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Multi-scale statistics of turbulence
motorized by active matter

By J. Urzay, A. Doostmohammadiy AND J. M. Yeomansy

A number of micro-scale biological ows tend to states dominated byspatio-temporal
chaos and pattern formation. A characteristic common to all of these ows is that they
are laden with active matter, which induces multi-scale ow motions that bear strong vi-
sual resemblance to turbulence. In this study, multi-scale statisical tools are employed to
analyze direct numerical simulations (DNS) of periodic two- (2D) andthree-dimensional
(3D) active ows to study the underpinning mechanisms responsiblefor the observed
dynamics. Statistical descriptions of the ows and their variations with spatial dimen-
sionality and activity levels are provided in physical and spectral spaes.

1. Introduction

The multi-scale processes observed in the types of ows discusséere are induced by
active matter laden in a uid (Wensink et al. 2012; Sanchezt al. 2012; Dunkel et al.
2013). These are a special class of multi-phase ows, where the stituent particles are
self-propelled. Examples of biological active matter are cells, motoproteins and bacteria.
Synthetic active matter can be manufactured in the form of mechaically, chemically or
optically propelled particles. However, a unifying characteristic of laden active matter is
that it transforms free energy in the uid into systematic motion (S imha & Ramaswamy
2002). Although such energy conversion occurs at the particle sées, the collective in-
teractions among many of these particles oftentimes translate imh unstable ow motion
across much larger scales.

Despite the low Reynolds numbers involved, ows induced by active méer have been
referred to asactive turbulence in analogy to the unsteady multi-scale dynamics found
in high-Reynolds number ows (Wensink et al. 2012; Bratanovet al. 2015; Thampi et al.
2016). However, whether these ows can be identi ed as turbulehin the classical sense is
debatable. The conservation equations of active ows are considably non-linear and for-
mally more complex than the incompressible Navier-Stokes equation@nd the nature of
these non-linearities is fundamentally di erent from those respongble for high-Reynolds
number turbulence. Non-linear dynamical systems are known to diglay chaotic particle
trajectories and mixing behavior even at low Reynolds numbers (Otino 1990).

In this study, DNS of active ows are performed in 2D and 3D periodic domains.
Multi-scale tools are employed to examine basic ow statistics. The renainder of this
paper is organized as follows. The formulation and computational seip are described
in Section 2. The analysis of the numerical results is presented in Sgon 3. Finally,
concluding remarks are provided in Section 4.
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2. Formulation and computational setup

The approach employed here is based on the numerical integrationfahe conservation
equations of dense active nematohydrodynamics. This continuumdrmulation extends
the description of passive liquid crystals of De Gennes & Prost (1995and has proven
successful in reproducing spatio-temporal dynamics observed iexperiments of active
ows (see Doostmohammadiet al. (2016b) and references therein).

2.1. Conservation equations for active nematohydrodynamics

In this formulation, the mesoscopic orientational order of active particles is represented
by the nematic tensorQ; = (3g=2)(nin; j =3), whereqis the magnitude of the nematic
order, n; is the director and j is the Kronecker delta. The conservation equation for the
nematic tensor is given by

@Qj + u@,Qj = Hj +Rj; (2.1)

where ug are velocity components,t is time, x; are spatial coordinates, and is propor-

tional to a rotational di usivity. Additionally, Rj is a co-rotation tensor de ned as

Rij =(Sik+ &) Qg + % + Qi + '?k (S W) 2 Qj+ % Qu @, ur;

(2.2)

which accounts for the response of the orientational eld to the etensional and ro-

tational components of the velocity gradients, with §; = (1=2)(@,u; + @, u;) and
i =(1=2)(@ ui @, uj) being the strain-rate and vorticity tensors, respectively. The

relative importance of the vorticity and strain rate is controlled by t he parameter

which characterizes the alignment of the nematics with the ow. The term involving

in (2.1) describes, through the auxiliary tensorH; = F=Qj +( =3)tr( F=Qu),

the relaxation of Q; to a minimum of a free energy

F = (A=2)Q; Qi +(B=3)Qj Qi Qu +(C=4)(Qj Qj )? + K=2(@,Qj )*: (2.3)

