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Multi-scale geometrical Lagrangian statistics:
Extensions and applications to particle-laden
turbulent flows

By B. Kadochj, M. Bassenne, M. Esmaily-Moghadam,
K. Schneiderf, M. Farge§ aAND W. J. T. Bos||

We present multi-scale statistics of particle trajectories in isotropic turbulence and
compare the behavior of fluid and inertial particles. The directional change of inertial
particles is quantified by considering the curvature angle for different time increments.
Distinct scaling behaviors of the mean angle are observed for short, intermediate and
long time lags. We also introduce the scale-dependent torsion angle, which quantifies
the directional change of particles moving out of a reference plane. The influence of the
Stokes number on the mean angles and on the probability distributions are analyzed.
Finally, we assess the impact of LES and particle SGS modeling on these statistics.

1. Introduction

Modeling particle dispersion in turbulent flows is a major challenge for predictive sci-
ence. In the context of Eulerian turbulence modeling, developing particle subgrid scale
(SGS) models which yield reliable results is still an ongoing research area. However, sig-
nificant progress during recent decades has been made in the Lagrangian characterization
of turbulence, from both an experimental and a numerical viewpoint, see Yeung (2002);
Toschi & Bodenschatz (2009). An important field of application, which motivates the
present work, is that of particle-based solar receivers, which are more efficient than con-
ventional ones in which a solid surface absorbs the solar radiation and transfers the heat
to an operating fluid. Particle-based receivers use fine grains suspended in the fluid to
transfer heat throughout the fluid volume, aiming to improve the heat-transfer efficiency
(PSAAPII 2016, http://exascale.stanford.edu/). Another application of such systems is
to generate very high local temperature through strong particle segregation and use it for
endothermic chemical reactions. Accurate turbulence SGS models for particles are attrac-
tive tools to reduce the computational cost associated with their optimization through
Large-Eddy Simulations (LES). A prerequisite for developing such models is the detailed
understanding of the geometrical properties of particle dynamics.

Different tools for performing geometrical statistics of particles have been developed
and a recent overview can be found, for instance, in Braun et al. (2006). For example, the
curvature and torsion of fluid trajectories in isotropic turbulence have been analyzed in
Scagliarini (2011). In Bos et al. (2015), we analysed the directional change of particles in
isotropic turbulence using a new multi-scale measure, the scale-dependent curvature angle
of trajectories. It quantifies the direction of motion over successive time intervals. This
measure was originally introduced in Burov et al. (2013) for studying complex dynamics
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in the context of mesoscopic systems. For fluid particles in isotropic three-dimensional
turbulence Bos et al. (2015) showed that the inertial range of turbulence is directly related
to the angular statistics of Lagrangian fluid particle trajectories. A self-similar behavior
of the probability density function of the directional change has also been identified.
Kadoch et al. (2016) used this measure to carry out statistical analyses of fluid particle
trajectories in two-dimensional turbulence, either in periodic domains, for both the direct
and inverse energy cascade, or in confined circular domains. We found that the influence
of flow confinement is reflected in the long-time behavior of the angular statistics. The
expected long-term outcome of these analyses is the development of accurate models for
the topology of Lagrangian trajectories in dispersion models.

The aim of the paper is to perform statistical analyses of scale-dependent angles of
particle trajectories in isotropic turbulent flows. Besides fluid particles, that were inves-
tigated in Bos et al. (2015), we extend the geometrical statistics to inertial particles and
study the influence of the Stokes number. In addition to the multi-scale curvature angle,
we introduce a new statistical measure, the multi-scale torsion (or dihedral) angle. This
angle quantifies the three-dimensionality of the particle trajectory at different scales.
Mean values and probability distribution functions of both scale-dependent quantities
are analyzed for DNS data. We also assess the impact of LES and particle SGS models
on the above statistics.

