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1. Motivation and objectives

Trans- and supercritical fluid flows are of critical importance in industrial applications
ranging from power generation, internal combustion engines, and rocket propulsion to
low-temperature processing and manufacturing of chemical, pharmaceutical, and biomed-
ical substances, as well as sub-surface energy storage and extraction (Knez et al. 2014).
In supercritical states, the gas-liquid phase interface disappears and the fluid presents
unique physical properties, such as gas-like high diffusivity and liquid-like high density.
During pseudo-boiling (pseudo liquid-vapor phase change), which is the transition of a
state from sub-critical to supercritical temperature at supercritical pressure, the fluid
experiences a smooth change with a sharp gradient in density and a peak in heat capac-
ity (Banuti et al. 2017). The consideration of such non-trivial properties and phenomena
is critical for quantifying mixing and energy transport in fluids for these applications.
Nevertheless, the detailed hydrodynamics of trans- and supercritical fluids have been rel-
atively unexplored compared to their sub-critical counterparts. Experiments are limited
in supercritical conditions; thus, high-fidelity simulation is desirable for understanding
the flows.

Challenges in simulation of trans- and supercritical fluid flows involve implementation
of models of real–fluid thermodynamics into an established framework for compressible
flows of an ideal fluid with a constant heat capacity (hereafter we denote as calori-
cally perfect fluid). Major previous approaches employed cubic equations of state for the
thermodynamic modeling, and combined it with either finite-difference (FD) or finite-
volume (FV) framework for the compressible Navier-Stokes equations (e.g., Miller et al.
2001; Terashima & Koshi 2012; Kawai et al. 2015; Ma et al. 2017; Pantano et al. 2017;
Kim et al. 2019). Unlike calorically perfect fluid, real fluid possesses non-constant and
state-dependent specific heat ratio, which can be a source of numerical instabilities that
are otherwise not present (Billet & Abgrall 2003). In order to suppress instabilities in
high-order methods, the aforementioned approaches employed techniques that are spe-
cialized for supercritical fluids, including double-flux formulation, non-conservative forms
of equations, and a priori grid refinement. In exchange of robustness, such techniques
may impose additional computational complexity and cost, and numerical artifacts that
may overshadow favorable properties of the original framework including, for instance,
discrete conservation, optimal dissipation and dispersion, and parallel efficiency.

Another existing numerical framework for a compressible flow is the high-order
discontinuous-Galerkin (DG) method (e.g., Cockburn & Shu 1998; Fidkowski 2004; Men-
galdo 2015). The DG method discretizes a domain into finite elements, each of which
contains sub-element nodes. The sub-element flow field is treated as continuous and ap-
proximated by a set of orthogonal basis functions through a Galerkin projection. The
flow field across the elements are treated as discontinuous and inter-element flux is ob-
tained through the solution of a Riemann problem. Advantages of the DG method over
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high-order FD and FV methods include its flexibility in grid structures and high parallel
efficiency; arbitrary shapes of elements can be used for spatial discretization, which allows
modeling of complex geometries. The method uses compact stencils for discretization,
which minimizes the size of the buffer transferred between processors during MPI (mes-
sage passing interface) communications. Previous efforts have been devoted to improving
the robustness of the method while maintaining high-order accuracy by introducing tech-
niques including limiters (de Frahan et al. 2015; Shu 2016), entropy-bounding strategies
(Lv & Ihme 2015), and artificial viscosity (AV) (Persson & Peraire 2006; Lv et al. 2016;
Ching et al. 2019). Aside from a recent contribution (Föll et al. 2019), application of
the DG framework to simulations of trans- and supercritical fluid flows has largely been
unexplored.

