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Energy storage is an essential element of the complete land-
scape of energy processes, closely coupled with energy genera-
tion, transmission and usage. Development of lithium-based 

rechargeable batteries with higher energy density, lower costs 
and improved safety is highly desirable1–3. Over the past 25 years, 
lithium-ion batteries based on conventional intercalation electrode 
materials have played a critical role in enabling the widespread 
availability of consumer electronics and emergence of electrical 
transportation; however, intercalation-type electrode materials 
will reach their performance limit in the near future4. Significant 
advancements in battery performance and reductions in cost are 
expected to come from new battery chemistries, based on differ-
ent storage mechanisms at the materials level, and different con-
figurations at the cell and system level5–7. Among them, alloy-type 
Si8–10, Sn11, P12,13 and Al14 anodes, plating- and stripping-type lithium 
metal anodes15,16, conversion-type transition metal oxides/sulfides/
fluorides/phosphides/nitrides17–22, and S (Li–S batteries)23–27 and 
O2 (Li–air batteries)28–30 cathodes are some recent examples dem-
onstrating great promise and broad research interest. While these 
new electrode materials offer much higher lithium storage capacity, 
their reaction mechanisms with lithium are significantly different 
from those of conventional electrodes, resulting in many challenges 
across multiple length scales, such as: complete destruction of crys-
tal structure; chemical bond breaking/reformation and significant 
shuffling of host material atoms and molecules; colossal volume 
change at the particle level; volume change at the electrode and cell 
level; low electronic conductivity and solid-state lithium diffusivity; 
and instability of the electrode–electrolyte interface. As such, these 
problems proved difficult to solve until nanotechnology enabled a 
materials design paradigm shift from that of conventional battery 
materials. The emergence and development of nanotechnology 
in the past three decades has provided new methods and tools to 
design battery materials on the nanoscale31–36. Since the pioneer-
ing study of Si nanowires as a battery anode in 20088, an exciting 
research field to exploit nanomaterials design for battery electrodes 
has emerged to overcome the problems associated with new bat-
tery chemistries. A deep understanding of these nanostructured 
electrode materials has also been obtained, based on advanced 
nanocharacterization techniques.
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Tremendous progress has been made in the development of lithium-based rechargeable batteries in recent decades. Discoveries 
of new electrode materials as well as new storage mechanisms have substantially improved battery performance. In particular, 
nanomaterials design has emerged as a promising solution to tackle many fundamental problems in conventional battery mate-
rials. Here we discuss in detail several key issues in batteries, such as electrode volume change, solid–electrolyte interphase 
formation, electron and ion transport, and electrode atom/molecule movement, and then analyse the advantages presented by 
nanomaterials design. In addition, we discuss the challenges caused by using nanomaterials in batteries, including undesired 
parasitic reactions with electrolytes, low volumetric and areal energy density, and high costs from complex multi-step processing, 
and their possible solutions.

Here, we review the field of nanomaterials for energy storage by 
examining their promise to address the problems of new battery 
chemistries, as well as the issues associated with nanomaterials them-
selves. Previous review articles about nanomaterials for lithium-
based rechargeable batteries are mostly organized by individual 
battery chemistries5,6,37,38. We believe that different battery chemis-
tries share some common challenges. Thus, instead of examining 
individual chemistries separately, we organize our Review based on 
the issues that nanomaterials design can address, including: large 
volume expansion and fracture; instability of the solid–electrolyte 
interphase (SEI); electron and ion transport; and host atom and mol-
ecule diffusion in batteries. We use examples from various battery 
chemistries to illustrate these fundamental nanomaterials design 
principles. In addition, we also address various challenges for nano-
materials, including significant side reactions with electrolytes due 
to the high electrode/electrolyte contact area, limited volumetric 
energy density of the entire electrode due to low mass loading and 
tap density, and high cost due to complex nanomaterials synthesis, 
and discuss how these challenges might be addressed.

Cracking and fracture of particles and electrodes
Traditional intercalation-type electrode materials undergo neg-
ligible or small volume changes (<10%) during the lithium 
insertion/extraction processes, whereas new high-capacity elec-
trode materials usually have massive volume changes due to their 
intake of large amounts of lithium. The large volume change dur-
ing the charge/discharge process has been identified as one of the 
major issues preventing the application of high-capacity electrode 
materials since the late 1990s39. For example, the volume expan-
sions of alloy-type anodes are as high as 420% for Si, 260% for Ge 
and Sn, and 300% for P, all much larger than 10% for traditional 
graphite anodes. For lithium metal anodes, owing to their ‘host-
less’ nature, the relative volume change is virtually infinite. These 
dramatic volume changes induce mechanical degradation of both 
the active materials and electrodes during electrochemical cycling, 
significantly shortening the cycle life.

One well-known example is the Si anode, which exhibits very 
large volume fluctuations. Significant structure changes of Si occur 
during the initial lithiation and delithiation processes. Upon the 
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first lithiation process, crystalline Si changes to amorphous LixSi, 
with anisotropic volume expansion40–42. Similar to Si anodes, other 
alloy-type anodes, conversion-type anodes/cathodes and sulfur 
cathodes also undergo dramatic structural transformations and 
large volume changes during their charge and discharge processes. 
For conversion-type electrodes, the products from the first lithia-
tion process are ultra-fine metal nanoparticles (for example, 2 nm) 
embedded in a binary lithium compound (for example, Li2O, Li2S, 
LiF, Li3P or Li3N) matrix17,19,43. After delithiation, the volume of 
these high-capacity electrode materials shrinks. Such inherently 
large volumetric expansion and contraction causes cracking, frac-
ture and pulverization of active particles on cycling, leading to loss 
of electrical contact (Fig. 1a).

