Abstracts of 30 Peer-Reviewed Published Journal Articles Supporting the Result That the Electric Grid can Stay Stable with Electricity Provided by 100% or Near-100% Renewable Energy

February 10, 2018
Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes

Mark Z. Jacobson a, Mark A. Delucchi b, Mary A. Cameron a, Brian V. Mathiesen c

Highlights

- Modeled supplying all-sector load with 100% wind-water-solar in 20 world regions.
- Low cost, zero-load-loss grid solutions were found in all regions for three scenarios.
- One scenario w/batteries + heat pumps but no added hydroturbines or thermal storage.
- WWS energy + health + climate cost 1/4th BAU's; WWS energy cost lower or same as BAU's.
- Wind turbines themselves reduced water vapor, reducing global warming rapidly 3%.

Abstract

Matching electricity, heat, and cold demand with supply at low cost is the greatest concern facing countries seeking to provide their all-purpose energy with 100% clean, renewable wind, water, and sunlight (WWS). Implementing WWS worldwide could eliminate 4–7 million annual air pollution deaths, first slow then reverse global warming, and provide energy sustainably. This study derives zero-load-loss technical solutions to matching demand with 100% WWS supply; heat, cold, and electricity storage; hydrogen production; assumed all-distance transmission; and demand response for 20 world regions encompassing 139 countries after they electrify or provide direct heat for all energy in 2050. Multiple solutions are found, including those with batteries and heat pumps but zero added hydropower turbines and zero thermal energy storage. Whereas WWS and Business-As-Usual (BAU) energy costs per unit energy are similar, WWS requires ~42.5% less energy in a base case and ~57.9% less in a heat-pump case so may reduce capital and consumer costs significantly. Further, WWS social (energy + health + climate) costs per unit energy are one-fourth BAU's. By reducing water vapor, the wind turbines proposed may rapidly offset ~3% global warming while also displacing fossil-fuel emissions. Thus, with careful planning, the world's energy
Energy transition roadmap towards 100% renewable energy and role of storage technologies for Pakistan by 2050

Ayesha Sadiqa a, b, Ashish Gulagi a, *, Christian Breyera

a Lappeenranta University of Technology, Skinnarilankatu 34, 53850, Lappeenranta, Finland
b University of the Punjab, Quied i Azam Campus, 54590, Lahore, Pakistan

Abstract

The main aim of this study is to present an energy transition roadmap for Pakistan in which the total energy demand by 2050 is met by electricity generated via renewable sources, in particular, solar photovoltaic. Efforts have been made to assess the energy and cost required for the transition towards a sustainable energy supply covering the demand for power, desalination and industrial gas sectors. Hourly resolved model was used and optimization was carried out for each time period (transition is modeled in 5-year steps) on the basis of assumed costs and technological status till 2050 for all energy technologies involved. Solar PV dominates the installed technologies and contributes 92.7% and 96.6% in power and integrated scenarios. Seawater desalination sector dominates the integrated scenario and clean water demand is found to be 2.8×10^{11} m3 by 2050. The levelised cost of electricity declines from 106.6 V/MWh in 2015 to 46.2 V/MWh in 2050 in power scenario. In country-wide scenario, gas storage rules from 2040 to 2050 in terms of total storage capacities while battery storage is prominent in terms of storage output. The results indicates that, 100% renewable system is cost competitive and least cost option for Pakistan’s future energy transition.

1. Introduction

Industrialization, intensive use of fossil fuels and nitrogenous fertilizers has pumped more greenhouse gas (GHG) into atmosphere than any natural processes could possibly have done. It is urgently crucial to reduce the carbon dioxide emissions by a significant amount [1]. The level has been estimated at 450 ppm, which would mean a global increase of 2°C Celsius in mean ground temperature [2].

