Information model
and
technical building blocks

Sun-PASIG San Francisco
Agenda

- Digital archiving at BnF
- Information model
 - structure of a package
 - reference packages
- Building blocks
- Conclusion
Digital archiving at BnF

Production applications
- preservation digitization
- digital assets
- web crawler

Dissemination applications
- Gallica
- images
- wayback

Ingest
- Metadata
- Administration
- Storage

SIP
- AIP
- DIP

PRESERVATION

STORAGE INFRASTRUCTURE
Decomposition in channels

- Build on the relation between the digital objects and the archival system, independently of any given organization:
 - Preservation digitization
 - Reproduction digitization
 - Automatic legal deposit (surface Web)
 - Negotiated legal deposit (dark Web, regional press)
 - Administrative production
 - Deposit / Third party archiving
 - Acquisition / Donation
Agenda

- Digital archiving at BnF
- Information model
 - structure of a package
 - reference packages
- Building blocks
- Conclusion
Information model

- Packaging made through METS:
 - Descriptive metadata: qualified Dublin Core
 - Preservation metadata: PREMIS
 - Rights information: ODRL
 - Technical metadata: dependant on the channel
 - MIX, textMD, ...

- 4 levels of granularity:
 - set: intellectual grouping (collection, periodical, ...)
 - group: digital object (monograph, series of images, ...)
 - object: digital element (a page, an image, a track, ...)
 - file: data-object (digital file or bit-stream)
Archival Information Package

- **Package Description**
- **Archival Information Package**
- **Packaging Information**
- **Content Information**
- **Preservation Description Information**
- **Data Object**
- **Representation Information**
- **Reference Information**
- **Fixity Information**
- **Physical Object**
- **Digital Object**
- **Structure Information**
- **Semantic Information**
- **Provenance Information**
- **Context Information**

Interactions:
- **derived from**
- **described by**
- **identifies**
- **interpreted using**
- **adds meaning**
Reference packages

- **Strongly linked metadata**
 - directly attached to the files that constitute the package
 - describes the formats, the audit trail, fixity and identity information, ...

- **Weakly linked metadata**
 - reference information that can be shared by multiple packages
 - specifically
 - channel description (SLA)
 - information representation (formats)
 - process description (tools)
 - transformation description
 - migration plan
Sample strongly/weakly linked

```
<dmdSec ID="DMD.0001">
  <mdRef LOCTYPE="ARK"
xlink:type="simple"
xlink:href="ark:/12148/bc343631419"
MDTYPE="DC"
MIMETYPE="text/xml"/>
</dmdSec>

<dmdSec ID="DMD.0002">
  <mdWrap MIMETYPE="text/xml" MDTYPE="DC">
    <xmlData>
      <dc:dc>
        <dc:title>La Croix</dc:title>
        <dc:date>1883/12/12</dc:date>
        <dc:type>PERIODIQUE</dc:type>
      </dc:dc>
    </xmlData>
  </mdWrap>
</dmdSec>
```
Channel description

- 4 objects:
 - general description
 - ingest service level agreement
 - SIP structure, categories of formats
 - volume, availability schedule
 - preservation service level agreement
 - length of preservation, level of preservation, number of copies
 - access service level agreement
 - DIP structure
 - volume, availability schedule

- each time: two representations
 - literal description: text of the Service Level Agreement
 - formal description: XML file that gives the exact parameters
Channel description (sample)

```xml
<sla:serviceLevelAgreement>
  <sla:header>
    <sla:channelIdentifier>FIL_NUM_CONS_A</sla:channelIdentifier>
    <sla:type>info:bnf/spar/context/channel#ingest</sla:type>
  </sla:header>
  <sla:packageAttribute>
    <sla:minSize unit="kilobyte">42</sla:minSize>
    <sla:maxSize unit="gigabyte">5</sla:maxSize>
    <sla:maxNumberOfFiles>32</sla:maxNumberOfFiles>
  </sla:packageAttribute>
  <sla:packageContent>
    <sla:formatCategory type="info:bnf/spar/representation#storedFormat" order="deny,allow">
      <sla:formatList action="deny"><format>*</format></sla:formatList>
    </sla:formatCategory>
    <sla:formatCategory type="info:bnf/spar/representation#managedFormat" order="deny,allow">
      <sla:formatList action="allow">
        <format type="ark">ark:/12148/fTIFF_6_0w</format>
      </sla:formatList>
    </sla:formatCategory>
  </sla:packageContent>
</sla:serviceLevelAgreement>
```
Four categories of formats

<table>
<thead>
<tr>
<th>Code</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Stored</td>
<td>No technical information
Bit-stream preservation level</td>
</tr>
<tr>
<td>01</td>
<td>Identified</td>
<td>Format identified
No preservation plan</td>
</tr>
<tr>
<td>10</td>
<td>Known</td>
<td>Format identified, documented, with tools and under monitoring by BnF experts</td>
</tr>
<tr>
<td>11</td>
<td>Managed</td>
<td>Format identified, documented, with tools
BnF has commitment on this format</td>
</tr>
</tbody>
</table>
1 object with two representations