Besides the particle-level fracture, significant mechanical deg-
radation occurs at the electrode level through displacement over 
layers of particles across the electrode. The repeated expansion and 
contraction of particles leads to their detachment from surround-
ing electrical connections and delamination from the electrode 
(Fig. 1b). This mechanism of cracking, fracture and pulverization of 
particles and electrodes eventually leads to dramatic capacity decay 
for most of the bulk films41,44 and large particles (Fig. 1c).

One of the essential advantages of nanomaterials is their ability 
to resist mechanical degradation at the particle and/or electrode lev-
els45. The critical fracture size — one of the fundamental parameters 
for high-capacity electrode materials — depends on reaction type 
(for example, alloying reactions and conversion reactions), mechan-
ical properties, crystallinity, density, geometry and volume expan-
sion ratio of the nanomaterial. Moreover, electrochemical reaction 
rates play a crucial role in cracking and fracture of particles, as larger 
stresses can occur at faster charging/discharging rates. With parti-
cle sizes below the critical size, the lithiation-induced strain can be 

accommodated without inducing particle cracking or fracture. The 
mechanism of stress generation, cracking and fracture of particles, 
and size dependence of Si have been systematically investigated by 
calculations46, in situ atomic force microscopy41, scanning electron 
microscopy (SEM)42, transmission electron microscopy (TEM) and 
in  situ TEM47,48. The critical fracture sizes of crystalline Si nano
pillars and nanowires are 240–360  nm and 300–400  nm, respec-
tively, depending on the electrochemical reaction rate42, whereas 
that of crystalline Si particles is smaller (~150 nm)48.

Particle-level fracture can be solved by using various nano
structures below the critical breaking size apart from nanopillars 
and nanoparticles, such as nanowires, nanotubes, nanorods and 
nanocomposites. Electrode-level fracture, however, is another chal-
lenge, owing to the accumulation effect of numerous particles. 
Traditional electrodes consist of active particles, carbon black and 
polyvinylidene fluoride binder. The expansion of particles leads to 
an increase in electrode volume, whereas their contraction results in 
the shrinkage of the entire electrode. Such repetitive volume changes 
eventually lead to the mechanical failure of electrodes and their fast 
capacity fading due to electrical disconnection and physical delami-
nation of the active material. Thus, it is highly desirable to maintain 
the electrical connection of active particles to the current collector 
and suppress the cracking and fracture of electrodes over many dis-
charge/charge cycles. Using amorphous Si as an inorganic glue to 
bind Si nanoparticles onto the current collector can solve the issue 
of electrical contact in conventional electrode fabrication routes, 
and limits particle and electrode failure (Fig. 1d)49. Among various 
other techniques, the use of robust polymeric binders (for exam-
ple, an alginate binder50, a cross-linked binder comprising cyclic 
and linear polymers51, and a catechol-conjugated polymer binder52) 
is a promising method to mitigate the large volume expansion and 
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Figure 1 | Cracking and fracture of high-capacity active particles and electrodes over lithiation/delithiation cycling. a,b, The mechanical degradation of 
high-capacity material at the particle level (a) and electrode level (b) during discharge/charge cycling. c, SEM images of a deposited 250 nm Si film on Cu 
before (left) and after (right) 30 discharge/charge cycles between 1.2 and 0.02 V at 2.5 C. d, SEM images of a Si nanoparticle electrode before (left) and 
after (right) 20 discharge/charge cycles between 0.9 and 0.01 V at C/10. The Si film electrode cracked like mud in a dry lake bed bottom. The morphology of 
the Si nanoparticle electrode did not change much due to limited particle and electrode fracture. Figures reproduced from: c, ref. 44, ECS; d, ref. 49, ECS.
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inhibit mechanical fracture of silicon electrodes during cycling. 
Additionally, an active–inactive nanocomposite was first designed by 
Dahn to reduce the negative effects associated with the large volume 
change of high-capacity electrode materials53. The volume expansion 
stresses of Si can be mitigated through nanoscale architectures of 
Si/metal nitride and Si/metal carbide composites54,55.

