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Lagrangian dynamics of the tensor diffusivity
model for turbulent subfilter stresses

By P. L. Johnson†

1. Motivation and objectives

Large-eddy simulations (LES) are most often considered attempts to numerically ap-
proximate the solution to the filtered Navier-Stokes equations (Leonard 1974; Meneveau
& Katz 2000; Sagaut 2006). LES provides significant advantages over simulation ap-
proaches based on Reynold-Averaged Navier-Stokes (RANS) because less is asked or
expected of the closure model for the unknown turbulent stresses. As a result, LES mod-
els for the subfilter stress (also called the subgrid stress) are typically simpler in form
than RANS models. Many of the most popular LES stress models are algebraic, intro-
ducing no additional transport equations. The reason for this is that it is generally more
advantageous to invest computational power in finer meshes to resolve more of the tur-
bulent fluctuations than to invest in more expensive turbulence models which will remain
approximate anyway.

The most popular LES stress model, the Smagorinsky model (Smagorinsky 1963),
is part of a larger class of eddy viscosity models which assume that the subfilter stress
instantaneously aligned with the filtered rate-of-strain tensor. This assumption is demon-
strably false (Borue & Orszag 1998; Ballouz & Ouellette 2018), although the Smagorin-
sky model has achieved considerable success in practice. The physical reason that the
Smagorinsky model fails is that the subfilter stress contains significant memory, particu-
larly of the previous flow along its Lagrangian path (Ballouz et al. 2020). This Lagrangian
memory is significant for filtered turbulent flows because of the lack of scale separation
between resolved and subfilter scales, particularly in terms of the active timescales. Some
stress models have attempted to include Lagrangian history information, via Lagrangian
averaging during the dynamic procedure for the Smagorinsky coefficient (Meneveau et al.
1996), or by making a recent deformation approximation (Li et al. 2009). However, in
the spirit of developing models with minimal computational cost and complexity, this
report explores the extent to which Lagrangian history effect may be implicitly included
in a subfilter stress model, particularly the tensor diffusivity model of Clark et al. (1979).
(Note that Clark et al. (1979) introduced the tensor diffusivity model for the Leonard &
cross-stresses, such that is should be supplemented with an eddy viscosity term for the
Reynolds stress component.)

2. The Lagrangian memory of the subfilter stress tensor

The velocity field, u(x, t), of an incompressible fluid flow is assumed to follow the
Navier-Stokes equations,

∂tui + uj∂jui = −∂ip+ ν∇2ui, (2.1)
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where the pressure (divided by density), p, enforces a zero-divergence condition on the
velocity field, ∂kuk = 0.

The goal of a large eddy simulation is often assumed to be the calculation of a spatially-
filtered version of a given flow (Leonard 1974),

u` = G` ? u, F{u`} = F{G`}F{u}, (2.2)

where ` is the filter width and F denotes a Fourier transform when the simulation domain
is triply periodic. Applying this spatial filtering operation to the incompressible Navier-
Stokes equations yields

∂tui + uj∂jui = −∂ip+ ν∇2ui − ∂jτ(ui, uj) (2.3)

where the divergence-free condition, ∂kuk = 0, can be used to form a Poisson equation
for the filtered pressure, p. The final term on the right of Eq. (2.3) is a generalized
second-moment of the form (Germano 1992)

τ(a, b) = ab− ab (2.4)

so

τij ≡ τ(ui, uj) = uiuj − ui uj (2.5)

is the subfilter stress tensor representing the unresolved flux of filtered momentum due
to small-scale velocity fluctuations.