In this work, we develop a method for simulation of trans- and supercritical fluid flows
using a high-order DG method. In order to fully take advantage of the favorable prop-
erties of DG methods, we aim to generalize the framework without interfering with the
discrete conservation properties, high-order accuracy, and parallel efficiency. From this
perspective, we focus on the following aspects: adoption of an approximate Riemann
solver that was developed for simulation of non-ideal gas dynamics in the FV framework
(Guardone 2007; Maeda et al. 2014) and extension of a DG method that employs an
entropy-bounding technique for stabilization of shock capturing in calorically perfect gas
(Lv & Ihme 2015). The rest of the paper is organized as follows: In Section 2, we present
the formulation and numerical discretization. In Section 3, for validation and demonstra-
tion purposes, we simulate problems of a transcritical density wave, transcritical shock
tube, and density stratified shear layers of trans- and supercritical nitrogen. The Peng-
Robinson equation of state (Robinson et al. 1985) is used in these simulations. In Section
4, we state conclusions.

2. Formulation

2.1. Equations of motion

We formulate the dynamics of single-component, transcritical fluid flows using the com-
pressible Navier-Stokes equation

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

∂(ρu)

∂t
+∇ · (ρuu+ pI) = ∇ · τ , (2.2)

∂Et

∂t
+∇ · ((Et + p)u) = ∇ · (u · τ − q), (2.3)

where ρ, u, p, and Et are the density, velocity, pressure, and total energy, respectively.
τ and q are the viscous stress tensor and the heat flux, respectively, defined as

τ = 2µ(S − 1

3
(∇ · u)I), (2.4)

q = −κ∇T, (2.5)

where S is the deformation rate tensor

S =
1

2
(∇u+∇uT ), (2.6)

and T , µ, and κ are the temperature, viscosity, and the thermal conductivity, respectively.
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The set of equations is closed with an equation of state

p = p(ρ,E), (2.7)

where E is the total internal energy: E = Et−ρu2/2. In this study we present simulations
using the Peng-Robinson equation of state, but the form is left general here for brevity.

2.2. Discontinuous-Galerkin discretization

We discretize the governing equation following the DG framework. For convenience, we
express equations (2.1-2.3) in a vector form:

∂U

∂t
+∇ · F = ∇ ·Q. (2.8)

The computational domain Ω is partitioned into a set of Ne non-overlapping elements
Ωe : e ∈ [1, ..., Ne], with boundaries ∂Ωe. The finite-dimensional test space V hp is defined
as

V ph = φ ∈ L2(Ω), φe ≡ φ|Ωe
∈ Pp(Ωe)∀Ωe ∈ Ω, (2.9)

where φ is the test function and Pp denotes the space spanned by polynomial functions

of degree p. The global solution U is approximated by U = ⊕Ne
e=1U

e, using the local
polynomial projection given by

U e(x, t) =

Np∑

n=1

Ũ
e

n(t)φen(x), (2.10)

where Ũ
e

n(t) is the n-th expansion coefficient, Np is the number of polynomial coefficients,
and φn is the polynomial basis function. In this work, we use Lagrange polynomials for
the basis. By applying an integral operator

∫
Ωe
φemdΩe to both sides of Eq. (2.8), we

obtain a weak form of the governing equation
∫

Ωe

φem
∂U e

∂t
dΩe +

∫

Ωe

φem∇ · F dΩe =

∫

Ωe

φem∇ ·QdΩe. (2.11)

The left-hand side is approximated using orthogonality of the basis function and inte-
gration by parts as
∫

Ωe

φem
∂U e

∂t
dΩe +

∫

Ωe

φem∇ · F dΩe (2.12)

≈
Np∑

n=1

dtŨ
e

n

∫

Ωe

φemφ
e
ndΩe −

∫

Ωe

∇φem · F dΩe +

∫

∂Ωe

φe+m F̂ · n̂dΓe,

(2.13)

where n̂ is the outward-pointing normal on ∂Ωe, and the superscripts (·)+ and (·)−
denote the interior and exterior of element Ωe, respectively. The interior numerical flux
F is directly computed as a function of U in each element, while the inter-element
numerical flux F̂ is evaluated using a Riemann solver.