In this formulation, represents the variational derivative, tr denotes the trace,K is an
elastic constant, andA, B and C are material constants that determine the equilibrium
state of the orientational order. The rst three terms in (2.3) correspond to the Lan-
dau/De Gennes free energy, while the last term represents the &nk elastic energy with
a one-constant approximation (De Gennes & Prost 1995). Note tht the Frank term in

(2.3) gives rise to a di usive ux of Qj inthe form K@fk «, Qj In (2.1). The description
of the ow eld is completed by the mass and momentum conservationequations, namely

@, ui =0; @ui+ U@ Ui = @p+t @4 Uit@ i @Qj; (2.4)

where is the density, p is the pressure and is the dynamic viscosity. The additional
terms in the momentum equation (2.4) involve the elastic stress

i =2 (Qj + §=3)(QuHK) Huk(Qgy + =3) (Qk + Kk =3)Hy
F
@ Qu @ O + Qi Hi  Hik Qi ; (2.5)
which represents the passive conformational resistance of theematics to changes in the
orientational order, and the active stress Qj , which corresponds to a coarse-grained
collective e ect of the stresslets set up by the active particles (Sirha & Ramaswamy
2002). In particular, the divergence of the active stress is respwible for the injection
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of kinetic energy through the particle alignment characteristics represented by the ne-
matic tensor, whose conservation equation (2.1) is non-linearly cquied with the velocity
eld. The absolute value of the coe cient is proportional to the activity, with positive
and negative values of corresponding to extensile (e.g., bacteria) and contractile (e.g.,
actomyosin) particles, respectively.

2.2. Remarks on the conservation equations

Some aspects with regard to the formulation given above are wortlrie y pointing out.
The rst one is related to characteristic dimensionless parametersIn conditions ad-
dressed by these simulations and most experimental observationthe Reynolds number
is small, Re = u®= . 1, with u®and " as the integral scales for velocity and length,
respectively. In this limit, the convective transport of momentum has a diminishing in-
uence, with the dominant balance in (2.4) being between viscous andactive stresses.
Similarly, the orientational order di uses slower than momentum, as indicated by the
relatively high Schmidt number Sc = ( = )= K) & 5, which results in characteris-
tic structures of the velocity eld that are larger than those of th e orientational order,
as discussed in Section 3. As a consequence, the Reclet number thie nematic order
Pe= ReSc& 3 suggests that advection may play a more important role in transpeoting
orientational order than it does for transporting momentum.

The second aspect worth stressing is that the conservation eqtians outlined above do
not include any obvious external forcing term aimed at sustaining tte dynamics. A ow
laden with active matter is di erent from an inactive ow externally dr iven by boundary
conditions, imposed shear or volumetric forces added to the moméwmm conservation
equation. In real biological ows laden with swimming bacteria, adencsine tri-phosphate
(ATP) molecules are consumed by the bacteria via hydrolysis reactins and transformed
into motion in such a way that the driving occurs internally at the expense of depletion
of chemical energy. The source of chemical energy, however, i®trepresented in the
formulation above, in that it only concerns systems where the rateof ATP depletion is
in nitesimally small compared to hydrodynamic processes.

The active motorization of the ow can be understood by multiplying t he momentum
equation in (2.4) by u; and performing a surface (in 2D) or volumetric (in 3D) periodic
integration, which leads to the balance equation (dk=dt) = h §Sji+ hQyS;i for
the spatially averaged kinetic energyk = huju;=2i, where = hR2Sj S;i is the viscous
dissipation. The work done by the active forces, given by the term hQ; S; i, represents
the main source ofk. The power deployed by the active work is dissipated by viscosity
as shown below, thereby yielding a stationary state in whichk remains mostly constant.