Making direct use of Eqs. (2.1) and (2.3), along with the definition of the subfilter stress
tensor, Eq. (2.5), one may write an evolution equation for the subfilter stress which has
the form

∂tτij + uk∂kτij = −Aikτjk − τikAjk + other terms, (2.6)

where Aij = ∂ui/∂xj is the filtered velocity gradient tensor. The other terms will be
discussed in more detail below. If they are neglected, then a formal solution is available
for the evolution of the subfilter stress tensor along a Lagrangian path following the
filtered velocity field (Li et al. 2009),

τij(t) = Him(t, t0)τmn(t0)Hjm(t, t0), (2.7)

where the mapping tensor H(t, t0) evolves with the equation

∂tHij + uk∂kHij = −AikHkj (2.8)

and its formal solution is given as a time-ordered exponential along the (filtered) La-
grangian path

Hij(t, t0) = exp+

(∫ t

t0

−Aij(t′)dt′
)
. (2.9)

(The + denotes that this is the time-ordered matrix exponential.) This highlights an
important physical behavior that the subfilter stress has a memory of the past filtered
velocity gradients along its (filtered) Lagrangian path, even if it becomes distorted in
practice by the other terms in Eq. (2.6).

To give some intuitive appreciation, an analogy may be drawn with the behavior of
viscoelastic fluids. The Cauchy stress tensor for viscoelastic fluids typically includes a
stress proportional to a configuration tensor, C. For example, in fluids with dissolved
polymers, the symmetric configuration tensor describes the orientation of the polymers
as a function of space and time in the flow (White & Mungal 2008). A typical evolution
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equation for the configuration tensor is

∂tCij + uk∂kCij = AikCjk + CikAjk + relaxation terms, (2.10)

which bears a direct resemblance with the evolution of the subfilter stress evolution, Eq.
(2.6). Neglecting relaxation terms, the formal solution is

Cij(t) = Fim(t, t0)Cmn(t0)Fjn, (2.11)

where

Fij = exp+

(∫ t

t0

Aij(t
′)dt′

)
(2.12)

is the Finger tensor of fundamental importance in elementary continuum mechanics. The
difference in Lagrangian memory between polymer and turbulent stresses is the negative
sign, which symbolizes that turbulent stresses are enhanced by compressive strain rates
rather than extensional ones.

Turbulent flows of Newtonian fluids, when observed at a scale coarser than the Kol-
mogorov scale, have a behavior that may be qualitatively compared with viscoelastic
fluids. This was discussed in some detail for RANS by Crow (1968). Indeed, Tennekes
and Lumley remark in the first chapter of their celebrated textbook (Tennekes & Lumley
1972):

“We may, for analytical reasons, speak of a turbulent fluid rather than of a
turbulent flow. Turbulent ‘fluids,’ however, are non-Newtonian: they exhibit vis-
coelasticity and suffer memory effects.”

This Lagrangian memory directly contradicts the eddy viscosity hypothesis that forms
the basis for the most popular LES closures, namely, those of the Smagorinsky family.
The significance of the memory is tied to the lack of scale separation when the broadband
activity of turbulence is filtered at an arbitrary scale. There will always be significant
residual motions that are only slightly smaller than the resolved scales and hence evolve
on similar timescales at the resolved dynamics.

A simple way to account for Lagrangian memory, which has turned out to have sig-
nificant empirical success, is to average over Lagrangian trajectories with exponentially
fading memory when performing the dynamic procedure for determining the eddy viscos-
ity (Meneveau et al. 1996). This approach only partially accounts for the memory in that
it still assumes the eddy viscosity form in which the instantaneous subfilter stress tensor
is proportional to the instantaneous filtered strain-rate tensor. Lagrangian memory will
also cause misalignment between these two tensors, which has been found to be quite
significant even in stationary homogeneous isotropic turbulence (Ballouz & Ouellette
2018).

A better representation of Lagrangian memory effects may be obtained following the
approach of Li et al. (2009) to define a matrix exponential-based closure inspired by the
recent fluid deformation approximation (Chevillard & Meneveau 2006; Chevillard et al.
2008). This approach still involves some (uncontrolled) assumptions about the other
terms in Eq. (2.6) as well as approximating the history integral using only the current
filtered velocity gradient. Furthermore, the numerical calculation of a matrix exponential
involves additional challenges that are undesirable, though not prohibitive.

