = 0.25 kg/m3,
respectively.

The calculations presented in this work are performed over a computational domain
whose dimensions are 8πh × 2h × 2πh in the streamwise, wall-normal, and spanwise
directions, respectively, and which is discretized using 1024 × 384 × 768 points. The
computational grid has a uniform spacing in the streamwise and spanwise directions and
an hyperbolic tangent stretching in the wall-normal direction. The stretching parameter
of the wall-normal grid distribution function is determined such that it enforces a spacing
of the first grid element next to the wall, corresponding to ∆y+ = 0.8. The dimensions
and resolution adopted for the definition of the computational grid have been shown
to be sufficient to fully resolve similar channel-flow configurations already discussed in
the literature (Sciacovelli et al. 2017; Di Renzo et al. 2019). The flow is initialized with
constant pressure, temperature, and composition (XN2

= 0.79 and XO2
= 0.21) along

with an axial velocity profile that is a function of the fourth power of the wall-normal
distance and guarantees the expected mass flux ṁ′′b . Counter-rotating vortices whose axis
is aligned with the stream-wise direction are superposed on this initial condition. The
flow evolves until the bulk temperature and pressure in the domain reach a statistically
steady state. Time averages are then collected over a time interval of order 3000νw/u

2
τ ,

where uτ =
√
τw/ρw is the friction velocity.

The performance of the two wall models is evaluated using four different hypothetical
matching locations, namely, y+m = 15, 50, 100, and 150. In particular, the Favre-averaged
thermodynamic state and the streamwise velocity of the mixture obtained from the DNS
calculation are set as the outer boundary conditions for the wall-model equations, which
are discretized on a stretched grid of 150 points using second-order central finite differ-
ences. The resulting non-linear system of equations is integrated using a Newton method
modified with a line-search algorithm in order to increase the convergence rate. A toler-
ance of 10−12 is used in order to check the convergence of the solution.

5. Results

This section compares the results obtained by Favre-averaging the results of the DNS
simulation and the solution of the equilibrium wall-model equations. The comparison
starts by analyzing the values of the shear stress (expressed in terms of Reτ = ρwuτh/µw)
and of the dimensionless heat flux at the wall Bq = qw/(ρwuτ cp,wTw), where cp,w is
the mixture-averaged constant-pressure heat capacity at the wall. These energy and
momentum fluxes are the main outcome of the equilibrium wall-model formulation when
it is deployed as a boundary condition; therefore, matching these quantities is a necessary
condition to ensure its accuracy. However, it is noteworthy that the present a priori
analysis neglects all the non-linear interactions that are present between the wall model
and the outer formulation of the problem, making the following comparison insufficient
to completely assess the accuracy of the model. The values of the fluxes predicted by the
three different formulations and for the four matching locations are reported in Table 1.
On the one hand, the predictions of the EWM1 formulation show a moderate error (order
5%) when the matching location is imposed at y+m = 15. However, the error rapidly
increases to about 30% for both the Reτ and the dimensionless heat flux as soon as the
matching location is moved to y+m = 50. Interestingly, the error with respect to the DNS
is similar for the three matching locations with y+m ≤ 50, suggesting that the EWM1
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y+
m = 15 y+

m = 50 y+
m = 100 y+

m = 150
DNS EWM1 EWM2 EWM1 EWM2 EWM1 EWM2 EWM1 EWM2

Reτ 438.2 466.8 434.9 557.3 448.8 554.2 441.8 544.9 437.8
Bq × 103 117.5 122.8 115.6 153.2 124.3 156.1 125.3 154.5 125.1

Table 1. Reynolds number based on friction units and dimensionless heat flux at the wall
computed using the DNS and the equilibrium wall-model formulations for different matching
locations.

introduces modelling errors in the region 15 ≤ y+m ≤ 50 that invalidate the accuracy of
all the wall-model solutions in domains that cross this region. On the other hand, the
EWM2 is able to predict values of Reτ and Bq that are within a 5% error with respect
to the DNS results, demonstrating a better accuracy of the mixing length model when it
is applied in the semi-local units.

Further details about the source of the mismatch between the wall-model formula-
tions and the DNS can be found by analyzing the distribution of streamwise velocity,
of temperature, and of the atomic oxygen molar fraction. The first two quantities are
the main drivers of the momentum and energy fluxes reported in Table 1. The molar
fraction of atomic oxygen is, in contrast, a good proxy for assessing the errors introduced
by the Favre-averaging of the wall-model equations on the the prediction of the chemical
dissociation inside the boundary layer.

