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Multi-scale statistics of turbulence
motorized by active matter

By J. Urzay, A. Doostmohammadiy AND J. M. Yeomansy

A number of micro-scale biological ows tend to states dominated byspatio-temporal
chaos and pattern formation. A characteristic common to all of these ows is that they
are laden with active matter, which induces multi-scale ow motions that bear strong vi-
sual resemblance to turbulence. In this study, multi-scale statistical tools are employed to
analyze direct numerical simulations (DNS) of periodic two- (2D) andthree-dimensional
(3D) active ows to study the underpinning mechanisms responsiblefor the observed
dynamics. Statistical descriptions of the ows and their variations with spatial dimen-
sionality and activity levels are provided in physical and spectral spaces.

1. Introduction
The multi-scale processes observed in the types of ows discussedhere are induced by

active matter laden in a uid (Wensink et al. 2012; Sanchezet al. 2012; Dunkel et al.
2013). These are a special class of multi-phase ows, where the constituent particles are
self-propelled. Examples of biological active matter are cells, motorproteins and bacteria.
Synthetic active matter can be manufactured in the form of mechanically, chemically or
optically propelled particles. However, a unifying characteristic of laden active matter is
that it transforms free energy in the uid into systematic motion (S imha & Ramaswamy
2002). Although such energy conversion occurs at the particle scales, the collective in-
teractions among many of these particles oftentimes translate into unstable ow motion
across much larger scales.

Despite the low Reynolds numbers involved, ows induced by active matter have been
referred to asactive turbulence in analogy to the unsteady multi-scale dynamics found
in high-Reynolds number ows (Wensink et al. 2012; Bratanovet al. 2015; Thampi et al.
2016). However, whether these ows can be identi�ed as turbulent in the classical sense is
debatable. The conservation equations of active ows are considerably non-linear and for-
mally more complex than the incompressible Navier-Stokes equations, and the nature of
these non-linearities is fundamentally di�erent from those responsible for high-Reynolds
number turbulence. Non-linear dynamical systems are known to display chaotic particle
trajectories and mixing behavior even at low Reynolds numbers (Ottino 1990).

In this study, DNS of active ows are performed in 2D and 3D periodic domains.
Multi-scale tools are employed to examine basic ow statistics. The remainder of this
paper is organized as follows. The formulation and computational setup are described
in Section 2. The analysis of the numerical results is presented in Section 3. Finally,
concluding remarks are provided in Section 4.
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2. Formulation and computational setup
The approach employed here is based on the numerical integration of the conservation

equations of dense active nematohydrodynamics. This continuum formulation extends
the description of passive liquid crystals of De Gennes & Prost (1995) and has proven
successful in reproducing spatio-temporal dynamics observed inexperiments of active
ows (see Doostmohammadiet al. (2016b) and references therein).

2.1. Conservation equations for active nematohydrodynamics

In this formulation, the mesoscopic orientational order of active particles is represented
by the nematic tensorQij = (3 q=2)(ni nj � � ij =3), whereq is the magnitude of the nematic
order, ni is the director and � ij is the Kronecker delta. The conservation equation for the
nematic tensor is given by

@t Qij + uk @x k Qij = � H ij + Rij ; (2.1)

where uk are velocity components,t is time, x i are spatial coordinates, and � is propor-
tional to a rotational di�usivity. Additionally, Rij is a co-rotation tensor de�ned as

Rij = ( �S ik + 
 ik )
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(2.2)
which accounts for the response of the orientational �eld to the extensional and ro-
tational components of the velocity gradients, with Sij = (1 =2)(@x i uj + @x j ui ) and

 ij = (1 =2)(@x j ui � @x i uj ) being the strain-rate and vorticity tensors, respectively. The
relative importance of the vorticity and strain rate is controlled by t he parameter � ,
which characterizes the alignment of the nematics with the ow. The term involving �
in (2.1) describes, through the auxiliary tensorH ij = � �� F =��Q ij + ( � ij =3)tr(�� F =��Q kl ),
the relaxation of Qij to a minimum of a free energy

F = ( A=2)Qij Qij + ( B=3)Qij Qjk Qki + ( C=4)(Qij Qij )2 + K=2 (@x k Qij )2 : (2.3)

In this formulation, �� represents the variational derivative, tr denotes the trace,K is an
elastic constant, andA, B and C are material constants that determine the equilibrium
state of the orientational order. The �rst three terms in (2.3) co rrespond to the Lan-
dau/De Gennes free energy, while the last term represents the Frank elastic energy with
a one-constant approximation (De Gennes & Prost 1995). Note that the Frank term in
(2.3) gives rise to a di�usive ux of Qij in the form � K@2

x k ;x k
Qij in (2.1). The description

of the ow �eld is completed by the mass and momentum conservationequations, namely