However, there is a much simpler way to encapsulate the Lagrangian history into a
closure for the subfilter stress tensor. The basic idea is that the closure model should
have an evolution equation with the same form as Eq. (2.6). It turns out that this is
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quite simple. Consider the tensor diffusivity model of Clark et al. (1979),

τmij = c`2AikAjk. (2.13)

This model form may be justified as follows. Johnson (2020) showed that, for a Gaussian
filter, the generalized second-order moment satisfies the following diffusion equation

∂τ `(a, b)

∂(`2)
=

1

2
∇2τ `(a, b) + ∂ka

`∂kb
`
, (2.14)

where `2 serves as a time-like variable. As a result, one may write

τ `(a, b) = `2∂ka∂kb+

∫ `2

0

dα τβ
(
∂ka

√
α, ∂kb

√
α
)

(2.15)

where β =
√
`2 − α. For a broader class of filter shapes, one may show via Taylor expan-

sion that

τ `(a, b) = c`2∂ka∂kb+ higher-order terms, (2.16)

where c = 1 for a Gaussian filter. The tensor diffusivity model may be constructed from
either of these expressions by neglecting everything beyond the first term. The tensor
diffusivity model typically performs very well in a priori studies of the subfiltered stress
tensor (Borue & Orszag 1998).

The Lagrangian evolution of this model stress tensor is determined by the Lagrangian
evolution of the filtered velocity gradient tensor. To this end, the gradient of Eq. (2.3)
gives

∂tAij + uk∂kAij = −AikAkj + other terms. (2.17)

This shows that the filtered velocity gradient amplifies itself in a manner similar to the
subfilter stress, Eq. (2.6). Differentiating Eq. (2.13) and substituting Eq. (2.17), it may
be shown that

∂tτ
m
ij + uk∂kτ

m
ij = −Aikτmjk − τmikAjk + other terms. (2.18)

The tensor diffusivity model, through the precise form of its dependence on the filtered
velocity gradient, has a Lagrangian memory that mimics that of the true subfilter stress
tensor. Thus, a closure of the form given in Eq. (2.13) provides a simple, effective way to
encapsulate accurate Lagrangian history into a subfilter stress model without Lagrangian
averaging or matrix exponentials.

3. Transport equation for the tensor diffusivity model

For a more detailed understanding of the behavior of the tensor diffusivity model, the
full evolution equation of the tensor diffusivity model must be considered in comparison
with the full evolution equation for the subfilter stress tensor. These are constructed
following the same procedure as above, but now explicitly writing all terms previously
grouped as other terms.

The full evolution equation for the subfilter stress tensor is (Germano 1992)

∂tτij + uk∂kτij = −Aikτjk − τikAjk − ∂kTijk + 2τ(p, Sij)− 2ντ (Aik, Ajk) , (3.1)

where the spatial transport term is

Tijk = τ(ui, uj , uk) + τ(p, ui)δjk + τ(p, uj)δik − ν∂kτij . (3.2)
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The generalized second moment from Eq. (2.4) is used here along with the generalized
third moment (Germano 1992),

τ(a, b, c) = abc− aτ(b, c)− bτ(a, c)− cτ(a, b)− abc. (3.3)

The full evolution equation for the tensor diffusivity model is

∂tτ
m
ij + uk∂kτ

m
ij = −Aikτmjk − τmikAjk − ∂kTmijk + 2c`2∂kp ∂kSij − 2νc`2∂lAik∂lAjk + Φij ,

(3.4)
where the flux is given by

Tmijk = c`2∂lui ∂lτjk + c`2∂luj ∂lτik + c`2∂lp ∂luiδjk + c`2∂lp ∂lujδik − ν∂kτmij (3.5)

and the source term

Φij = c`2∂lAik∂lτjk + c`2∂lAjk∂lτik, (3.6)

appears without any apparent or intuitive justification. Comparing Eqs. (3.1) and (3.4),
one may deduce models for the unclosed terms in the subfilter stress evolution equation
implied by the tensor diffusivity model.