Sulfur is one of the most promising cathode materials for 
rechargeable lithium batteries owing to its high specific capacity 
and low cost. Theoretically, the volume expansion of sulfur is as 
large as 80% when it is fully converted to Li2S on lithiation. Thus, 
sulfur cathodes suffer from the same issue of pulverization as 
most other high-capacity electrode materials. Compounding the 
problem, the lithiation process of sulfur involves various soluble 
polysulfide intermediates. The expansion of the sulfur cathode on 
lithiation will lead to leaking of these soluble polysulfide intermedi-
ates from the electrodes, causing decay of the battery performance7. 
Some early work has shown that nanostructures of carbon mate-
rials, metal oxides and polymers have sulfur- and/or polysulfide-
adsorbing effects, which appreciably improve the electrochemical 
performance of sulfur cathodes56–58. It is common knowledge that 
an encapsulation or coating layer can help to trap these soluble 
intermediates within the sulfur cathode (discussed below). Efforts 
to trap sulfur have been mainly focused on the use of porous car-
bons, via fusing the sulfur into their structure23,59, or encapsulating 
sulfur particles or sulfur/carbon composites with various protective 
layers24,60–62. Nazar and co-workers pioneered the encapsulation of 
sulfur within the channels of mesoporous carbon23. The strategy of 
adjusting the amount of sulfur infusion into mesoporous carbon to 
leave space for volume expansion to occur has been demonstrated, 
although it may face the difficulty of uniform sulfur filling23. 
Alternatively, by using various protective layers to form core–shell 
or yolk–shell nanostructures, the electrochemical performance of 
sulfur cathodes can be improved. For a full-filled core–shell struc-
ture, expansion of the sulfur core could cause the protective shell 
layer to crack and fracture, resulting in leakage of the intermedi-
ate polysulfides. The critical problem of volume expansion has 
been successfully solved by the construction of yolk–shell nano-
structures with designed void space. Of notable mention are the 
very recent works on S–TiO2 yolk–shell nanoarchitectures63 and 
polymer-encapsulated hollow sulfur nanospheres25,64. Owing to the 
presence of internal void space inside the shell, the volume expan-
sion of sulfur on lithiation can be fully accommodated, allowing 
these yolk–shell nanostructures to deliver much improved long-
term cycling performance. In particular, as Li2S is already in the 
fully lithiated and fully expanded state of sulfur, using Li2S nano-
particles as the starting material can circumvent the problem of 
particle cracking and fracture induced by volume expansion, and 
minimize mechanical degradation at the electrode level65.

Solid–electrolyte interphase
The electrochemical working potentials of anode materials are below 
the reduction potential of organic carbonates commonly employed 
in lithium-based battery electrolytes (around ~1 V66; potentials are 
versus Li+/Li0.). During battery charging, electrochemical reduction 
of the electrolyte occurs and produces a passivating SEI layer on the 
anode surface. The SEI is a lithium-ion conductor but an electronic 
insulator, leading to the termination of SEI growth at a certain thick-
ness67. A stable SEI layer allows for high Coulombic efficiency and 
the long-term stability of anodes benefiting from the surface passi-
vation. However, owing to repetitive large volume changes on lithi-
ation and delithiation41, the electrode/electrolyte interface moves 
and changes significantly, making it very challenging to maintain a 
stable SEI for high-capacity electrode materials.

As shown in Fig.  2a,b, solid and hollow Si structures expand 
towards the electrolyte on lithiation and contract during delithia
tion68. The SEI breaks due to the large volume changes, thus 

exposing electrode surface to electrolyte and inducing the growth 
of new SEI (Fig.  2a,b). This accumulated SEI over cycling decays 
the battery performance for the following reasons: first, electrolyte 
and lithium are consumed during the continuous SEI formation; 
second, a thick SEI layer leads to a long lithium-ion diffusion dis-
tance; and finally, mechanical stress from a thick SEI layer causes 
material degradation.

Nanotechnology provides new methods to overcome the unsta-
ble SEI formation to achieve reversible cycling and long cycle life 
for high-capacity anode materials. Taking Si anodes as an example, 
our group has pioneered the construction of encapsulating nano-
structures with an electrolyte blocking layer and a pre-defined void 
space to counteract the issue of volume expansion and achieve stable 
SEI for high-capacity electrode materials68–71. As shown in Fig. 2c, 
Si–SiOx double-walled nanotubes have a static SiOx interface with 
the electrolyte and form a stable SEI layer after the formation cycles. 
The inner Si surface moves back and forth during the lithiation and 
delithiation processes but does not break the shell structure and 
contact the electrolyte68. Stable cycling for 6,000 cycles was demon-
strated in half cells. Other successful examples for stable SEI forma-
tion include encapsulating Si nanoparticles in hollow carbon tubes 
(Fig. 2d)71 and Si–C yolk–shell nanoparticles69. Moreover, the strat-
egy of engineering encapsulation nanostructures is also generally 
applicable for other high-capacity electrode materials with large vol-
ume changes, such as alloy-type tin (Fig. 2e)72 and conversion oxides 
(Fig.  2f)73. Very recently, Al–TiO2 yolk–shell nanoparticles with 
tunable interspace were successfully synthesized and showed well-
maintained structure for 500 charge/discharge cycles (Fig. 2g)14. All 
the above-mentioned encapsulation nanostructures with an inner 
void space exhibit long electrochemical charge/discharge cycling 
lifetimes, indicating that a stable SEI layer is successfully formed on 
the outer surface of these nanostructures.