Pakistan with more than 188 million inhabitants stands as the sixth most populous country in the world (2013). Traditionally, Pakistan was an agrarian economy, but over the time, industry and services sector have become main contributors to the GDP [3]. Presently energy production and consumption in Pakistan basically depend on conventional fuels. Pakistan's total installed capacity breakdown for the year 2014 has been shown in Fig. 1. Oil and gas contribute 63% (gas 33.0% and oil 30.0%) to the total energy supplies [3,4]. However, the increased dependence on natural gas cannot continue owing to the rapid depletion of country's gas reserves. It has been assessed that only 25–30% of the total assets will be left by the year 2027–28 [5]. The commercial sector is the biggest consumer of energy by consuming 37.6% of total energy, while the transport, residential and commercial sectors consumed 31.4%, 23.4% and 4.0% respectively in 2013 [6,7]. Pakistan’s electricity consumption has grown at a compound annual growth rate (CAGR) of 4.6% from 2000 to 2015 [8]. The growth in electricity consumption has been mainly attributed to the increase in population, economic growth, increase in income per capita and urbanisation [9,10]. Additionally, increase in rural electrification has contributed to the rise in electricity consumption [11]. However, in the future the same factors would contribute to the growth in electricity consumption as Pakistan would aim to transit itself in the league of developed countries [12]. Efforts have been made to explore and exploit the indigenous energy resources. Despite the struggles, the imports of energy are about 30% of the total consumption [13]. In the imports, the major part (i.e., ~88%) is of oil (i.e., crude oil and petroleum products), in which, a major share is used for power generation [14]. Any oil price change in the global market extremely influences Pakistan's energy generation rendering existing circular debt issue even more seriously [15].

Pakistan’s current installed electricity capacity is 25,000 MW and it is not sufficient to meet the existing electricity demand...
11th International Renewable Energy Storage Conference, IRES 2017, 14-16 March 2017, Düsseldorf, Germany

Impact of Battery and Water Storage on the Transition to an Integrated 100% Renewable Energy Power System for Saudi Arabia

Upeksha Caldera, Christian Breyer

*Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta, Finland

Abstract

Saudi Arabia can transition to a 100% renewable energy system by 2040 including the integration of the power, desalination and non-energetic industrial gas sectors. Single-axis tracking PV and battery storage contribute the highest to the final LCOE of the system. By 2050, single-axis tracking PV accounts for 77% of the total electricity generation. Battery storage accounts for 44% of the total electricity demand. Desalination plants provide additional flexibility to the energy system. Through sensitivity analysis, it is found that decreasing the capex of desalination plants results in a decrease in battery storage output and ultimately the total system capex throughout the transition. However, the required SWRO capex decrease seems to be higher than possible, leading to a lower cost flexibility provided by solar PV and battery storage than possible by very low cost water storage. This is because the relatively more expensive SWRO desalination prefers baseload operation for total energy system cost reasons.

Keywords: 100% renewable energy; Saudi Arabia; energy transition; battery; water storage; flexibility

1. Main text

Energy storage is seen as a cornerstone of the green energy revolution [1,2]. The intermittent nature of solar and wind resources can be overcome with different types of flexibility (supply side management, demand side management, grids, sector coupling, storage), thereof energy storage is regarded as one of the most important, enabling a faster transition towards a 100% renewable energy system [3,4,5]. With the increase in global installed capacities of renewable energy power plants, there is a surge in demand for energy storage capacities. The Bloomberg New Energy Finances (BNEF) New Energy Outlook 2016 report forecasts global storage capacities to increase to 25 GW by 2028 from the 1 GW installed today [6].

* Corresponding author. Tel.: +358-44-911-6034.
E-mail address: upeksha.caldera@lut.fi
Analysis of 100% renewable energy for Iran in 2030: integrating solar PV, wind energy and storage

Abstract

The devastating effects of fossil fuels on the environment, limited natural sources and increasing demand for energy across the world make renewable energy sources more important than in the past. The 2015 United Nations Climate Change Conference resulted in a global agreement on net zero CO₂ emissions shortly after the middle of the twenty-first century, which will lead to a collapse of fossil fuel demand. The focus of the study is to define a cost optimal 100% renewable energy system in Iran by 2030 using an hourly resolution model. The optimal sets of renewable energy technologies, least-cost energy supply, mix of capacities and operation modes were calculated and the role of storage technologies was examined. Two scenarios have been evaluated in this study: a country-wide scenario and an integrated scenario. In the country-wide scenario, renewable energy generation and energy storage technologies cover the country’s power sector electricity demand. In the integrated scenario, the renewable energy generated was able to fulfil both the electricity demand of the power sector and the substantial electricity demand for water desalination and synthesis of industrial gas. By adding sector integration, the total levelized cost of electricity decreased from 45.3 to 40.3 €/MWh. The levelized cost of electricity of 40.3 €/MWh in the integrated scenario is quite cost-effective and beneficial in comparison with other low-carbon but high-cost alternatives such as carbon capture and storage and nuclear energy. A 100% renewable energy system for Iran is found to be a real policy option.