The remainder of the paper is organized as follows. After summarizing the simulation
data of particle-laden flows in Section 2, we describe the multi-scale geometric statistics in
Section 3. The results are discussed in Section 4, and some conclusions and perspectives
for future work are given in Section 5.

2. Simulation data of particle-laden flows

In the following we give a short description of the turbulence and particle database
used in this study, as well as the Lagrangian description of the particle motion. Further
details on the flow data can be found in Esmaily-Moghadam & Mani (2015). We consider
DNS of isotropic turbulence at a Taylor micro-scale Reynolds number Rey = 100. We
maintain turbulence using a linear forcing term on the right-hand side of the Navier—
Stokes equation (Bassenne et al. 2016). We use second-order finite differences on a 2563
staggered grid in all computations.

Five classes of particles are simulated at Stokes numbers 0,1/16,1,4 and 16. We com-
pute the Stokes number as the ratio of particle relaxation time 7 = ppd, /18, where p,
is the particle density, d, is the particle diameter, and p is the dynamic fluid viscosity,
to the Kolmogorov time scale 75, = \/1/7/6 =2x 1076, At St = 0, the trajectory of a fluid
particle X (t) advected by the velocity field w is described by the ordinary differential
equation dX /dt = u(X (t),t). For inertial particles, the trajectory X, (¢) is modeled by
dX,/dt = u,, where u, is the particle velocity defined by du,/dt = (u(X,) — u,)/7.
This one-way coupled point-particle model is employed in the computations. To ini-
tialize these simulations, we seed the computational domain by 100,000 homogeneously
distributed particles of each class. Then, the governing equations are integrated for 200 7
in a statistically stationary regime to ensure particle clustering is fully established. Apart
from Rey, St = 7/7; is the only non-dimensional parameter that governs the behavior
of this system. In physical terms, the Stokes number represents the tendency of particles
to follow the flow. In the limit St — 0, the particles become fluid tracers, while at St
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— 00, they are completely ballistic and follow trajectories that are independent of the
background flow. In the next sections, we study the effect of St on Lagrangian statistics.

3. multi-scale geometric Lagrangian statistics

Geometric Lagrangian statistics are conveniently described using some tools from dif-
ferential geometry. Frenet—Serret formulas, for example, see Braun et al. (2006), are used
to define a local coordinate system of the trajectory, defined by the curve, x(t). The
arclength is given by ds = \/(dx(t)/dt)?dt and correspondingly we can expand x(s) in
a Taylor series in a neighborhood of a given point. The smoothness of the trajectories
in turbulent flows which allows such an expansion has been shown in Constantin et al.
(2015). Subsequently we obtain the tangent vector t = dx(t)/ds, the normal vector kn =
d?*x(t)/ds* and the binormal vector b = t x n. All three vectors are unit vectors which
are orthogonal to each other. These three vectors form a coordinate system and allow us
to introduce a system of nine ODEs, dt/ds = kn,dn/ds = 9b — kt,db/ds = —9In which
describe a curve uniquely for given initial conditions, (s = 0),n(s = 0) and b(s = 0).
The two continuous functions k(s) > 0 and J(s) denote the curvature and the torsion,
respectively. The torsion is defined by ¥ = 1/x?det (dx(s)/ds, d*x(s)/ds?*, d*x(s) /ds®)
and we thus need d3z(s)/ds3. Fixing the initial position of the curve, (s = 0) = xo, we
obtain x(s) = wo + [; t(s') ds'.

3.1. Curvature and scale-dependent curvature angle
The curvature of the fluid-particle trajectory is defined by
_Juxal ay

k(t) =

where v and a, are the magnitude of the velocity and of the normal or perpendicular
acceleration, respectively. Note that «(¢) > 0. For k = 0, the particle velocity and the
acceleration vectors are parallel.