Lithium metal holds the highest possible energy density as an 
anode for rechargeable lithium batteries. In particular, it is the 
ultimate anode choice for high-energy Li–S and Li–air batteries. 
However, lithium metal has virtually infinite relative volume expan-
sion during charging. Thus, the challenge of stabilizing the SEI of 
lithium metal anodes is even greater than that of Si anodes. Figure 3a 
illustrates the SEI breaking and reformation during lithium metal 
plating/stripping, which leads to rapid consumption of electrolyte, 
loss of lithium and low Coulombic efficiency74. A promising strategy 
to tackle the unstable SEI issue is to engineer a chemically stable 
and mechanically robust nanostructured interfacial layer between 
the lithium metal anode and the electrolyte, such as a layer of inter
connected hollow carbon nanospheres15 or ultrathin BN/graphene75. 
It is observed that lithium metal deposition happens underneath a 
monolayer of hollow carbon nanospheres on the metal current col-
lector, while a stable SEI forms on the outer surface of the carbon 
nanosphere layer. The SEI, together with the hollow nanosphere 
layer, moves up and down during cycling without forming new SEI 
(Fig. 3b)15. An additional challenge of the lithium metal anode — 
namely the growth of lithium dendrites across the electrode surface 
caused by non-uniform electrodeposition — can be solved by this 
protective coating (Fig. 3c)15. Construction of a stable artificial SEI 
layer for the lithium metal anode before cycling is another promis-
ing strategy76,77. A uniform Li3PO4 SEI layer can be formed in situ on 
the lithium metal surface via the reaction of polyphosphoric acid 
with lithium metal and its native film (Fig. 3d)77. The artificial SEI 
can restrain the unfavourable reaction between the lithium metal 
and the electrolyte, and suppress the growth of lithium dendrites. 
Meanwhile, a stable and uniform SEI layer can also be formed on 
the lithium metal surface by using various electrolyte additives 
(Fig. 3e)78. When both lithium polysulfide and lithium nitrate were 
used as additives in ether-based electrolyte, the electrolyte decom-
position was minimized and the growth of lithium dendrites was 
significantly suppressed.
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Electron/ion transport
Fast charge carrier transport inside individual particles and at the 
whole electrode is crucial to battery performance. Highly conduc-
tive pathways for electrons and short transport distances for ions 
can help to achieve good rate capability and to activate insulating 
electrode materials. Compared with micrometre-scale materials, 
nanomaterials possess much smaller dimensions. For individual 
particles, lithium-ion insertion/extraction and electron transport 
within the nanoparticles are significantly enhanced due to the short 
transport distances compared with those of microparticles5. Coating 
active particles with a conductive layer and embedding active par-
ticles in a conductive matrix are general routes to improve the elec-
tron conductivity for individual particles. For example, core–shell 
Si–C nanofibres were developed and showed excellent rate capabil-
ity79. Within the structure, the well-defined one-dimensional (1D) 
electronic pathways facilitate efficient electronic conduction, while 
the small diameter of the electrospun fibres enables short transport 
distances for lithium-ion diffusion79. Another example of a nano-
structured alloy-type anode demonstrating fast charge carrier trans-
port is a Sn/C composite with uniformly dispersed Sn nanoparticles 
(10 nm) in a spherical carbon matrix. It provided ~600 mAh g−1 even 
at a high rate of 20 C due to the continuous transport path for lith-
ium ions and electrons inside the Sn/C composite spheres80. Besides 

amorphous carbon materials, other conductive materials were also 
used to enable fast charge carrier transport for battery materials. 
High rate capability and high areal capacity were realized for a Li2S 
cathode encapsulated with a shell of conductive metal sulfides65. 
Excellent rate capability was also achieved for graphene-based 
nanocomposites (for example, a P/graphene composite anode)13. 

Besides the rapid electron and ion transport at the particle level, it is 
very important to realize rapid transport at the electrode level, which 
is crucial for the high mass loading of practical batteries. A few strate-
gies have been developed to achieve fast electron/ion transport inside 
an electrode. First, a general strategy is to construct nanostructured 
active materials on metal current collectors, such as self-supported 
nanowire arrays8,81, interconnected hollow nanospheres82 and inverse 
opal nanostructures83. Second, much effort has been devoted towards 
deposition of active materials on nanoarchitectured metal current 
collectors (for example, Cu nanopillar20 and nanocable arrays84 on 
Cu foils). Additionally, the strategy of depositing active materials on 
3D conductive networks to make free-standing electrodes, such as 
carbon nanotube sponge-based 3D electrodes85 and graphene foam-
based 3D electrodes86, has been successfully used for various electrode 
materials to achieve high rate capabilities.