We linearize the diffusion flux such that in terms of ith state variable

Qi =

NU∑

k=1

Dik · ∇Uk, (2.14)

where D is the differentiation of the diffusive flux with respect to the gradient of the
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state: D = ∂Q/∂(∇U). The right-hand side of equation (2.11) is expressed as

∫

Ωe

φem∇ ·QidΩe =

NU∑

k=1

∫

Ωe

φem∇ ·Qk
i dΩe, (2.15)

where the integral is approximated as

∫

Ωe

φem∇ ·Qk
i dΩe ≈ −

∫

Ωe

∇φem · (Dik · ∇Uk)dΩe

+

∫

∂Ωe

(U+
k − Ûk)(DTik · ∇φem)+ · ndΓe +

∫

∂Ωe

φe+m Q̂
k

i dΓe.

(2.16)

Integrals in Eqs. (2.13) and (2.16) are evaluated using a Gaussian quadrature rule with
an accuracy of 2p+1.

The critical difference between the present method and the DG method for ideal gases
is in the procedure to obtain the numerical fluxes F and F̂ and the gradient D from the
given state U . Details are addressed in the next section.

2.3. Flux computation in the real fluid

In the conservative form of the Euler and Navier-Stokes equations, the inviscid flux
is expressed as a function of the conservative state variables: F = F (U). the den-
sity and internal energy are only thermodynamic variables which are directly avail-
able from the state variables: ρ = U1 and E = U3 − U2

2/2U1, where we express U
as U = [U1,U

T
2 , U3]T . Meanwhile, the momentum flux includes pressure, which is a

primitive variable. In general, an equation of state is used as a closure to express pres-
sure as a function of density and total internal energy, and thus also as a function of
U : p = p(ρ,E) = p(U1, U3 − U2

2/2U1). For a calorically perfect gas, the expression is
simply p = (γ − 1)E = (γ − 1)(U3−U2

2/2U1), where γ is the specific heat ratio. For real
fluid equations of state, such a simple relation is not necessarily available. For instance,
cubic equations of state express the pressure as a function of the temperature and specific
volume, p = p(T, v), but not as a function of the internal energy. In such cases, one can
numerically compute the pressure, and thus flux F , given the conservative variables and
an equation of state.

Computation of the Riemann flux for a real fluid, F̂ , needs further thoughts. In the
present study, we consider a Roe-based approximate Riemann solver. Let UL and UR be
the state variables on the boundaries of adjacent elements ΩL and ΩR. We define Roe’s
flux Jacobian Ã(= A(Ũ)) such that

∆F = Ã∆U , (2.17)

where (̃·) denotes the Roe-intermediate state and ∆ is the difference operator: ∆(·) =
(·)R−(·)L. The flux is then obtained through up-winding in terms of the Roe-intermediate
state variables Ũ . The key to the Roe-scheme lies in determining Ã, and thus Ũ , as func-
tions of the left and right state variables [UL,UR], such that the following mathematical
conditions are satisfied: (1) ∆F → 0 as ∆U → 0, and (2) Ã is Hermitian.

For ideal gas, the following Roe-intermediate variables can be immediately computed
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as

ρ̃ =
√
ρLρR, (2.18)

ũ =

√
ρLuL +

√
ρRuR√

ρL +
√
ρR

, (2.19)

h̃t =

√
ρLh

t
L +
√
ρRh

t
R√

ρL +
√
ρR

, (2.20)

where ht is the total specific enthalpy (Roe 1981). The Roe-intermediate speed of sound,
which is required for up-winding the flux, is obtained as c̃ = (γ − 1)(h̃t − ũ2/2).

For real fluid, however, equation (2.18) does not in general hold, and additional pro-
cedures are required to obtain ρ̃ and c̃. Such procedures have been established in FV
methods for simulation of non-ideal gas dynamics (e.g., Glaister 1988; Vinokur & Mon-
tagné 1990). In this study, we adopt an approach introduced by Guardone (2007).