@x i ui = 0 ; �@t ui + �u j @x j ui = � @x i p + �@2
x j ;x j

ui + @x j � ij � �@x j Qij ; (2.4)

where � is the density, p is the pressure and� is the dynamic viscosity. The additional
terms in the momentum equation (2.4) involve the elastic stress

� ij = 2 � (Qij + � ij =3) (Qkl H lk ) � �H ik (Qkj + � kj =3) � � (Qik + � ik =3) H kj

� @x i Qkl
�� F

��@x j Qlk
+ Qik H kj � H ik Qkj ; (2.5)

which represents the passive conformational resistance of the nematics to changes in the
orientational order, and the active stress �Q ij , which corresponds to a coarse-grained
collective e�ect of the stresslets set up by the active particles (Simha & Ramaswamy
2002). In particular, the divergence of the active stress is responsible for the injection
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of kinetic energy through the particle alignment characteristics represented by the ne-
matic tensor, whose conservation equation (2.1) is non-linearly coupled with the velocity
�eld. The absolute value of the coe�cient � is proportional to the activity, with positive
and negative values of� corresponding to extensile (e.g., bacteria) and contractile (e.g.,
actomyosin) particles, respectively.

2.2. Remarks on the conservation equations

Some aspects with regard to the formulation given above are worthbriey pointing out.
The �rst one is related to characteristic dimensionless parameters. In conditions ad-
dressed by these simulations and most experimental observations, the Reynolds number
is small, Re = �u 0̀ =� . 1, with u0 and ` as the integral scales for velocity and length,
respectively. In this limit, the convective transport of momentum has a diminishing in-
uence, with the dominant balance in (2.4) being between viscous andactive stresses.
Similarly, the orientational order di�uses slower than momentum, as indicated by the
relatively high Schmidt number Sc = ( �=� )=(� K ) & 5, which results in characteris-
tic structures of the velocity �eld that are larger than those of th e orientational order,
as discussed in Section 3. As a consequence, the P�eclet number ofthe nematic order
P e = ReSc& 3 suggests that advection may play a more important role in transporting
orientational order than it does for transporting momentum.

The second aspect worth stressing is that the conservation equations outlined above do
not include any obvious external forcing term aimed at sustaining the dynamics. A ow
laden with active matter is di�erent from an inactive ow externally dr iven by boundary
conditions, imposed shear or volumetric forces added to the momentum conservation
equation. In real biological ows laden with swimming bacteria, adenosine tri-phosphate
(ATP) molecules are consumed by the bacteria via hydrolysis reactions and transformed
into motion in such a way that the driving occurs internally at the expense of depletion
of chemical energy. The source of chemical energy, however, is not represented in the
formulation above, in that it only concerns systems where the rateof ATP depletion is
in�nitesimally small compared to hydrodynamic processes.

The active motorization of the ow can be understood by multiplying t he momentum
equation in (2.4) by ui and performing a surface (in 2D) or volumetric (in 3D) periodic
integration, which leads to the balance equation� (dk=dt) = � � � h � ij Sij i + � hQij Sij i for
the spatially averaged kinetic energyk = hui ui =2i , where � = h2�S ij Sij i is the viscous
dissipation. The work done by the active forces, given by the term� hQij Sij i , represents
the main source ofk. The power deployed by the active work is dissipated by viscosity
as shown below, thereby yielding a stationary state in whichk remains mostly constant.

2.3. Computational setup

The formulation described above is integrated numerically in 2D square and 3D cubic do-
mains with periodic boundary conditions. The dimensional parameters in the simulations
are A = 0 :04, B = 0 for 2D and B = 0 :06 for 3D, C = 0 :06, � = 0 :3 (tumbling particles),
� = 0 :34, K = 0 :40, � = 1 :0, and � = 0 :66 (Sc = 4 :90). The baseline activity coe�cient
is � 0 = 0 :036 for 2D and 3D, with an additional 2D computation being performed with a
smaller activity � 0=10. All parameters here are expressed in arbitrary consistent units. A
standard lattice-Boltzmann approach is used to integrate (2.4), while (2.1) is solved by
employing a second-order �nite-di�erence predictor-corrector algorithm as described in
Marenduzzoet al. (2007). The resulting set of ordinary di�erential equations is integrated
in time using an Euler method. The number of grid points for the 2D and3D simulations
is N = 5122 and 1283, respectively, with a minimum grid spacing of � = `d=3 for all
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cases, with `d =
p

