Architecture Considerations for Digital Long-Term Preservation at the German National Library (DNB)
Overview

- LTP challenges and cooperated efforts
- Current state at the DNB
- Current research projects
- Future orientation
Challenges for memory institutions

- High volume of digital data
 - Rapid increase of digital object production rate (born-digital object)
 - Automated scan process for books (mass digitisation)

- Ensure discovery and long-term access

- Technology dependency
 - Mainly based on rigid hardware/software solutions

- Authenticity and integrity of digital objects
LTP services

- Joint effort of national libraries in the EU
 - Objective: identification and specification of common LTP services for digital libraries

- Main focus on *ingest, retention* and *access*

- Introduce flexibility through a workflow-engine to orchestrate services
 - Enabling the implementation of institution specific business processes
nestor

- Competence network for digital preservation
- DNB is member of standardisation committees
 - Foster the development of IT architectures
 - Influenced by DNB strategies for LTP
kopal

- First *high impact* LTP research project at the DNB
 - Digital archive implemented according to international standards for LTP
 - Evaluating the integration of a digital archive into existing infrastructure

- Ended in 2007

- End result: working prototype
kopal (cont.)

Select

Collect

XML

Data

koLibRI

Ingest component

Metadata extraction

Metadata Generation (JHOVE)

Creating UOF (SIP incl. METS)

Preservation

Ingest

Data management

Access

Archival storage

Admin

UOF (SIP)

UOF (DIP)

DIAS

Dissemination

XML

Data

koLibRI

Retrieval component

Cache
DP4Lib

- Reuse and extend kopal functionality
 - Facilitate component integration into new environments (web services)
 - Maintain field-tested preservation tools (koLibRI)

- Reduce dependency between components
 - Redundant storage at different locations
 - Increase technology independence

- Establish LTP services for productive use
DP4Lib (cont.)

Service 1

Service 2

... Service n

OLAP

DMS (policies, workflows)

Metadata management

Audit-Trail

... (SAP) ...

DIAS data storage

Archive
LuKII

- Reuse of established components
 - Cost-effective LOCKSS network
 - Integration of LOCKSS and koLibRI

- Construct and establish a LOCKSS based network in Germany

- Distributed storage, content spread over several nodes
 - Provide safety by repairing lost or corrupted data in a distributed network storage
LuKII (cont.)
KEEP

- Portability of emulation environment
 - Separation of concerns
 - Capturing the bit-stream content of disk media
 - Rendering captured bit-stream data
 - Extendable frameworks to
 - Capture, store and access digital object

- Created disk images enhanced with metadata

- Layered virtual machine minimises adaptation to new systems
KEEP (cont.)
SHAMAN

- Layered framework
 - Technology independence
 - Infrastructure independence

- Distributed system
 - Data grid, managing high data volume
 - Deploying LTP services (using SOA)

- Preservation policies
 - Define strategies, satisfying LTP objectives
 - Origin of workflow specification
SHAMAN (cont.)

[Image of SHAMAN Digital Preservation Environment Framework]

Access Layer

Digital Library, Archival and Preservation Layer

Data Grid Layer

SHAMAN Institutions

Design and Engineering

e-Science

Multivalent Document and Object Transformation and Management

Web Services

Context Management

Indexing and Retrieval

Harmonisation

Knowledge Engineering

Document Analysis

Ingest Procedures

Collection Management

Information Visualization

Trust

SRB iRODS D-Grid P2P .../...
DNB strategies and activities

- **Short term objectives**
 - Build up LTP services to archive digital publications
 - Loosely coupled services enable the assignment of tasks to costumers
 - Integration of monitoring and reporting services
 - Stronger integration and scaling of LTP processes

- **Mid and long term objectives**
 - Ensure access
 - Shared and networked archiving infrastructure
 - Choosing appropriate architecture to facilitate audit and certification efforts
 - Integration of emulators and transfer tools into existing workflows
 - Preservation risk management
Summary

- Avoid monolithic solutions

- Common trend in research project
 - Distributed architecture
 - Development and providing LTP services
 - Minimise or eliminate technology dependencies

- Current approaches
 - Distributed systems
 - Service Oriented Architecture
 - Layered design, abstraction, virtual machines
Questions?

Contact: Attila Zabos
German National Library
(a.zabos@dnb.de)