In the approach, we seek to find the Roe-intermediate density and the total energy
that satisfy the following set of conditions





∆p = ∆ρ

(
∂̃p

∂ρ

)

E

+ ∆E

(
∂̃p

∂E

)

ρ

, (2.21)

h̃ = h̃t − 1

2
ũ2. (2.22)

The two equations correspond to the modified jump condition and consistency condition,
respectively. For cubic equations of state, the analytic expression for p is given as a
function of (T, v); thermodynamic variables, including the pressure derivatives and h̃,
can be likewise analytically expressed using (T, v). In such cases, the above relations
can be reduced to a multivariate function of (T̃ , ṽ), which can be solved numerically
(Guardone 2007; Maeda et al. 2014). Once the Roe-intermediate variables are obtained,
the intermediate speed of sound, that appears in the eigenvalue of Ã, can be computed
as

c̃ =

√√√√
(
∂̃p

∂ρ

)

E

+ h̃

(
∂̃p

∂E

)

ρ

. (2.23)

Given the intermediate states and the speed of sound, computation of the Roe flux
follows that of the standard Roe scheme. This Roe intermediate speed of sound can also
be utilized in Harten-Lax-van Leer-contact (HLLC) -type approximate Riemann solvers
(Rinaldi et al. 2014).

Finally, D is a function of the temperature derivatives with respect to the state vari-
ables, ∂T/∂U , which need to be computed. Similar to the pressure derivatives, an equa-
tion of state can be used to express temperature as a function of conservative variables:
T = T (ρ,E) = T (U1, U3 − U2

2/2U1). To obtain ∂T/∂U , it then suffices to compute
(∂T/∂ρ)E and (∂T/∂E)ρ.

2.4. Entropy bounding

It is widely recognized that high-order DG methods can suffer from numerical instabilities
in simulations that involve shock wave and the material’s discontinuity (Shu 2016). An
entropy-bounding technique, that was originally developed for time-dependent, nonlinear
conservative difference equations (Tadmor 2003) has recently been found effective in en-
hancing robustness of a DG method without sacrificing high-order accuracy (Lv & Ihme

277



Maeda & Ihme

2015). The feasibility of this DG method, namely the entropy-bounded discontinuous-
Galerkin (EBDG) method, was demonstrated through capturing strong shocks in calor-
ically perfect gas. In the present study, we extend the technique to general equations of
state to achieve a robust simulations of trans- and supercritical fluid flows.

We briefly review the entropy-bounding scheme for an ideal gas. For an ideal gas of a
single substance, the entropy is expressed as

s = log(p)− γlog(ρ) + s0, (2.24)

where γ is a constant and s0 is the entropy at a reference state. We define the entropy
field in element Ωe, which is spanned by the local basis functions. We consider states
at times t = t0 and t0 + ∆t, namely U0

e and U∆t
e . ∆t is chosen such that the Courant-

Friedrich-Lax (CFL) condition is satisfied. Following the entropy principle, the bound
for the entropy field at time t = t0 + ∆t is defined as

∀x ∈ Ωe, s(U
∆t
e (x)) ≥ min{s(U(y))|y ∈ Ωe} ≡ s0

e(t). (2.25)

The procedures for the entropy bounding scheme are as follows: (1) compute a local
estimate for the entropy minimum in Ωe that is consistent with the order of DG dis-
cretization: |se0(t) −min{s(U(x))|} ∼ O(hk), where k is the local order of accuracy; (2)
apply a limiting operator L to the state U∆t

e (x) such that Eq. (2.25) is satisfied for the
new state: s(LU∆t

e ) ≥ s0
e.