Configuring electrodes with the direct growth of self-supported 
active materials on metal current collectors has been confirmed as an 
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Figure 2 | SEI formation on a silicon surface and various encapsulated nanostructures for stabilizing the SEI. a,b, Schematic of a varying and unstable SEI 
layer built outside a solid silicon nanowire (a) and nanotube (b). c, Schematic of a thin and stable SEI built on a hollow silicon nanotube with a mechanical 
constraining layer. d–g, SEM/TEM images of encapsulated nanostructures with an electrolyte-blocking layer and a pre-defined void space: encapsulating 
Si nanoparticles in hollow carbon nanotubes (d), Sn–C (e) and FeOx–C yolk–shell nanoparticles (f), and Al–TiO2 yolk–shell nanoparticles (g). Figures 
reproduced from: a–c, ref. 68, NPG; d, ref. 71, ACS; e, ref. 72, Wiley; f, ref. 73, Wiley; g, ref. 14, NPG.
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effective route to achieve fast electron/ion transport. Typical exam-
ples are the construction of alloy-type Si and Ge nanowires on stain-
less steel current collectors (Fig. 4a)8,87 and conversion-type Co3O4 
nanowires on a Ti foil81. The Si nanowires are electrically connected 
to the metal current collector, enabling robust electrical contact dur-
ing the charge and discharge cycling. The continuous 1D nanowire 
structure allows for fast electron transport, while the small diameter 
of these nanowires enables fast ion diffusion rates. Thus, high charge 
transport rates can be achieved at the electrode level. Moreover, the 
geometry of nanowire arrays on a current collector also has the ben-
efit of alleviating cracking and fracture issues that afflict films and 
electrodes composed of bulk particles. Other nanoarchitectures on 
metal current collectors, such as Si anodes with interconnected hol-
low nanospheres82 (Fig. 4b) and TiO2–sulfur cathodes with inverse 
opal structures83, have also achieved fast charge transport. The 3D 
hollow nanospheres and inverse opal nanostructures increase the 
accessible surface area to the electrolyte, allowing fast lithium-ion 
transport to and from the active material. Moreover, these 3D inter-
connected nanostructures are directly connected to the current col-
lectors, maintaining good electrical contact during the lithiation 
and delithiation processes. In addition, the discussed nanoarchitec-
tures on metal current collectors provide buffer space for any vol-
ume expansion during the lithiation process and thus suppress the 
mechanical degradation of electrodes.

Direct manipulation and engineering of the nanoarchitectures 
of metal current collectors and the deposition of active nano
materials have also been demonstrated to realize 3D electrodes with 
high electron/ion transport rates. Among the literature, the self-
supported Fe3O4/Cu nanoarchitectured electrode is very typical20. 
Its fabrication involves the growth of 3D arrays of Cu nanopillars 
onto a Cu foil by electrodeposition, followed by the further electro-
deposition of polycrystalline Fe3O4 on these Cu nanopillars (Fig. 4c). 
Additionally, conductive nanostructured scaffolds (for example, 3D 
porous Cu layers88 and graphene frameworks89) on Cu foils can ren-
der low local current density to suppress the growth of lithium den-
drites due to the porous skeleton and high electroactive surface area 

with fast electron/ion transport rates, enabling a high-performance 
lithium metal anode (Fig. 4d,e).

Besides the various strategies for constructing nanoarchitec-
tures on metal current collectors, the preparation of free-standing 
conductive 3D networks in lieu of using metal current collectors 
provides another route to achieve fast charge transport at the elec-
trode level. In our previous work, a Si–C nanotube coaxial sponge 
was successfully developed as a binder-free anode for lithium-ion 
batteries, where amorphous Si was deposited on an interconnected 
carbon nanotube network (sponge, Fig. 4f)85. The highly conductive 
carbon nanotube cores work as efficient electron transport pathways 
along the 1D direction, while the interconnected network renders 
the whole electrode highly electrically conductive. Such features 
afford very large areal mass loading (8 mg cm−2 Si) to the electrode 
and thus enable a high areal capacity.

Long-distance electrode atom/molecule movement
Traditional insertion-type electrode materials are stable hosts. 
They do not undergo bond breaking and exhibit only minor struc-
ture changes and small volume expansion (<10%) on lithium 
insertion/extraction. High-capacity electrode materials, in contrast, 
undergo significant bond breaking and complete crystallographic 
structure changes followed by structural degradation. Therefore, 
their use in lithium-based rechargeable batteries has traditionally 
been regarded as impossible. These high-capacity electrode materi-
als face serious challenges of active atom/molecule diffusion dur-
ing the repeated charge and discharge processes due to the large 
structure change or even phase change between solid, liquid and 
gas, causing critical issues related to battery performances. In gen-
eral, there are three kinds of electrode atom/molecule movement: 
(1) phase change and the related atom/molecule diffusion, such as 
solid–liquid phase transformation for the sulfur cathode in Li–S 
batteries (Fig.  5a) and gas–solid–liquid phase transformation for 
the O2 cathode in Li–O2 batteries; (2) the growth of lithium den-
drites during electrochemical Li plating in secondary Li metal 
batteries (Fig. 5b); and (3) large volumetric expansion due to the 
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intake of large amounts of lithium for high-capacity alloy-type and 
conversion-type electrodes (Fig. 5c).

The sulfur cathode is a typical example of an electrode system 
that faces a serious challenge with molecule movement due to the 
formation of intermediate polysulfides during the discharge process. 
The dissolution of polysulfide intermediates into the electrolyte is 
one of the key obstacles deterring a long cycle life for Li–S batter-
ies23. Upon the discharge process, solid sulfur cathodes go through 
a series of soluble polysulfide intermediates (Li2Sn, 4 ≤ n ≤ 8) and 
become insoluble Li2S2 and Li2S that precipitate out at the cathode 
(Fig. 5a). The as-formed Li2S2 and Li2S are converted back to sulfur 
via soluble polysulfide intermediates during the charge process90. 
The dissolution and precipitation of the active materials during the 
charge and discharge processes alters the morphology, reduces the 
surface conductivity of the electrode, induces strain inside the elec-
trode and hence degrades the cycling stability of Li–S batteries91. 
Moreover, the dissolution of these intermediates into the electrolyte 
leads to the shuttle effect, which decreases the active mass utilization 
and leads to low Coulombic efficiency7.