Introducing time increments of the Lagrangian particle position,

5X(£B0,t,’7’) :X(wo,t>—X(330,t—T),

= = 3.1
wp (1)

where X (zg,t) is the position of a particle at time ¢, passing through point xg at time
t = tg, we can define the curvature angle ©(t, ) by
0X (xg,t,7) - 6 X (o, t
cos(O(t, 7)) = X @0 t7) 0X (o b+ 7,T) (3.2)
|6 X (2o, t,7)| |0 X (2o, t + 7,7)]
This quantity describes the directional change of a fluid-particle in the plane for a given
scale, i.e., the increment size 7. An illustration of © is given in Figure 1, left.
The ensemble average of this curvature angle will be denoted by

o(r) = (|6, 7)) (3-3)

At short times, we expect that 6(7) tends to zero, which means that particles have the
tendency to go straight. At long times, the curvature angle should tend to the asymptotic
value 7/2, which corresponds to the mean angle assumed by three random points in an
infinite domain and thus to their decorrelation.
The curvature « is obtained in the limit when the increment size tends to zero, namely,
_ o 1O 7))

K(t) = Th_% )] (3.4)
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FIGURE 1. Left: illustration of the curvature angle (from (Bos et al. 2015)). Right: illustration
of the torsion angle.

For inertial particles, we can define the curvature angle analogously by replacing X by
X

-
3.2. Torsion and scale-dependent torsion angle
The torsion of the fluid particle trajectory is defined by

ﬁ(t)sz(axa): uXxa a 3.5)

K2 ub lu x al?

where at is the time derivative of the acceleration. Note that 9¥(t) is a signed quantity,
which is directly related to the kinetic helicity h = w - u of the flow (Sposito 2001) as

1w u

2 w?
If the torsion vanishes, ¥ = 0, then the particle velocity, acceleration and its derivative
are coplanar vectors.

The torsion angle, also called dihedral angle (the angle between two intersecting
planes), can be defined as

[0X (o, t —7,7) x 60X (20,t,7)] - [0 X (x0,t,7) X 6 X (T0,t + 7,7)]

(T —
cos(I'(t, 7)) 10X (0, — 7,7) X 0X (€0, t,7)| [0 X (20, t,7) X 6X (20, + 7,7)]

(3.6)

for a given time increment 7. This quantity describes the directional change of a particle
for a given scale, i.e., the increment size 7, but now in space. It thus measures the angle
at which the particle leaves a reference plane. An illustration of I' is given in Figure 1,
right.

Similar to the curvature angle, we can define the ensemble average of the torsion angle,
which will be denoted by

V() = (L@ 7)) 3.7)

Again, we expect for small time lags 7 that v tends to zero, and that the particles stay in

the plane. Because of symmetry, the expected asymptotic value for large 7 should tend
to m/2 in the case of periodic (or infinite) domains.

We conjecture that the torsion ¥ can be obtained in the limit where the increment size
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FIGURE 2. Mean curvature angle for homogeneous isotropic turbulence at Rex = 100.

tends to zero,
L@, 7))
() = lim ———~. .8
O~ Ly o @] (3.8)
The scale-dependent torsion angle can be related to the scale-dependent kinetic helicity
(Farge & Schneider 2015), a direction which will be exploited in future work. For inertial

particles, we can define the torsion angle analogously by replacing X by X,,.

4. Results and interpretation

In the following, we apply the previously introduced multi-scale measures to trajectory
data and present the statistical results we obtained.

4.1. Mean curvature angle

The mean curvature angle is shown in Figure 2 as a function of 7/74 for four Stokes
numbers, St = 1/16, 1,4 and 16 in double logarithmic representation. For short time lags,
we find a linear scaling behavior in all cases, i.e., we have © = 2|u,|s7 for 7 — 0 which
is consistent with the mathematical limit in Eq. (3.4). For intermediate values of 7, we
do not find the expected inertial range, as observed in Bos et al. (2015) for fluid-particles
(St=0) at Rey = 225. The explanation is that in the current simulation, the Reynolds
number is about a factor two smaller and hence not large enough. For increasing Re, we
anticipate a scaling of 71/ at least for small Stokes numbers. At long time, we observe
that all curves tend towards the expected asymptotic limit of /2, which corresponds
to decorrelation of the three points. We also see a clear influence of the Stokes number;
the curves are shifted to smaller values for increasing St. The inertial particles act as
low-pass filters, and we observe for increasing Stokes numbers that the linear behavior is
extended so that the expected inertial range for larger Re will disappear for large St.