The minimum entropy is estimated as

s0
e(t) ≈ max{M(s0

e(t)),mink∈Ne
⋃{e}sk(t0)}, (2.26)

where

M(s0
e(t)) = min{minx∈D−s(U(x)), sm − θ(sn − sm)}. (2.27)

sm and sn are the minimum and maximum entropy values in the element, respectively.
θ is the relaxation factor and introduced to avoid overestimation

θ =
min|xm − x|
|xm − xn|

, (2.28)

where xm and xn denote the locations that provide sm and sn.
The mapping of the state by operator L is defined as

LU e = U e + ε(U e −U e), (2.29)

where ε is the limiting parameter, ε ∈ [0, 1], and U e is the element-averaged state:

U e =
1

Ve

∫

Ωe

U edv, (2.30)

where Ve is the volume of element Ωe. Using the expression for entropy, Eq. (2.24), Eq.
(2.25) can be expressed as

p(LU e(x)) ≥ exp(s0
e)ρ

γ(LU e(x)). (2.31)

By substituting Eq. (2.29) and applying Jensen’s inequality, we obtain

(1− ε)p(U e) + εp(U e) ≥ exp(s0
e)[(1− ε)ργ(U e) + εργ(U e)], (2.32)

where ε is readily evaluated as

ε =
τ

τ − [p(U e)− exp(s0
e)ρ

γ(U e)]
, (2.33)
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with

τ = min{0,min{p(U e)− exp(s0
e)ρ

γ(U e)}}. (2.34)

We note that the positivity of the density, ρ(LU e) > 0, is satisfied through the above
procedure.

To extend the entropy-bounding scheme to a real fluid, we consider two modifications.
First, we relax the definition of entropy:

s = log(p)− γ∗log(ρ) + s0, (2.35)

where γ∗ is now a function of thermodynamic state variables. During the simulation, γ∗

is dynamically computed using the following thermodynamic definition of the speed of
sound

γ∗ =
ρc2

p
=
ρ

p

[(
∂p

∂ρ

)

E

+ h

(
∂p

∂E

)

ρ

]
. (2.36)

The expression for entropy using γ∗ is convenient since the above entropy principle and
the limiting operator L can be directly adopted by replacing γ with γ∗.

Second, we introduce an additional bound for the density: ρ < 1/b, where b is the
co-volume. The co-volume is an effective volume of the molecules in a condensed state
of liquid. The physical meaning of this inequality is that the volume of fluid cannot be
smaller than the total volume of molecules. For cubic equations of state, the co-volume
is defined as a function of the critical temperature and the critical pressure. Note that
the co-volume is defined zero for ideal fluid.

3. Result

3.1. Density wave of transcritical nitrogen

The first test case is a density wave of transcritical nitrogen. This case is designated to
assess the accuracy of the present DG method in simulating the dynamics of transcritical
fluids whose state change across the pseudo-boiling line. A similar case was considered
by Kawai et al. (2015) using their FD approach. We consider a one-dimensional, periodic
computational domain defined as x ∈ [−l/2, l/2], where l = 1.0 m. Nitrogen with a
sinusoidal density profile and uniform pressure is advected with a constant velocity in
the domain. The initial condition is defined as

ρ = ρcr[1 + 0.8sin(2πx)], (3.1)

u = u0, (3.2)

p = 1.03pcr, (3.3)

where ρcr and pcr are the critical density and the critical pressure, and u0 = 100 m s−1.
Both the density and temperature vary across their critical values, while the pressure is
maintained slightly above the critical pressure. The domain is uniformly discretized using
various values of elements within a range of Ne ∈ [10, 80]. We advance the solution during
a single period of advection up to t = l/u0, using the DG scheme with polynomial orders
of p = 1 (DG-p1) and p = 2 (DG-p2). For all simulations, the strong stability preserving
third-order Runge-Kutta (SSPRK3) scheme (Gottlieb et al. 2001) is employed for time
marching the solution with a constant CFL number of C = 0.1. The diffusive flux is set
to zero.