To date, extensive research has been conducted with a focus on 
engineering the material and/or electrode structure to effectively 
trap soluble polysulfides through physical and chemical means. 

Nanostructures provide new merits and opportunities to design 
better electrodes and are shown to be one of the most effective ways 
to understand and address the polysulfide diffusion problem in Li–S 
batteries. As discussed in ‘Cracking and fracture of particles and 
electrodes’, the physical encapsulation of sulfur within the channels 
of mesoporous carbon and construction of yolk–shell nanostruc-
tures with designed void space are successful methods to solve the 
volume expansion challenge of sulfur electrodes. During the dis-
charge process, sulfur reacts with lithium to form Li2S via soluble 
polysulfide intermediates accompanied by volume expansion. The 
soluble polysulfide intermediates cannot leak out easily during the 
discharge process due to the physical barrier (Fig. 5d).

Apart from the physical trapping of dissolved polysulfides, the 
chemical confinement of these intermediate polysulfides can play 
an important role in suppressing their diffusion away from the 
cathode. Understanding the interfacial properties of sulfur, lithium 
sulfide and intermediate polysulfides between the trapping/pro-
tecting/adsorption materials is crucial for further improvement 
of battery performance. In our studies, the preferred deposition 
of polysulfides on the tin-doped indium oxide (ITO) surface dur-
ing charge/discharge cycling was confirmed by a model system of 
a polysulfide–ITO micropatterned glassy carbon cathode. Based 
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on this understanding, an ITO pattern was introduced onto the 
sulfur/carbon nanofibre electrode, and much improved electro-
chemical performance was achieved via such spatially controlled 
polysulfide deposition (Fig. 5e)92. Moreover, the structure changes 
of sulfur encapsulated by hollow carbon nanofibres before and 
after the discharge operation were investigated by TEM. After dis-
charge, the lithiated sulfide product detached from the carbon sur-
face due to the low bonding energy between them, leading to the 
loss of electrical contact and the degradation of electrochemical 
performance. Such a problem was solved by modifying the inter-
face between the carbon and sulfur with an amphiphilic polymer 
(polyvinylpyrrolidone, PVP), which bonds strongly with both the 
carbon surface and LixS clusters (Fig. 5f)61. Besides ITO and PVP, 
many other conductive polymers60, oxides93 and sulfides65 show 
chemical bonding with the polysulfide species, which is favourable 
for restraining their diffusion. Among three well-known conductive 
polymers, poly(3,4-ethylenedioxythiophene) (PEDOT), polyaniline 
and polypyrrole, PEDOT exhibited the best confinement effect on 
polysulfide dissolution60. Some examples, demonstrating the com-
bined effects of physical and chemical confinement of intermedi-
ate polysulfides, include a layer of polymer coating on the carbon/
sulfur composites and additional polymer modification on the 
carbon surface23,61.

Plating and stripping of lithium metal in rechargeable lithium 
batteries is another important example with regards to electrode 
atom/molecule movement. Owing to the ‘hostless’ nature of the lith-
ium metal anode and lack of spatial control of lithium deposition, 

the morphology and structure of electrodes may change continu-
ously during the plating/stripping cycling. Lithium dendrites may 
grow out of the anode surface upon cycling, which can penetrate the 
separator and short the battery. If control over the spatial distribu-
tion of the redeposited lithium is realized via rational nanostructure 
design, the main challenges of lithium metal anodes — such as the 
unstable SEI, low Coulombic efficiency and safety issues — can be 
solved. As mentioned in ‘Solid–electrolyte interphase’, a stable arti-
ficial interface between lithium metal and the electrolyte, consist-
ing of a monolayer of interconnected hollow carbon nanospheres, 
was specially designed to achieve a stable SEI and solve the problem 
of dangerous lithium dendrites (Fig. 3b,c)15. Additionally, the use of 
highly concentrated electrolytes based on ether solvents and lithium 
bis(fluorosulfonyl)imide salt can enable a compact SEI layer and 
high-rate cycling of a lithium metal anode without dendrite growth78.

Besides the sulfur cathode and lithium metal anode, here we 
would like to emphasize that all the high-capacity electrode materials 
with large volume change suffer from the problem of atom/molecule 
diffusion or losses, as it was not specially mentioned in previous lit-
erature. Even with a host material, the large volume expansion and 
structural change of materials and/or electrodes can lead to the dif-
fusion of host atoms or molecules over long distances. Such changes 
can accumulate and compound on cycling, which may lead to the 
loss of electrical contact between materials and current collectors, or 
the detachment of materials from the electrode. The structure change 
and atom/molecule movement evolve gradually. For conversion 
oxides, a nanosized mixture of metal (M) and Li2O is obtained after 
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the initial charge process according to the conversion reaction equa-
tion (MxOy + 2yLi+ + 2ye → xM + yLi2O), and the overall morphol-
ogy of the initial particles after the initial cycle can be preserved17. 
However, significant morphology and structure changes may take 
place after many charge/discharge cycles. For example, marked dif-
ference in morphology and structure were observed for a MnO/gra-
phene electrode after 400 discharge/charge cycles94. Metal sulfides 
can transform into nanocomposites of metal and lithium sulfide via 
a chemical or electrochemical conversion reaction with lithium. The 
structural and morphological transformations of sulfide nanocrystals 
(Cu2S, Co3S4 and FeS2) were investigated by in situ high-resolution 
TEM as they reacted with lithium43. The studies revealed that the 
structure and composition influence the transformation pathway. 
Similar morphology and structure changes are present in alloy-type 
materials as well. The surface of Si nanowires and nanotubes becomes 
very rough and highly porous after 200 cycles, indicating significant 