2.3. Computational setup

The formulation described above is integrated numerically in 2D squag and 3D cubic do-
mains with periodic boundary conditions. The dimensional parametes in the simulations
areA =0:04,B =0 for 2D and B =0:06 for 3D,C =0:06, =0:3 (tumbling particles),
=0 :34,K =0:40, =1:0,and =0:66 (Sc=4:90). The baseline activity coe cient
is o =0:036 for 2D and 3D, with an additional 2D computation being performed with a
smaller activity ¢=10. All parameters here are expressed in arbitrary consistent uts. A
standard lattice-Boltzmann approach is used to integrate (2.4), vhile (2.1) is solved by
employing a second-order nite-di erence predictor-corrector algorithm as described in
Marenduzzoet al. (2007). The resulting set of ordinary di erential equations is integrated
in time using an Euler method. The number of grid points for the 2D and 3D simulations
is N = 5122 and 128, respectively, with a minimum grid spacing of = 4=3 for all
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cases, with 'y = P K=A = 3:16 being the characteristic size of the topological defects
in the orientational order eld. The time increment used in the numerical integrations
is t= tg=60, with t; = = being a characteristic time scale for the damping of the
activity by viscosity. The initial conditions consist of zero velocity everywhere while the
directors are set to random orientations. Data are collected afte approximately 2~ 10*
time steps for 10 snapshots spanning a time period of 15 which provide 512 10 and
128 10 statistical samples leading to converged probability density funtons (PDFs)
in 2D and 3D, respectively. In the results, spatial coordinates arenormalized with " .
Additionally, velocities are normalized with u®s 0:11 (for 2D, with = ) and u®=0:04
(for 3D, and 2D with = (=10), whereu®= " 2k.

3. Analysis of numerical results
3.1. Flow structures

Instantaneous contours of velocity and vorticity are provided in Figures 1(a) and 2(a)
for 2D and 3D domains, respectively. Speci cally, the e ects of deceasing the activity
coe cient from o to =10 in the 2D simulations are an increase in the integral length
(computed from the ensemble-averaged kinetic-energy spectm) from ~ = 5:45to ~ =
10:22, a decrease in the Reynolds number from t®e = 0:74 to Re = 0:68, and a decrease
in the dissipation from =1 10 3to =2 10 “. The resulting low-activity ow has a
less dense pattern of ow structures, as observed by comparinghe main (high activity)
and inset (low activity) frames in Figure 1(a) and noticing that the no rmalizing length
"¢ Is independent of activity. It is noteworthy that, for the same activity coe cient g,
moving from two to three dimensions translates into an increase in tle integral length
from ° = 5:45 to ° = 8:97, a decrease in the Reynolds number fronRe = 0:74 to
Re = 0:53, and a decrease in the dissipation from=1 10 3to =0:3 10 4.

The spatial variations in the nematic tensor Q; are central to the generation of vor-
ticity. This is easily observed by taking the curl of (2.4), namely

@i+ u@!'!'i= ! Qu+t"Kk@ @ ., uwt@ k© @ Q¢ ; (3.1)

where ! ; is the vorticity and "jx is the permutation tensor. In 2D, the vortex stretch
term is exactly zero and the dominant mechanism of vorticity generdion is the curl of
the divergence of the active stresses. The structures of vortity, which are shown in Fig-
ure 1(b), are di erent from the classic round vortices observed inhigh-Reynolds number
2D isotropic ows. Instead, vortical structures attain here band-like shapes, which are
closely related to thinner elongated regions referred to as walls, wdre the magnitude of
the nematic order tensor becomes small, as shown by the solid conits of ! 3 overlaid
on the director eld (largest eigenvectors of the Q; tensor) in Figure 1(b). The walls
are characterized by bend deformations in the director eld that separate nematically
aligned regions §§ 1) across interstitial isotropic states (g 1) in Figure 1(c), and are
typically much thinner than the hydrodynamic structures of velocity and vorticity. The
resulting 1=2 topological defects in the nematic order, depicted by circles andrian-
gles in Figure 1(b,c) (see inset), represent singular, disordered gégons of strong vorticity
generation that are created and annihilate in pairs while propagatingin the ow in a
complex manner (Doostmohammadiet al. 2016&) that is beyond the scope of the present
study.