- literal description:
 - text of the standard (known format, eg TIFF v6) or
 - text of the specific use (managed format, eg BnF specific BW G4 TIFF)

- formal description:
 - specific XML file that gives the required information
 - identification properties
 - schema of characterization
 - characterization properties
 - reference tools and expected behavior

- to be replaced by the GDFR standard …
Format description (sample)

```xml
<format>
  <name>TIFF BnF Noir et blanc</name>
  <category>info:bnf/spar/representation#managedFormat</category>
  <identification>
    <property type="magicname"><value>TIFF</value></property>
    <property type="mimetype"><value>image/tiff</value></property>
  </identification>
  <characterization>
    <schema type="characterization">
      <name>MIX</name>
      <namespacePrefix>mix</namespacePrefix>
      <namespaceURI>http://www.loc.gov/mix/v10</namespaceURI>
    </schema>
    <properties>
      <property id="compressionScheme">
        <name>CompressionScheme</name><value>4</value>
        <xpath>//mix:Compression/mix:compressionScheme</xpath>
      </property>
      ...
    </properties>
    <referenceTools>
      <tool type="identification">
        <identity>ark:/12148/bfile1</identity>
        <outcome propertyRef="magicname" use="contains" />
      </tool>
    </referenceTools>
  </characterization>
</format>
```
1 object with two representations

- literal description:
 - text introducing the tool or process used

- formal description:
 - XML file that gives the required information
 - based on the Environment PREMIS tag
 - exact version of the tool
 - execution platform
Agenda

- Digital archiving at BnF
- Data model
 - structure of a package
 - reference packages
- Building blocks
- Conclusion
Modularity of SPAR
Main functionalities

- Import of SIPs
 - from all the channels
 - from reference description

- Management of updates
 - new files in a package
 - updates of certain files

- Controls
 - Integrity
 - File formats
 - METS (.xml)

- Generation of the unique identifier and making of the AIP

- Dialog with the others modules
 - Data management
 - Storage

Implementation

- Building blocks:
 - JHOVE
 - axis
 - NOID
 - Struts
 - schematron

- Specific developments:
 - METS manifest enrichment
 - Calls to DM and STO
 - Transaction (ACID) management

27/05/2008
Distributed Archiving & Preservation System (SPAR)
Main functionalities

- Storing an AIP
 - SLA search
 - Dialog with SAL
 - Store the AIP and send acknowledgment

- Audit of an AIP
 - Verification of the package itself
 - Integrity checks on the files

- Retrieval of an AIP
 - Dialog with Access module
 - Asynchronous retrieval
 - Provide a copy of the AIP

Implementation: Storage and Storage Abstraction Service (SAS)

- Building blocks:

- Specific developments:
 - Transaction (ACID) management

Storage module
Data management module

» Main functionalities

- Search on metadata
 - Simple and synchronous search
 - Deep search (any metadata)

- Metadata storing
 - Index update

- Retrieval of metadata
 - Dialog with Access module
 - Retrieval of the metadata

» Implementation

- Building blocks:
 - mulgara (RDF)
 - Powered by VIRTUOSO

- Specific developments:
 - Transaction (ACID) management
Rights management module

Main functionalities

- Harvest rights information from SOLON (BnF specific rights management system)
 - Rights metadata
 - Decision trees and agreements
 - Updates

- Generate a license
 - Retrieve MD for a DIP
 - Traverse the tree or apply the agreement
 - Generate license (ODRL)

Implementation

- Building blocks:
 - woodstox
 - Proai

- Specific developments:
 - Transaction (ACID) management
Main functionalities

- DIP export
 - Synchronous
 - Management of DIP cache
 - Asynchronous
 - Build the DIP with the assistance of the other modules and send it
- Search in the metadata
 - Result lists: persistent identifier of packages
- Harvest metadata
 - Retrieve the MD of a package

Implementation

- Building blocks:
 - woodstock
 - Struts²

- Specific developments:
 - Call of DM and storage modules
 - Transaction (ACID) management
Main functionalities

- Management and federation of identities
- Description of reference description
 - SLA and channels descriptions
 - Process descriptions
- Planning
 - Access plans
 - Storage audit plans
 - MD reconstruction plans
 - Migration plans
- Plan monitoring
- System monitoring
- Administrative data export
- Accounting data export

Implementation

- Building blocks:
 - Struts
 - Log4J
 - OpenLDAP
 - Quartz
- Specific developments:
 - Journal of actions
 - …
Main functionalities

- Description
 - Representation information
 - Transformation
 - Migration plans
- Harvest of representation information from a format registry
- Monitor a migration plan

Implementation

- Building blocks:
 - Struts²
 - Proal
 - OAIHarvester2
- Specific developments:
 - Journal of actions
 - ...
General overview of the building blocks
Conclusion

- Goal for the archived objects
 - definition of an open model
 - completeness of the description
 - self-supporting package

- Ways of dealing with the permanency
 - modularity
 - abstraction
 - use of well known formats and standards
 - use of Open Source technical building blocks
Thank you for your attention

Questions?

Thomas Ledoux
thomas.ledoux_AT_bnf.fr