material displacement on cycling68. The volume-expansion-induced 
structure changes and the diffusion of atoms/molecules may change 
the properties of the electrodes, such as conductivity and porosity, 
which makes it difficult to achieve a long cycle life. Successful exam-
ples, which suppress the material solid-state diffusion and realize a 
long lifespan, include those well-encapsulated nanostructures with 
void space (for example, Si–SiOx double-walled silicon nanotubes for 
6,000 cycles68, Si–carbon yolk–shell nanoparticles for 1,000 cycles69 
and Al–TiO2 yolk–shell nanoparticles for 500 cycles14) and crum-
pled graphene encapsulated particles with self-adaptive strain-
relaxation mechanisms (for example, Si/graphene nanoparticles for 
200 cycles95).

Issues for nanomaterials
The use of nanomaterials may cause many new challenges due to 
their reduced particle size, such as high surface area, low packing 
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density and high cost. A rational nanomaterials design must com-
pensate these associated disadvantages while addressing the issues 
that micrometre-sized materials have. The formation of the SEI 
layer on the electrode surface consumes the electrolyte and the 
lithium from the cathode during battery cycling. Compared with 
electrodes composed of micrometre-scale materials, the SEI forma-
tion on the surface of nanostructured electrodes consumes more 
electrolyte and lithium due to the much higher electrode/electrolyte 
interfacial area, leading to low initial Coulombic efficiency and sig-
nificantly reduced overall capacity and energy density of batteries. 
A stable SEI is critical for the long cycle life of electrodes, while the 
control of the specific SEI (electrode/electrolyte surface area) plays 
an important role in achieving high initial Coulombic efficiency.

As discussed above, the issues of large volume expansion and 
instability of SEI for high-capacity electrode materials are success-
fully solved by engineering nanostructures with an electrolyte-
blocking layer and an internal void space. However, the problem of 
low initial Coulombic efficiency emerges for these nanostructures 
owing to their high surface area. High electrode/electrolyte sur-
face area raises the risk of serious side reactions involving electro-
lyte decomposition and lithium consumption. High surface area 
is an inherent feature of nanomaterials, but the electrode/electro-
lyte surface area can be tuned by the engineering of their second-
ary structures. Figure 6a shows the calculation of specific SEI area 
for a secondary micrometre-scale particle consisting of assembled 
nanoparticles. With an electrolyte-blocking layer outside the assem-
bled secondary particles, the specific SEI area can be reduced sig-
nificantly70. Thus, compared with primary nanoparticles, the use 
of micrometre-scale secondary particles can help to reduce del-
eterious side reactions between the electrolyte and electrode, and 
achieve higher initial Coulombic efficiency. Of notable success are 
Si anode materials with a pomegranate-inspired nanoscale design 
with the following features (Fig. 6b): micrometre-sized Si second-
ary particles composed of primary Si nanoparticles; each primary Si 
nanoparticle has a carbon shell with void space; and each secondary 
particle has an outer carbon layer as an electrolyte-blocking layer70. 
Besides the reduced specific SEI, fast electron transport pathways 
are provided by the interconnected carbon framework. The volume 
expansion of Si on lithiation can be mitigated by the void space. 
The space-efficient packing of these primary particles also enables 
high tap density and volumetric mass loading, which are important 
parameters for electrode evaluations.

Decreasing the particle size to the nanometre scale creates a lot 
of interparticle space, which usually leads to a low tap density for 
materials and consequently a low volumetric capacity for an elec-
trode. Nanoparticles tend to bridge/aggregate strongly together 
into secondary microparticles due to their significantly high surface 
energy. Besides the interparticle space between secondary micro-
particles, there is large interparticle space within the aggregation of 
nanoparticles, leading to higher overall porosity compared with that 
of the materials with interparticle space between only individual 
microparticles. Meanwhile, the reduced particle size also induces 
large interparticle resistance (relative to the same mass loading), 
which creates barriers for electron transport in the electrode. Thus, 
it is challenging to achieve electrodes with a high mass loading 
and areal capacity using nanostructured materials. The tap den-
sity of micrometre-sized particles is generally higher than that of 
free nanoparticles due to the reduced interparticle space. As such, 
the tap density of nanomaterials can be improved significantly by 
engineering a micrometre-scale secondary particle/cluster densely 
assembled by small primary nanoparticles (Fig. 6c)70. Two examples 
among the most successful designs for intercalation-type cathode 
materials are micrometre-sized LiNi1−xMxO2 secondary particles 
composed of aligned needle-like nanosized primary particles96 and 
micrometre-scale LiFePO4 secondary particles containing nanoscale 
carbon-coated primary particles97. However, in contrast to these 