In 3D, the vortex-stretch term in (3.1) represents a much smallercontribution than
the active stresses because of the low Reynolds numbers involvefls observed in Fig-
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Figure 1. Instantaneous contours of (a) velocity magnitude (high act ivity, main panel; low
activity, inset), (b) vorticity and (c) magnitude of the nem atic tensor. In panels (b,c), which are
zoomed views of the white squared region in panel (a), green ines are nematic director elds,
while symbols represent +1=2 (circles) and 1=2 (triangles) topological defects. The small inset
above (c) shows the director eld around topological defect s.

ure 2(a), the resulting vortical structures in 3D are elongated aswell but smaller than
the velocity ones. The 3D mechanisms of vorticity generation are mstly unknown since
the description of topological defects in active nematics is not well nderstood. Fur-
ther insight into rotational and straining components of the 3D ow eld can be gained
by examining the velocity-gradient invariants Qiny = (1=4)(!'i!i 2S5 Sj ) and Rijny =
(B3=4)(!i!;Sj +4S; Sik Ski ), which are expedient to classify ow structures. In contrast
to typical scatter plots for high-Reynolds turbulence where mostof the activity is in the
upper-right and lower-left quadrants, Figure 2(b) shows that for active ows straining is
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Figure 2. (a) Instantaneous iso-surfaces of velocity magnitude (uiu;)**2=uw’ = 1:1 (30% of
maximum value) and enstrophy ! ;! i (*¢=u%? = 0:4 (20% of maximum value) for 3D simulations.
(b) Scatter plot of the velocity-gradient invariants. (¢) S chematics of stresslet-like ow around
extensile active particles such as bacteria ( > 0).

2D ( 0=10) 2D ( o) 3D ( o)

Velocity ( up) atness 2.84 3.14 2.78
Velocity derivative ( @u =@x) skewness -0.03 -0.10 -0.02
Vorticity (! 3) atness 2.85 3.21 3.12

Table 1. Moments of velocity, velocity derivative and vorticity PDF  s.

predominant. As a result, the marginal PDF of Qj,, is heavily skewed toward negative
values (skewness 1:6). The straining is caused by the cumulative e ect of the stressles
from the active particles (i.e., see ow sketch in Figure 2(c)).

3.2. PDF moments of ow variables

The PDFs of velocity uz, velocity gradient @uy=@x, vorticity ! 3 and magnitude of the
nematic order q are shown in Figure 3, and some of their moments are listed in Table 1.
The PDFs of velocity and vorticity have nearly Gaussian atness, while the largest skew-
ness of the velocity gradient is reached in the 2D high-activity case &d equals 0:10.
In all cases, the vorticity atness and the velocity-gradient skewness are smaller than
typical values observed in high-Reynolds turbulence (i.e., 8 and 0:4, respectively).
In 2D, small activities favor sub-Gaussian atness for vorticity and velocity along with
decreasing skewness of the velocity gradient. Note, however, dih for the same activity
coe cient the 3D case leads to a smaller skewness of the velocity gdent, which sug-
gests that the lesser spatial con nement plays a role in the develoment of uctuations.
Additionally, small values of the nematic-order magnitude, which corespond to isotropic
behavior and vorticity generation, are statistically favored by large activities.
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Figure 3. Ensemble-averaged PDFs of (a) velocity, (b) velocity gradi ent, (c) vorticity and (d)
nematic-order magnitude, including 3D ( = o, solid lines) and 2D ( = o, dot-dashed lines;
= =10, dashed lines). Red short-dashed lines indicate referene Gaussian distributions.

