

Topics

RPC vs. REST: What's the
difference and why does it

matter?

What makes an API “truly”
RESTful? (Constraints and

interface)

REST best practices
(common problems and

their solutions)

Planning and developing
an API (project life cycle)

Drupal services (Services
3, WSCCI)

Questions?

Protocol vs. Architecture

● Remote Procedure Call (RPC)
● Representational State Transfer (REST)

● XML
● JSON
● CSV

Characteristics of a robust API

● Easy to evolve
● Interoperable
● Simple
● Discoverable

Affordance: The design itself communicates
how it is meant to be used

Project Workflow

● Gather requirements and use cases.
● Write a broad (one page) spec.
● Gather stakeholder feedback.
● Iteratively identify and apply constraints

– Write to the API early and often.

– Mock response sets.

– Prototype client code.

RPC

Example Soap call
POST /InStock HTTP/1.1

Host: www.example.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: 299

SOAPAction: "http://www.w3.org/2003/05/soap-envelope"

<?xml version="1.0"?>

 <soap:Envelope xmlns:soap="...">

 <soap:Header>

 </soap:Header>

 <soap:Body>

 <m:GetStockPrice xmlns:m="">

 <m:StockName>IBM</m:StockName>

 </m:GetStockPrice>

 </soap:Body>

 </soap:Envelope>

</xml>

RPC

● Implementation leak
– Implementation leaks into the interface

● Stateful
– Latency can lead to (partial) failure

● Concurrency (caching)
● Impedence mismatch

– IDLs add complexity

– Some data types are difficult or impossible to map

REST

REST: Constraints

● Client – server (separation of concerns)
● Stateless
● Cacheable
● Layered
● Uniform interface

REST: Interface Characteristics

● Identification of resources
● Manipulation through representations
● Self descriptive messages
● Hypermedia as the engine of application state

Rest: Client - Server

● Uniform interface
● Clear separation of concerns

<insert graphic here>

REST: Stateless

● Responses contain all the information
necessary for servicing the request

● State (e.g., session) held by client
● Server side state is addressable by resource

REST: Cacheable

● Clients can cache responses
● Resources must implicitly or explicitly indicate

whether and how they are cacheable

REST: Layered

● A client cannot tell whether it is directly
connected to the server or to an intermediary

● Allows the use of caching proxys, etc.

<insert graphic here>

REST: Uniform Interface

● Simplify and decouple architectural layers
● Separate concerns can evolve independently

of one another

REST: Nouns and Verbs

Collections

/v1/users POST Create a new user

/v1/users GET List users

/v1/users PUT Replace users with users

/v1/users DELETE Delete all users

Entities

/v1/users/123 POST Create or update Joe

/v1/users/123 GET Show Joe

/v1/users/123 PUT Create or update Joe

/v1/users/123 DELETE Delete Joe

REST: Nouns and Verbs (2)

Create PUT iff you are sending the full content of the specified resource (URL)

Create POST if you are sending a command to the server to create a
subordinate of the specified resource, using some server-side
algorithm.

Retrieve GET

Update PUT iff you are updating the full content of the specified resource.

Update POST if you are requesting the server to update one or more
subordinates of the specified resource.

Delete DELETE

REST: Resource addressing

● Refer variations to the query string
– http://www.example.com/v1/users?disabled=true

● Associations build on existing URLs
– http://www.example.com/v1/users/123/posts gets

the posts belonging to a user

– http://www.example.com/v1/posts/321/users gets
the users belonging to a post

REST: Resources addressing

● Allow partial responses
– LinkedIn: /people:(id,first-name,last-

name,industry)

– – Requires a documentation lookup (but you're
going to have a hard time googling “:(“

– Google: ?
fields=title,media:group(media:thumbnail)

– Facebook: /joe.smith/friends?
fields=id,name,picture

REST: Resource Addressing

● Require versioning by including it in the URL
– RESTafarian: send version back in the response

– /v1/users (version is the highest level of scope)

– Don't use minor version

● Account for incomplete HTTP implementations
– Some clients do not support PUT and DELETE

– Put the method in as an optional param: /dogs?
method=put&location=park

– Use “magic” methods?

REST: Responses
● Keep responses consistent, natural and pluggable

– Digg: Accept: application/json, ?type=json (type
overrides Accept)

● Using the HTTP Accept header is more truly restful but can
break mobile and flash applications

● Providing default and fallback behaviors requires additional
documentation

– Google: ?alt=json
● Results in a more verbose query string
● Makes format optional, which implies a default behavior that

needs to be documented

– Foursquare: venue.json
● Keeps the query string clean, natural, and semantic

REST: Responses
● All collections should include count and pagination
● Pagination should follow convention
● Facebook: page, rpp

– “rpp” means “Records per page”. This isn't obvious and
will result in a documentation lookup.

● LinkedIn: start, count
– Meaning of “start” and “count” is clear and the math is

straightforward.

● Twitter: offset, limit
– Offset and limit are familiar from popular RDBMs. This is

the clearest of the three implementations.

REST: Responses

● Attributes should be named according to the
convenions of the output format (e.g., lower
camel case for JSON)
– Twitter: “created_at”: “Thu Nov 03 05:19:38 +0000

2011”

– Bing: “DateTime”: “2011-10-29T09:35:00Z”

– Foursquare: “createdAt”: 1320296464

REST: Responses

● USE URLs or URL templates

{"photos"[

"http://example.com/images/1.jpg",

"http://example.com/images/1.jpg"]}

OR

{"photos":{

"ids":[1,2],

"uritpl":"http://.../images/{id}",

}}

REST: Errors
● Give verbose messages in the response payload with as many hints as

possible as to what might be going wrong
– Error messages are not the place to save bandwidth

– Informative messages save on documentation lookups

● Make rigorous use of HTTP response codes
– POST should respond with Location and “201 Created”

● Provide for the suppression of response codes and HTTP errors
– Support clients and apps (Flash) that don't handle response codes nicely

– Move response codes and messages into the response payload

– Make the suppression parameter impossible to miss

– Twitter: ?suppress_response_codes=true HTTP Code 200 {”error” : “Could
not authenticate you.” }

REST: Authentication

● Make authentication pluggable
● DO NOT invent your own authentication

scheme.
– OAuth

– HTTP Auth

– Key exchange

REST: Search

● Just use Solr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