We also investigated the time development of the mean curvature angle in the context
of LES. Trajectories of particles computed in DNS, LES with no particle model (indicated
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FIGURE 3. Mean curvature angle. DNS - LES comparison. PM = particle model.

by LES — no PM), and LES with particle model (LES — PM) were compared in order
to investigate the impact of the unresolved flow scales in LES, as well as the impact of
not modeling the unclosed fluctuating velocity along particle trajectories in the particle
equation of motion. The model used for the fluctuating velocity is based on the dynamic
deconvolution of the LES resolved velocity field using differential filters, which contains
no adjustable parameters. For more details about the closure problem arising in one-way
coupled simulations of particle-laden turbulent flows, and the model used in the present
study, the reader is referred to Park et al. (2015) and Park et al. (2016). In all LES
computations, the subgrid-scale stress tensor is modeled using the dynamic Smagorinsky
model (Moin et al. 1991).

The computations are performed at a moderate Taylor micro-scale Reynolds number
of 85 for particles of unity Stokes number. The DNS grid has 2563 control volumes, such
that k,,q.n = 1.6. Here, k;;,q, corresponds to the cut-off wavenumber and 7 denotes the
Kolmogorow scale. The LES grid is 8 times coarser in each direction. In this regime, the
particle trajectories are highly sensitive to the Kolmogorov scales, which are not resolved
in the LES.

In Figure 3 we compare the mean curvature angle obtained in DNS, LES — no PM
and LES — PM. The LES computation with no particle model yields lower values of the
mean curvature angle at short and intermediate times. As already noted, for very short
time increments the value of the mean curvature angle is proportional to the curvature
of the particle trajectories. Since in LES the smallest resolved eddies are considerably
larger than in DNS, and therefore exhibit lower curvature, a decrease in curvature of
the particle trajectories is expected in LES in the current regime in which the particles
are predominantly slipping on the unresolved small-scale eddies. In conclusion, the mean
curvature angle shows improved agreement with the DNS results when the particle model
is used.
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FIGURE 4. PDF of the cosine of the curvature angle for isotropic turbulence at Rex = 100 for
St =1/16 and 16.

4.2. PDFs of mean curvature angle

For insight into the higher-order statistics, we show in Figure 4 the probability distribu-
tion function (PDF) of the cosine of the curvature angle © in log-lin representation for
two Stokes numbers, St = 1/16 and 16, considering short, intermediate and long time
lags. For increasing time increment size, we observe a transition of the PDF from a Dirac
distribution towards a uniform distribution. For short time increments, we find a peak
at cos©® = 1, which corresponds to a large probability that particles have a directional
angle of © = 0, i.e., particles are going straight for short time increments. When increas-
ing the Stokes number we observe that the above transition is indeed delayed. Assuming
Gaussianity of velocity and acceleration, it was shown in Bos et al. (2015) that for St =0
the PDFs of 1 — cos(©) can be fit with the Fischer F» 3 distribution. We anticipate that
in the case of finite Stokes numbers the PDFs are again self-similar and can be fit with
a corresponding Fischer distribution. Instead of a Gaussian distribution for the signed
acceleration components, an alternative approach would be to use a log-normal distri-
bution for the acceleration magnitude. Then we will get a student distribution for the
curvature angle PDFs.