3.3. Intermittency analysis

Albeit small, intermittency may not be entirely ruled out in these systems, as suggested
by a narrow-band ltering analysis of the results based on a discre¢ db-4 wavelet decom-
position of the velocity and vorticity elds (see Meneveau (1991) fa details about similar
applications of wavelets). This is shown in Figure 4, which provides thescale-dependent
atness F (%) of the PDFs of the direction-averaged velocity and vorticity wavele coe -

cients, U(ls) and !“gs), normalized with their corresponding standard deviations &) and

) with s being a scale index that ranges from 1 (equivalent to a length scale 2) to
Smax = log, N (equivalent to N ) and is related to the wavenumber as =2 2 s=.
In these simulations, smax = 9 (for 2D cases) andsmax = 7 (for 3D cases).

While the 2D elds remain nearly Gaussian at all scales, with a slight increase for
the vorticity atness observed in the smallest scale, Figure 4(b) slows that the 3D elds
contain signi cant intermittency in the small scales, as indicated by the strong increase
in Fs with  (main panel) and by the increasingly longer tails in the PDFs of the wavéet
coe cients as the length scale decreases (inset). Nonethelesshe energetic content of
these small scales and their associated intermittent motion is small irall cases. This can
be understood by noticing the rapid decay of the kinetic-energy ad enstrophy spectra,
Ex and E, , as the wavenumber increases, as observed in Figure 5(a,b,d,e). &pcally,
the kinetic-energy spectra decay with a slope that decreases fno  4:5 to 3:5 as the
activity is increased ten-fold. As a result, the enstrophy spectrareach a maximum at the
integral scale and decay rapidly thereafter, indicating that the snall-scale gradients bear
vanishing energy. This detracts dynamical relevance from the inaased intermittency
observed in the 3D small scales and sets a fundamental di erenceelbween these ows
and high-Reynolds number turbulence; in the latter, the kinetic-erergy spectra decays
at a slower rate and the small-scale vorticity intermittency is energéic.

Itis also of interest to note that the characteristic wavenumber where the nematic-order
uctuation energy spectra E4 (de ned such that the area under the curve ishg’%) reach
a maximum is approximately one decade smaller than the wavenumberasresponding to
the maximum enstrophy spectra in the 2D low-activity case, as show in Figure 5(c).
The distance between peaks decreases with increasing activity andhen moving to three
dimensions, as observed in Figure 5(f). The wavenumber of maximunk, decreases as
the activity increases and its value is closer to 2=~ 4 than to 2 =", which spectrally
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Figure 4. Wavelet-based scale-dependent atness (main frames) for \velocity and vorticity in
(a) 2D and (b) 3D cases at = o, along with corresponding scale-conditioned PDFs (insets) of
the wavelet coe cients. The PDFs are conditioned on s =1 (dark blue lines) s =2 (red), s=3
(orange), s =4 (purple), s=5 (green) and s =6 (light blue).
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Figure 5. Ensemble-averaged Fourier and wavelet spectra of kinetic energy. The solid contours
in the bottom row correspond to the PDF of the wavelet spectra , which include the mean (solid
lines) and associated 95% con dence intervals (dashed lines).

illustrates the ne structure of the nematic-order eld compared to the coarser velocity
eld.

3.4. Spectral energy-transfer analysis

As discussed in Section 2.2, a crucial role in the dynamics is played by & diver-
gence of the active stress Qj . Because of the smallRe involved, it is anticipated
that the spectral transfer of the corresponding active energyis locally dissipated by
viscosity, since the convective inter-scale transfer is a mechanisraf secondary impor-
tance. Although there may exist additional triadic interactions resulting from (2.5)
that could transport energy across scales, the 3D results provied in Figure 6 for ac-
tive (Ta), convective (T¢), and viscous (I'y) wavelet-based spectral energy-transfer
uxes support the view that locality may dominate the transfer. Specically, these
uxes describe the rate at which the spatially averaged spectral knetic-energy density,
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Figure 6. Mean and 95% con dence intervals of wavelet-based spectral energy-transfer ux of
the 3D ow for (a) active and convective uxes, and (b) viscou s ux. The panels also show solid
contours for PDFs of (a) active and (b) viscous uxes, indica ting spatial variabilities.