Figure 1 shows the density and velocity fields obtained from the simulations at t = l/u0
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Figure 1: Solutions at t = l/u0 s obtained using DG-p1 and DG-p2. Ne = 10 for both
cases. (a) Density and (b) Velocity are shown.
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Figure 2: L∞ error norm of the density at t = l/u0 s obtained using (◦) DG-p1 and
(×) DG-p2. Slopes corresponding to second- and third-order convergence are shown for
reference.

using DG-p1 and DG-p2 with Ne = 10, respectively. Deviations from the analytical
solution are smaller with DG-p2, highlighting the advantage of high-order polynomial to
better approximate the solution.

In order to quantify the error and validate the accuracy of the scheme, we perform
convergence tests using the results of the simulations. Figure 2 shows the L∞ norm of
the density as a function of the number of elements. The plot indicates that optimal
convergence is achieved for both DG-p1 and DG-p2. With the same values of Ne, the
error is smaller with DG-p2 than with DG-p1, highlighting the improvement of accuracy
by using high-order polynomials. Entropy-bounding is not required to obtain the stable
solution.
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Figure 3: Solutions of the shock tube problem at t = 1.2× 10−2 s obtained using DG-p3
and EBDG-p3. Ne = 50 in both cases. (a) Density and (b) pressure are shown.

3.2. Supercritical shock tube problem

In order to assess the performance of the EBDG method in capturing discontinuities
in supercritical fluids, we simulate a shock tube problem of supercritical nitrogen. We
consider a one-dimensional, non-periodic domain defined as x ∈ [−1, 1] m. The initial
condition is defined as

(ρ, u, T ) =

{
(200, 0, 400), −1 ≤ x < 0 m.

(50, 0, 400), 0 ≤ x ≤ 1 m,
(3.4)

where T is the temperature. The units for (ρ, u, T ) are kg m−3, m s−1, and K, respectively.
We use DG-p3 and EBDG-p3 to obtain solutions with Ne = 50, and compare results.
SSPRK3 is employed for time marching the solution with a constant CFL number of
C = 0.1. The diffusive flux is set to zero.

Figure 3 shows the density and pressure fields at t = 1.2 × 10−3 s. In both plots, the
DG solutions present significant oscillations in regions between the rarefaction wave and
the contact discontinuity, and near the shock. The EBDG solutions are smoother in the
entire domain. Although the oscillations are not completely removed, they are localized
near discontinuities and their amplitudes are reduced compared to the DG solutions. The
results indicate that the present EBDG method is effective in capturing discontinuities
in supercritical flows.

The oscillations observed in the EBDG solution are not expected to immediately cause
divergence of the solution (code blow up) since the entropy principle is satisfied. Numeri-
cal oscillations near discontinuities in EBDG solutions were previously observed in shock
capturing of a calorically perfect gas (Lv & Ihme 2015).

In the present test case, when further smoothness is desirable in the solution, we find
AV effective in removing the oscillations. Figure 4 shows the solutions of the shock tube
problem obtained using EBDG-p3 and EBDG-p3 with AV. The same physical parameters
are used as in the previous cases. The solutions show that AV removes oscillations without
a noticeable increase in the thickness of the regions of discontinuities.

The results of the test cases in the previous and the present sections indicate that the
entropy-bounding scheme may not be required to achieve designated high-order accuracy,
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Figure 4: Solutions of the shock tube problem at t = 1.2×10−2 s obtained using EBDG-
p3 and EBDG-p3 with AV. Ne = 50 in both cases. (a) Density and (b) pressure are
shown.

while the scheme can be essential in simulations of flows with discontinuities. In practical
direct numerical simulation of trans- and supercritical fluid flows, physical diffusivity may
stabilize the simulation without additional numerical stabilization. For under-resolved
simulations of turbulent flows that requires modeling of dissipation at the sub-grid-scale,
the entropy-bounding scheme can be a means to inject numerical diffusion and implicitly
stabilize the simulation (Moura et al. 2017; Lv et al. 2018). The present formulation of the
DG and EBDG methods can also include sub-grid scale modeling for explicit large-eddy
simulations.