K=A = 3 :16 being the characteristic size of the topological defects
in the orientational order �eld. The time increment used in the numer ical integrations
is � t = tq=60, with tq = �=� being a characteristic time scale for the damping of the
activity by viscosity. The initial conditions consist of zero velocity everywhere while the
directors are set to random orientations. Data are collected after approximately 2 � 104

time steps for 10 snapshots spanning a time period of 150tq, which provide 5122 � 10 and
1283 � 10 statistical samples leading to converged probability density functions (PDFs)
in 2D and 3D, respectively. In the results, spatial coordinates arenormalized with `d.
Additionally, velocities are normalized with u0 = 0 :11 (for 2D, with � = � 0) and u0 = 0 :04
(for 3D, and 2D with � = � 0=10), whereu0 =

p
2k.

3. Analysis of numerical results
3.1. Flow structures

Instantaneous contours of velocity and vorticity are provided in Figures 1(a) and 2(a)
for 2D and 3D domains, respectively. Speci�cally, the e�ects of decreasing the activity
coe�cient from � 0 to � 0=10 in the 2D simulations are an increase in the integral length
(computed from the ensemble-averaged kinetic-energy spectrum) from ` = 5 :45 to ` =
10:22, a decrease in the Reynolds number from toRe = 0 :74 to Re = 0 :68, and a decrease
in the dissipation from � = 1 � 10� 3 to � = 2 � 10� 4. The resulting low-activity ow has a
less dense pattern of ow structures, as observed by comparingthe main (high activity)
and inset (low activity) frames in Figure 1(a) and noticing that the no rmalizing length
`d is independent of activity. It is noteworthy that, for the same act ivity coe�cient � 0,
moving from two to three dimensions translates into an increase in the integral length
from ` = 5 :45 to ` = 8 :97, a decrease in the Reynolds number fromRe = 0 :74 to
Re = 0 :53, and a decrease in the dissipation from� = 1 � 10� 3 to � = 0 :3 � 10� 4.

The spatial variations in the nematic tensor Qij are central to the generation of vor-
ticity. This is easily observed by taking the curl of (2.4), namely

�@t ! i + �u j @x j ! i = � �! j @x j ui + " ijk @x j

�
�@2

x ` ;x `
uk + @x ` � k` � �@x ` Qk`

�
; (3.1)

where ! i is the vorticity and " ijk is the permutation tensor. In 2D, the vortex stretch
term is exactly zero and the dominant mechanism of vorticity generation is the curl of
the divergence of the active stresses. The structures of vorticity, which are shown in Fig-
ure 1(b), are di�erent from the classic round vortices observed inhigh-Reynolds number
2D isotropic ows. Instead, vortical structures attain here band-like shapes, which are
closely related to thinner elongated regions referred to as walls, where the magnitude of
the nematic order tensor becomes small, as shown by the solid contours of ! 3 overlaid
on the director �eld (largest eigenvectors of the Qij tensor) in Figure 1(b). The walls
are characterized by bend deformations in the director �eld that separate nematically
aligned regions (q � 1) across interstitial isotropic states (q � 1) in Figure 1(c), and are
typically much thinner than the hydrodynamic structures of velocit y and vorticity. The
resulting � 1=2 topological defects in the nematic order, depicted by circles and trian-
gles in Figure 1(b,c) (see inset), represent singular, disordered regions of strong vorticity
generation that are created and annihilate in pairs while propagatingin the ow in a
complex manner (Doostmohammadiet al. 2016a) that is beyond the scope of the present
study.

In 3D, the vortex-stretch term in (3.1) represents a much smallercontribution than
the active stresses because of the low Reynolds numbers involved.As observed in Fig-
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Figure 1. Instantaneous contours of (a) velocity magnitude (high act ivity, main panel; low
activity, inset), (b) vorticity and (c) magnitude of the nem atic tensor. In panels (b,c), which are
zoomed views of the white squared region in panel (a), green lines are nematic director �elds,
while symbols represent +1=2 (circles) and � 1=2 (triangles) topological defects. The small inset
above (c) shows the director �eld around topological defect s.

ure 2(a), the resulting vortical structures in 3D are elongated aswell but smaller than
the velocity ones. The 3D mechanisms of vorticity generation are mostly unknown since
the description of topological defects in active nematics is not well understood. Fur-
ther insight into rotational and straining components of the 3D ow �eld can be gained
by examining the velocity-gradient invariants Qinv = (1 =4)(! i ! i � 2Sij Sij ) and Rinv =
(3=4)(! i ! j Sij + 4 Sij Sjk Ski ), which are expedient to classify ow structures. In contrast
to typical scatter plots for high-Reynolds turbulence where mostof the activity is in the
upper-right and lower-left quadrants, Figure 2(b) shows that for active ows straining is
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2D ( � 0 =10) 2D ( � 0 ) 3D ( � 0 )