Figure 1 shows the streamwise velocity profiles obtained for the four analyzed matching
locations. Each solid line corresponds to the solution obtained with the DNS, whereas
the lines with symbols correspond to the solutions of the two equilibrium wall-model
formulations. Note that the friction units computed with the DNS have been retained
to normalize the quantities in the graph in order to ease the comparison between the
shapes of the obtained profiles. Consistent with the observation made regarding the
values in Table 1, both of the solutions obtained with EWM1 and EWM2 for y+m = 15
are in good agreement with the results of the DNS, as shown in Figure 1(a). When the
matching location in positioned at y+m ≥ 50, the EWM1 formulation loses its accuracy
with respect to the DNS solution. In particular, it predicts a transition location between
the logarithmic and linear scaling of the velocity profile, which is positioned closer to the
wall than in the reference profile. The position of this buffer layer remains constant for
the three matching locations that are positioned further away from the wall, suggesting
that this particular shape of the velocity profile is embedded in the mixing length model
deployed in the calculations. The similar slope of the logarithmic scaling that is observed
for the wall-model and DNS solutions suggests that the weakest link in Eq. (3.4) is the
van Driest damping that triggers the transition from the linear to the logarithmic scaling
of the profile. This hypothesis is also corroborated by the very good agreement observed
for the EWM2 at all the matching locations.

Figure 2 compares of the profiles of Favre-averaged temperature for the DNS and the
wall-model calculations. The discrepancies observed for the velocity profiles are similar
to those for the temperature distributions. The EWM1 formulation with a matching
location y+m ≥ 50 predicts a thinner thermal boundary layer that triggers a stronger heat
flux at the wall. However, in this case the evaluation of the van Driest damping factor
using the semi-local units is only able to partially mitigate the modelling error introduced
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Figure 1. Comparison of the Favre-averaged streamwise velocity profiles obtained with the DNS
and the equilibrium wall-model calculations for a matching location (a) y+

m = 15, (b) y+
m = 50,

(c) y+
m = 100, and (d) y+

m = 150.

by the evaluation of the turbulent heat conductivity with the mixing length model. In
fact, the thermal boundary layer thickness computed with the EWM2 formulation does
not collapse on the DNS results but still provides the best estimation of the temperature
distribution in the channel.

A comparison of the distribution of the atomic oxygen molar mass is presented in
Figure 3. This quantity shows the worst agreement with respect to the DNS results,
with the wall-model formulations predicting a significantly higher concentration of the
atomic oxygen for all matching locations. A possible source of this modelling error could
be the higher temperatures observed in the wall-model solutions, which increase the
average dissociation rate of the mixture. However, the Figure 3(a) suggests that the
modelling errors are only partially related to the higher temperatures. In fact, the wall-
model calculations performed with y+m = 15 predict a temperature profile which is very
similar to the DNS results but still with computed oxygen molar fraction profiles that are
significantly different from those of the reference solution. For this reason, it is possible to
postulate that the most relevant source of error in the wall-model formulation is related
to the computation of the Favre-averaged chemical production rates. In particular, the
assumption ˜̇wi = ẇi(Ỹi, T̃ , P ), which is required for the formulation of the wall-model
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Figure 2. Comparison of the Favre-averaged temperature profiles obtained with the DNS and
the equilibrium wall-model calculations for a matching location (a) y+

m = 15, (b) y+
m = 50, (c)

y+
m = 100, and (d) y+

m = 150.

equations, can lead to very large errors, because the function that relates the production
rates to the local thermochemical condition of the mixture is strongly non-linear and
applying it directly to the Favre-averaged quantities neglects the intermittency of the
thermochemical state of the mixture in the boundary layer. This is a well-known issue in
the combustion community, and multiple approaches have been developed to overcome
it (Peters 2004; Pierce & Moin 2004; Ihme & Pitsch 2008a,b). However, an assessment of
the accuracy of these methods in the context of wall modeling is still required and will
be part of future investigations.

6. Conclusions

This study presents an a priori study of the accuracy of equilibrium wall models in a
supersonic reacting channel flow. A turbulent channel flow with bulk Mach number equal
to three and bulk Reynolds number equal to 5000 has first been solved using a DNS in-
cluding the effects of air chemical dissociation on the composition of the computed ideal
gas mixture. The accuracy of two formulations for the equilibrium wall-model equations,
which differ in the evaluation of the van Driest damping factor, has been tested, taking
the Favre-averaged solution of the direct simulation as a reference. The wall-model formu-
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Figure 3. Comparison of the Favre-averaged atomic oxygen molar fraction profiles obtained
with the DNS and the equilibrium wall-model calculations for a matching location (a) y+

m = 15,
(b) y+

m = 50, (c) y+
m = 100, and (d) y+

m = 150.

lation based on the semi-local scaling of the wall-normal distance for the evaluation of the
turbulent viscosity has been shown to produce better predictions of the fluxes at the wall
and of mean velocity and temperature profiles. Both the wall-model formulations tested
in this work fail to predict the correct profile of oxygen molar fraction in the mixture.
The approximation that computes the chemical production rate from the Favre-averaged
mass fractions and temperature is deemed to be the main source of error leading to this
discrepancy and calls for additional studies on this aspect of the wall-model formulation.
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