3.3. Density stratified shear layer of transcritical nitrogen

The last test case is a density stratified, temporally evolving, counter-flow shear layer
of transcritical nitrogen. This case models the surface of a liquid jet during cryogenic
nitrogen injection (Oschwald et al. 2006). We consider a two-dimensional computational
domain in x-y Cartesian coordinates: x ∈ [−0.5, 0.5], y ∈ [−0.25, 0.25] m. The initial
condition is defined as

ρ = ρcr(1 + ∆tanh(ay)), (3.5)

u = u0(1 + ∆tanh(ay)), (3.6)

v = 0, (3.7)

p = 1.47pcr, (3.8)

where u0 = 40 m s−1, ∆ = 0.2, and a = 40. Small-amplitude perturbations are added to
the velocity field to trigger the Kelvin–Helmholtz instability (Sharan et al. 2019). Similar
to the density wave case, the fluid is in a pseudo-boiling condition; both density and
temperature vary from subcritical to supercritical values across the layers. The domain
is uniformly discretized by 200× 100 elements. Periodic boundary conditions are used in
the domain boundaries along the x-axis, while symmetry boundary conditions are used
in those along the y-axis. The Navier-Stokes equation is solved with the diffusive flux
obtained using the BR2 scheme (Bassi & Rebay 1997). DG-p5 and SSPRK3 are used for
spatial discretization and time marching, respectively.
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Figure 5: Contours of the density field at (a) t = 0, (b) 4.0× 10−2, (c) 5.2× 10−2, and
(d) 6.0× 10−2 s.

Figure 5 shows the evolution of the density contours obtained in the simulation. Span-
wise KelvinHelmholtz rollers are developed and amalgamate. Although the simulation
is two-dimensional, turbulence-like, small-scale structures are observed in the rollers in
Figure 5d. The evolution of such structures can enhance the mixing of the layers.

Figure 6 shows scatter plots of pressure as a function of density in the flow field at
instances corresponding to the contours in Figures 5. The range of distribution of the
scatter points steadily spreads in both pressure and density. This spread may clearly
be due to the growth of the Kelvin–Helmholtz rollers that result in enhancement of
the fluctuations in the fluid. Scatter points in all plots are placed above the critical
pressure and span the critical density, indicating that the fluid in the mixing region is
in pseudo-boiling conditions at all instances. Overall, the results highlight the capability
of the present DG-method in simulating the multi-dimensional dynamics of compressible
transcritical fluid flows in a pseudo-boiling regime.

4. Conclusions

In this study, we developed a high-order DG method that is capable of simulating
trans- and supercritical fluid flows. A Riemann solver that accounts for real fluid ther-
modynamics was combined with a DG framework that solves the conservative form of
the compressible Navier-Stokes equations. An entropy-bounding strategy was introduced
to enhance the robustness of the method in capturing discontinuities. Validation and
demonstration of the method were described through simulations of a density wave, a
shock tube problem, and a shear layer of trans- and supercritical nitrogen. To the best of
our knowledge, this study presents the first DG simulation of pseudo-boiling fluid flows.
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(a) (b)

(c) (d)

Figure 6: Scatter plots of pressure as a function of density in the flow field at (a) t = 0,
(b) 4.0 × 10−2, (c) 5.2 × 10−2, and (d) 6.4 × 10−2 s. Solid line and dashed line denote
vapor-liquid saturation curve (vapor dorm) and pseudo-boiling line, respectively.

The method can be of use for simulations of various regimes of non-ideal gas dynamics
and trans- and super-critical flows that may require high-order accuracy, modeling of
complex geometries, and/or efficient parallelization. Future work will include simulation
and analysis of three-dimensional, turbulent trans- and supercritical fluid flows.
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