Ex =2 33hP 405 (x6)a™ (x5)=2i,.= , is transferred across scales. In particular,
Ex and the analogouskE, and Eq are shown in Figure 5(d-f). In this formulation, d is a
positive-integer direction index (d=1;2;3 andd=1;2::;7 in 2D and 3D, respectively),

=2 In2=(2%) is a discrete wavenumber shell, and the bracketed operator regesents
spatial averaging over scale-dependent wavelet gridss =25 (i ;j ;k) where db-4
wavelets are collocated, withi, j, k=1;3;5:::; N=25 1 1,

Upon wavelet-transforming the momentum equation in (2. 423 multiplying by n‘s d)(xs)
and summing overd, the spectral-energy equation@ k=@t  T( ) is obtained. Here,
the source term represents the sum of spectral energy-trafer uxes created by each term
on the right-hand side of the momentum equation in (2.4). For any face ;, the corre-
sponding spectral uxis givenby T( )=[(2 25) =2 In 2)]hP g Ui(s;d)(xS)Ai(S'd)(xs)ixs,
with T'> 0andT < 0 indicating, respectively, in ow and out ow of energy at a given
Note that T = T4 for ; :P @,Qj, T=Tyfor_;= fj;xj ui, andF;F: T for
= Uuj@, ui, which satisfy Ta = MQjSii, Tv = and Tc =0.

Figure 6(a) indicates that the active stress act as a kinetic-energ source at all scales
on spatial average, with the maximum mean ofT o occurring at scales of the same order
as the integral length. Conversely, the viscous uxTy is a sink of kinetic energy and
has a trend that is exactly opposite toT 4, as shown in Figure 6(b), which indicates that
the active energy is mostly dissipated locally in spectral space by visisity. The spatial
localization of the transfer, which is illustrated by the unbracketed versions ofEy, E; ,
Eq and T, is represented by the variabilities of the PDFs shown in Figures 5(cF) and
6. Speci cally, the PDFs in Figure 6 reveal that the viscous transfe ux is spatially
correlated with the active one (correlation coe cient 0:73 at s = 4), suggesting that
upon deployment the active energy is dissipated mostly locally also in pysical space.

The physical picture implied by Figure 6 provides no evidence for an eergy cascade
in momentum where the sink and main source hQ; S; i of mean kinetic energy could
act in disparate ranges of scales interacting through a crossing l@arange mechanism.
This is in contrast to high-Reynolds number turbulence and its clear gparation of scales
between the large-scale forcing range and the small-scale moleculdissipation range.
These conclusions could however be di erent for the nematic-ordeenergy, in that the
transport description of the latter is highly non-linear and involves cross-triadic terms
with the velocity as in (2.2). These aspects will be the subject of futire research.
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4. Conclusions

The multi-scale statistical analysis of DNS of active ows presentedn this study shows
that increasing activities lead to increasingly packed and dissipating suctures that have
increasingly larger departures from Gaussian statistics. For the ame activity, the 3D ow
has a larger integral length and smaller kinetic energy in compared wh its 2D coun-
terpart. A velocity-gradient invariant analysis of the 3D ow indicat es that straining
structures dominate the topology as a collective result of the embdded stresslets rep-
resented by each individual particle. A wavelet-based, scale-depéent atness analysis
shows the occurrence of intermittency in the small scales, partidarly in the 3D vortic-
ity eld. However, the spectral energy content associated with thhe small-scale velocity
gradients is small in all cases. The work of the active stress is spaetly deployed near
the integral scales and dissipated mostly locally by viscosity.
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