Velocity ( u1 ) atness 2.84 3.14 2.78
Velocity derivative ( @u1 =@x1 ) skewness -0.03 -0.10 -0.02
Vorticity ( ! 3 ) atness 2.85 3.21 3.12

Table 1. Moments of velocity, velocity derivative and vorticity PDF s.

predominant. As a result, the marginal PDF of Qinv is heavily skewed toward negative
values (skewness� 1:6). The straining is caused by the cumulative e�ect of the stresslets
from the active particles (i.e., see ow sketch in Figure 2(c)).

3.2. PDF moments of ow variables

The PDFs of velocity u1, velocity gradient @u1=@x1, vorticity ! 3 and magnitude of the
nematic order q are shown in Figure 3, and some of their moments are listed in Table 1.
The PDFs of velocity and vorticity have nearly Gaussian atness, while the largest skew-
ness of the velocity gradient is reached in the 2D high-activity case and equals � 0:10.
In all cases, the vorticity atness and the velocity-gradient skewness are smaller than
typical values observed in high-Reynolds turbulence (i.e.,� 8 and � � 0:4, respectively).
In 2D, small activities favor sub-Gaussian atness for vorticity and velocity along with
decreasing skewness of the velocity gradient. Note, however, that for the same activity
coe�cient the 3D case leads to a smaller skewness of the velocity gradient, which sug-
gests that the lesser spatial con�nement plays a role in the development of uctuations.
Additionally, small values of the nematic-order magnitude, which correspond to isotropic
behavior and vorticity generation, are statistically favored by large activities.
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3.3. Intermittency analysis

Albeit small, intermittency may not be entirely ruled out in these systems, as suggested
by a narrow-band �ltering analysis of the results based on a discrete db-4 wavelet decom-
position of the velocity and vorticity �elds (see Meneveau (1991) for details about similar
applications of wavelets). This is shown in Figure 4, which provides thescale-dependent
atness F (s) of the PDFs of the direction-averaged velocity and vorticity wavelet coe�-
cients, uV(s)

1 and ! V(s)
3 , normalized with their corresponding standard deviations� (s)

u and
� (s)

! , with s being a scale index that ranges from 1 (equivalent to a length scale 2�) to
smax = log 2 N (equivalent to N �) and is related to the wavenumber as � = 2 � 2� s=�.
In these simulations, smax = 9 (for 2D cases) andsmax = 7 (for 3D cases).

While the 2D �elds remain nearly Gaussian at all scales, with a slight increase for
the vorticity atness observed in the smallest scale, Figure 4(b) shows that the 3D �elds
contain signi�cant intermittency in the small scales, as indicated by the strong increase
in Fs with � (main panel) and by the increasingly longer tails in the PDFs of the wavelet
coe�cients as the length scale decreases (inset). Nonetheless, the energetic content of
these small scales and their associated intermittent motion is small inall cases. This can
be understood by noticing the rapid decay of the kinetic-energy and enstrophy spectra,
Ek and E ! , as the wavenumber increases, as observed in Figure 5(a,b,d,e). Speci�cally,
the kinetic-energy spectra decay with a slope that decreases from � 4:5 to � 3:5 as the
activity is increased ten-fold. As a result, the enstrophy spectrareach a maximum at the
integral scale and decay rapidly thereafter, indicating that the small-scale gradients bear
vanishing energy. This detracts dynamical relevance from the increased intermittency
observed in the 3D small scales and sets a fundamental di�erence between these ows
and high-Reynolds number turbulence; in the latter, the kinetic-energy spectra decays
at a slower rate and the small-scale vorticity intermittency is energetic.

It is also of interest to note that the characteristic wavenumber where the nematic-order
uctuation energy spectra Eq (de�ned such that the area under the curve ishq0q0i ) reach
a maximum is approximately one decade smaller than the wavenumber corresponding to
the maximum enstrophy spectra in the 2D low-activity case, as shown in Figure 5(c).
The distance between peaks decreases with increasing activity andwhen moving to three
dimensions, as observed in Figure 5(f). The wavenumber of maximumEq decreases as
the activity increases and its value is closer to 2�=` d than to 2�=` , which spectrally
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illustrates the �ne structure of the nematic-order �eld compared to the coarser velocity
�eld.