4.3. Mean torsion angle

The mean torsion angle I' is shown in Figure 5 as a function of 7/t; for four Stokes
numbers, St = 1/16, 1,4 and 16 in double logarithmic representation. For large 7 values,
we again find the asymptotic value of /2, which corresponds to decorrelation. We also
observe that the slope of the torsion angle is changing with the Stokes number for 7 — 0.
Assuming the linear scaling we conjectured (Eq. (3.8)), it is expected that deviation
from linear scaling occurs at small time increments for small Stokes, and at larger time
increments for larger Stokes (since it increases with the particle characteristic acceleration
time scale). We observe this behavior for the mean curvature angle as well. In Figure 5
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FIGURE 5. Mean torsion angle for homogeneous isotropic turbulence at Rey = 100.

almost linear scaling is observed for the larger Stokes, but not for smaller Stokes, because
the time increments are not small enough. For those small Stokes numbers, we observe
I' < 796, A possible explanation for observing the linear scaling for mean curvature
angle but not for mean torsion angle at the same value of the time increment is not
yet available, but the observation is probably related to the fact that the definition of
the mean torsion angle involves 4 samples, i.e., 37, instead of 27 for the mean curvature
angle. We also see that obtaining the asymptotic value is again delayed for increasing St.
Extensions of the theoretical predictions are currently under way and will be published
elsewhere, as well as the relation to scale-dependent kinetic helicity.

4.4. PDFs of mean torsion angle

The probability distribution function of the torsion angle is shown in Figure 6 in log-
linear representation for four Stokes numbers, St = 1/16,1,4 and 16, considering short,
intermediate and long time lags. For increasing time lags, we observe flattening of the
PDFs in all cases, which corresponds to equidistribution of the angle and again shows
decorrelation of the four points. As shown before for the curvature angle, the transition
is delayed when the Stokes number increases. For short time lags, we find a higher
probability for values of I' = 0, which shows that particles have the tendency to remain
in the plane of motion.

5. Conclusions and perspectives

We proposed new numerical multi-scale diagnostics for Lagrangian statistics of particle-
laden flows. We analyzed trajectories of fluid and inertial particles in isotropic turbulence
computed using DNS and LES. First, we extended the multi-scale curvature angle to in-
ertial particles. Thereby, the directional change of particles could be analyzed at different
scales using three particle positions of a given trajectory. For the mean angle, we observed
linear scaling for small time lags, although an inertial range was absent, probably due
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FIGURE 6. PDF of torsion angle for isotropic turbulence at Rey = 100.

to the limited Reynolds number. For large times, we observed an asymptotic limit cor-
responding to decorrelation of the three positions. The corresponding PDF's gave insight
into higher-order statistics.

Then we introduced a novel measure, the multi-scale torsion angle, which quantifies the
directional change of particles out of the plane using four particle positions. We analyzed
the scaling of the mean torsion angle and the corresponding PDFs for different Stokes
numbers. A theoretical justification will be given in future work.

For the above measures, we observed that increasing the Stokes number delays the
transition in the statistics from small to large scales. An interesting follow-up from the
current work will be to study flows at higher Reynolds numbers, especially with respect
to the existence of an inertial range, and of confined flows.

We also assessed the impact of LES and particle SGS modeling. Although the particle
SGS model did not recover the missing subgrid scales, we found that it still partially
recovers the higher value of the curvature observed in the DNS. The mean curvature
angle showed improved agreement with the DNS results when the particle model was
used.

The multi-scale tools described in the present study can help investigating the perfor-
mance of particle SGS models, and in bringing new insights regarding possible improve-
ments. The long-term perspective arising from this work is to develop accurate particle
subgrid-scale models which may take into account some of the geometrical information
of the trajectory.

In conclusion, the statistical tools yield new insight into the multi-scale statistics of par-
ticles in turbulent flows. They are also attractive for experimentalists since only particle
positions are required to compute the position increments necessary for the curvature and
torsion angle. Possible fields of future applications of the developed tools are in oceanog-
raphy, for example, trajectories of buoys; in meteorology, for example, the trajectories
of balloons; and in electrically conducting fluids (plasmas) for analyzing trajectories of
electrons and ions.
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