The implied model for the pressure-strain-rate is

τ(p, Sij)
m = c`2∂kp ∂kSij , (3.7)

which may be obtained by the same Taylor expansion procedure used to obtain the ten-
sor diffusivity model for τ(ui, uj). However, this does not necessarily make this a good
closure. The tensor diffusivity closure for the subfilter stress enjoys (a-priori) success be-
cause it is primarily due to scales near the filter scale. The pressure-strain-rate, however,
is more reliant on the smallest scales in the flow because the strain-rate is primarily
organized at small scales.

The implied pressure transport model is

τ(p, ui)
m = c`2∂kp ∂kui, (3.8)

which, again, can be formed following the same procedure leading to the tensor diffusivity
model for τ(ui, uj). At first glance, this model seems more promising that the pressure-
strain-rate model above, since both the residual velocity and pressure are dominated near
the filter scale. However, the subfilter stress evolution is likely less sensitive to pressure
transport models.

The implied subfilter transport model is

τ(ui, uj , uk)m = c`2∂lui ∂lτjk + c`2∂luj ∂lτik. (3.9)

The Gaussian filter has the following exact relationship for the generalized third-order
moment,

∂τ `(a, b, c)

∂(`2)
=

1

2
∇2τ `(a, b, c) + `2∂lui ∂lτjk + `2∂luj ∂lτik + `2∂luk ∂lτij , (3.10)

so that we see the implied transport model above lacks the final term, `2∂luk ∂lτij , to
be an appropriate approximation. In fact, the implied model does not satisfy the proper
symmetries on the indices i, j, k. Otherwise, however, it is the model consistent with the
procedure for how the tensor diffusivity model is formed.

The implied model for the viscous destruction is

−2ντ (Aik, Ajk) = −2νc`2∂lAik∂lAjk + Φij , (3.11)
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so that the first part is exactly formed by the tensor diffusivity model procedure, but the
second term Φij does not appear to have a straightforward interpretation. Certainly, the
first term is not expected to be accurate because the viscous destruction occurs primarily
at the smallest scales.

Overall, the similarities between the evolution equation for the subfilter stress, Eq. (3.1)
and the tensor diffusivity model for the stress, Eq. (3.4), are numerous and compelling.
However, some of the implied models for the unclosed terms in the stress evolution
equation have important deficiencies that one would want to address if designing a six-
equation transport model for the subfilter stress. A priori testing of the implied models
could be used illuminate the performance of each implied model.

4. Conclusions

It is shown in this report that the tensor diffusivity model for the subfilter stress tensor
efficiently encodes the Lagrangian history effect of the filtered velocity gradient tensor
along the pathline. This provides a particularly easy way to include the viscoelastic-like
effects of subfilter turbulence when performing large-eddy simulations (LES). However,
consideration of the full evolution equations shows apparent deficiencies for most of the
implied models for unclosed terms if a six-equation stress transport model were to be
constructed consistent with the tensor diffusivity model. These shortcomings aside, from
a certain theoretical point of view, the tensor diffusivity model enjoys significant advan-
tages over other (more expensive) procedures for including Lagrangian history effects in
subfilter stress models.

As a caveat, note that the tensor diffusivity model is usually under-dissipative in
practice, so steps should be taken to address this deficiency. One possible solution is to
adjust the value of the coefficient c > 1/12. For LES, this choice theoretically depends
on the assumed filter shape and the filter width to grid ratio. In other words, one may
assume the filter width to be somewhat larger than the grid and hence obtain a more
dissipative tensor diffusivity model. On the other hand, the Gaussian relation developed
by Johnson (2020) provides a promising way to supplement the tensor diffusivity model
with a model for the multiscale vortex stretching and strain self-amplification effects.
These multiscale terms may turn out to be well-approximated by a Smagorinsky-like
term, resulting in further physics-based support for a mixed model (Clark et al. 1979;
Vreman et al. 1996) for subfilter stresses.
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