3.4. Spectral energy-transfer analysis

As discussed in Section 2.2, a crucial role in the dynamics is played by the diver-
gence of the active stress� �Q ij . Because of the smallRe involved, it is anticipated
that the spectral transfer of the corresponding active energyis locally dissipated by
viscosity, since the convective inter-scale transfer is a mechanismof secondary impor-
tance. Although there may exist additional triadic interactions resulting from (2.5)
that could transport energy across scales, the 3D results provided in Figure 6 for ac-
tive (T

V

A ), convective (T

V

C ), and viscous (T

V

V ) wavelet-based spectral energy-transfer
uxes support the view that locality may dominate the transfer. Sp eci�cally, these
uxes describe the rate at which the spatially averaged spectral kinetic-energy density,
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Ek = 2 � 3sh
P

d uV(s;d )
i (x s )uV(s;d )

i (x s )=2i x s =�� , is transferred across scales. In particular,
Ek and the analogousE ! and Eq are shown in Figure 5(d-f). In this formulation, d is a
positive-integer direction index (d = 1 ; 2; 3 and d = 1 ; 2:::; 7 in 2D and 3D, respectively),
�� = 2 � ln 2=(2s�) is a discrete wavenumber shell, and the bracketed operator represents
spatial averaging over scale-dependent wavelet gridsx s = 2 s� 1(i � ; j � ; k�) where db-4
wavelets are collocated, withi , j , k = 1 ; 3; 5 : : : ; N=2s� 1 � 1.

Upon wavelet-transforming the momentum equation in (2.4), multiply ing by uV(s;d )
i (x s )

and summing overd, the spectral-energy equation@Ek =@t=
P

T
V

(� ) is obtained. Here,
the source term represents the sum of spectral energy-transfer uxes created by each term
on the right-hand side of the momentum equation in (2.4). For any force � i , the corre-

sponding spectral ux is given by T

V

(� ) = [(2 � 2s�) =(2� ln 2)]h
P

d uV(s;d )
i (x s )�

V(s;d )

i (x s )i x s ,
with T

V

> 0 andT

V

< 0 indicating, respectively, inow and outow of energy at a given �� .
Note that T

V

= T

V

A for � i = � �@x j Qij , T

V

= T

V

V for � i = �@2
x j ;x j

ui , and T

V

= T

V

C for � i

= � �u j @x j ui , which satisfy
P

� T

V

A �� = � hQij Sij i ,
P

� T

V

V �� = � � and
P

� T

V

C �� = 0.
Figure 6(a) indicates that the active stress act as a kinetic-energy source at all scales

on spatial average, with the maximum mean ofT

V

A occurring at scales of the same order
as the integral length. Conversely, the viscous ux T

V

V is a sink of kinetic energy and
has a trend that is exactly opposite toT

V

A , as shown in Figure 6(b), which indicates that
the active energy is mostly dissipated locally in spectral space by viscosity. The spatial
localization of the transfer, which is illustrated by the unbracketed versions ofEk , E ! ,
Eq and T

V

, is represented by the variabilities of the PDFs shown in Figures 5(d-f) and
6. Speci�cally, the PDFs in Figure 6 reveal that the viscous transfer ux is spatially
correlated with the active one (correlation coe�cient � 0:73 at s = 4), suggesting that
upon deployment the active energy is dissipated mostly locally also in physical space.

The physical picture implied by Figure 6 provides no evidence for an energy cascade
in momentum where the sink � and main source� hQij Sij i of mean kinetic energy could
act in disparate ranges of scales interacting through a crossing long-range mechanism.
This is in contrast to high-Reynolds number turbulence and its clear separation of scales
between the large-scale forcing range and the small-scale molecular-dissipation range.
These conclusions could however be di�erent for the nematic-order energy, in that the
transport description of the latter is highly non-linear and involves cross-triadic terms
with the velocity as in (2.2). These aspects will be the subject of future research.
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4. Conclusions
The multi-scale statistical analysis of DNS of active ows presentedin this study shows

that increasing activities lead to increasingly packed and dissipating structures that have
increasingly larger departures from Gaussian statistics. For the same activity, the 3D ow
has a larger integral length and smaller kinetic energy in compared with its 2D coun-
terpart. A velocity-gradient invariant analysis of the 3D ow indicat es that straining
structures dominate the topology as a collective result of the embedded stresslets rep-
resented by each individual particle. A wavelet-based, scale-dependent atness analysis
shows the occurrence of intermittency in the small scales, particularly in the 3D vortic-
ity �eld. However, the spectral energy content associated with the small-scale velocity
gradients is small in all cases. The work of the active stress is spectrally deployed near
the integral scales and dissipated mostly locally by viscosity.
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