insertion-type cathode materials, engineering the void space for 
each primary particle is crucial for achieving the long cycle life 
of high-capacity electrode materials owing to their large volume 
expansion on lithiation. Based on the aforementioned principles for 
the secondary cluster design, recently we have shown that high tap 
density can be achieved for powders composed of micrometre-sized 
Si secondary particles with a pomegranate-like nanostructure and 
micrometre-sized Si secondary clusters prepared via a mechanical 
approach (Fig. 6d)70,98. The tap density of the Si secondary clusters 
fabricated by the mechanical approach is 0.91 g cm−3, six times that 
of the primary nanoparticles (0.15  g  cm−3). Important aspects to 
note here are that carbon nanotubes are integrated into the Si clus-
ters, which helps to improve intercluster electrical conductivity in 
the electrode, while within a secondary cluster, the interconnected 
carbon network provides the pathways for fast electron transport. 
Thus, owing to the good conductivity, high areal mass loading is 
achieved for the as-obtained electrodes. As expected, stable cycling 
with a high areal capacity of ~3.5 mAh cm−2 at a high areal mass 
loading (>2 mg cm−2) is achieved for the as-prepared Si clusters98. 
Therefore, as a result of the space-efficient packing of nanometre-
sized primary nanoparticles inside the micrometre-scale second-
ary particles and the interconnected carbon framework inside each 
secondary particle, high tap density and mass loading were both 
achieved. The present strategy of engineering micrometre-scale sec-
ondary particles and an interconnected conductive network is both 
facile and effective for solving the crucial issue of low tap density and 
mass loading for nanomaterials, and it can be extended to prepare 
various high-capacity electrode materials.

Although fundamental materials guidelines for designing nano-
structrures to improve electrochemical performances have been 
established, the commercial applications of nanomaterials are still 
limited by their high cost due to complex synthesis procedures or 
expensive raw materials. It is crucial to explore facile routes for 
large-scale synthesis of nanomaterials with low cost. For example, 
the preparation of Si nanomaterials usually involves expensive pro-
cessing using high-temperature treatment, high-cost precursors, 
or equipment set-ups. Recently, progress in low-cost synthesis of 
porous Si nanomaterials was achieved by means of a magnesio-
thermic reduction route using highly abundant and low-cost SiO2 
sources, such as silica diatom frustules99 and rice husks100. However, 
more developments are needed to reduce the cost of nanomaterials 
in general.

Outlook
In the past decade, various nanostructures have been fabricated to 
address the significant material and electrode challenges that exist 
for new battery chemistries. This Review highlights the materials 
principles used to design these nanostructured materials and gives a 
broad picture of the developments of nanostructured materials and 
electrodes that facilitate the advancement of the battery and nano-
technology field. Four major challenges at the material and elec-
trode levels were systematically reviewed, including large volume 
expansion and fracture, unstable SEI, slow electron/ion transport 
rate and movements of electrode atoms/molecules. The principles 
for nanomaterials design in addressing these challenges were dis-
cussed in detail and typical examples were provided to illustrate 
these principles. Meanwhile, new challenges associated with nano-
materials were analysed, including increased specific SEI, reduced 
tap density and high cost. The understanding and solutions to these 
new challenges were also discussed.

Future works on understanding the fundamental electrode 
and materials chemistry taking place in these electrode systems 
are needed. Detailed information about the electrochemical 
mechanisms involved in these battery systems is still absent due 
to their complexity. Meanwhile, investigation of the ion and elec-
tron kinetic transport at the electrode/electrolyte interface is also 
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important, as many electrochemical reactions start at this inter-
face. For example, during the charge and discharge processes, sul-
fur cathodes undergo numerous phase changes and have various 
intermediate products. Meanwhile, their electrochemical behav-
iour in various electrolyte systems is different, and reaction mech-
anisms related to their electrochemical performance are still not 
very clear. Further understanding of the Li–S battery chemistry 
would help to realize an optimized nanostructure design and lead 
to better electrochemical performance.

New electrode materials involving different battery chemistries 
and lithium storage mechanisms can offer great improvements in 
energy density. However, most recent works still focus on improving 
active material use to achieve high specific capacities with a lower 
areal capacity than that of existing commercial electrodes. In the 
future, attention should be paid to improving the mass loading of 
the electrodes while preserving high active material use. Meanwhile, 
more intensive research should be devoted to improving the tap 
density of electrodes composed of high-capacity electrode materi-
als, to improve the volumetric energy density. Approaches that can 
use close to the high theoretical capacity of active materials, while 
maintaining high areal mass loading and high tap density of elec-
trodes, are desirable to advance these new rechargeable battery sys-
tems far beyond the limit of present lithium-ion batteries.

In addition, the cost of nanomaterial fabrication is normally 
high. So far, little emphasis has been placed on the low-cost syn-
thesis of high-performance nanostructured electrode materials. 
For widespread commercial applications, it is of key importance 
to explore environmentally friendly and facile routes for low-cost 
large-scale nanomaterials synthesis. Despite the great advances of 
nanostructure designs to address some major challenges for battery 
performance, other challenges may still remain beyond the nano-
structured electrodes in these new battery systems. Exploration 
of other interrelated strategies, such as electrolytes, electrolyte 
additives and new binders, will also help to improve the electro
chemical performance of lithium-based rechargeable batteries 
using nanostructured electrode materials.
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