Keywords
RESEARCH ARTICLE

Hydro, wind and solar power as a base for a 100% renewable energy supply for South and Central America

Larissa de Souza Noel Simas Barbosa¹,², Dmitrii Bogdanov³, Pasi Vainikka², Christian Breyer³*

¹ Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil, ² VTT Technical Research Centre of Finland Ltd., Lappeenranta, Finland, ³ Lappeenranta University of Technology, Lappeenranta, Finland

* Christian.Breyer@lut.fi

Abstract

Power systems for South and Central America based on 100% renewable energy (RE) in the year 2030 were calculated for the first time using an hourly resolved energy model. The region was subdivided into 15 sub-regions. Four different scenarios were considered: three according to different high voltage direct current (HVDC) transmission grid development levels (region, country, area-wide) and one integrated scenario that considers water desalination and industrial gas demand supplied by synthetic natural gas via power-to-gas (PtG). RE is not only able to cover 1813 TWh of estimated electricity demand of the area in 2030 but also able to generate the electricity needed to fulfil 3.9 billion m³ of water desalination and 640 TWh\textsubscript{LHV} of synthetic natural gas demand. Existing hydro dams can be used as virtual batteries for solar and wind electricity storage, diminishing the role of storage technologies. The results for total levelized cost of electricity (LCOE) are decreased from 62 €/MWh for a highly decentralized to 56 €/MWh for a highly centralized grid scenario (currency value of the year 2015). For the integrated scenario, the levelized cost of gas (LCOG) and the levelized cost of water (LCOW) are 95 €/MWh\textsubscript{LHV} and 0.91 €/m³, respectively. A reduction of 8% in total cost and 5% in electricity generation was achieved when integrating desalination and power-to-gas into the system.

Introduction

South and Central America are economically emerging regions that have had sustained economic growth and social development during the last decade. The regions’ 3% gross domestic product (GDP) growth rate [1] followed by an estimated fast-paced electricity demand growth over the coming decades [2] requires the development of the power sector in order to guarantee efficiency and security of supply.

The South and Central American electrical energy mix is the least carbon-intensive in the world due to the highest share of renewable energy, mainly based on hydropower installed capacities [3, 4]. However, the need to reduce the vulnerability of the electricity system to a
Article
A Cost Optimized Fully Sustainable Power System for Southeast Asia and the Pacific Rim

Ashish Gulagi *, Dmitrii Bogdanov and Christian Breyer
School of Energy Systems, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta, Finland; dmitrii.bogdanov@lut.fi (D.B.); christian.breyer@lut.fi (C.B.)
* Correspondence: ashish.gulagi@lut.fi; Tel.: +358-29-4462111
Academic Editor: Lieven Vandevelde
Received: 2 March 2017; Accepted: 19 April 2017; Published: 25 April 2017

Abstract: In this paper, a cost optimal 100% renewable energy based system is obtained for Southeast Asia and the Pacific Rim region for the year 2030 on an hourly resolution for the whole year. For the optimization, the region was divided into 15 sub-regions and three different scenarios were set up based on the level of high voltage direct current grid connections. The results obtained for a total system levelized cost of electricity showed a decrease from 66.7 €/MWh in a decentralized scenario to 63.5 €/MWh for a centralized grid connected scenario. An integrated scenario was simulated to show the benefit of integrating additional demand of industrial gas and desalinated water which provided the system the required flexibility and increased the efficiency of the usage of storage technologies. This was reflected in the decrease of system cost by 9.5% and the total electricity generation by 5.1%. According to the results, grid integration on a larger scale decreases the total system cost and levelized cost of electricity by reducing the need for storage technologies due to seasonal variations in weather and demand profiles. The intermittency of renewable technologies can be effectively stabilized to satisfy hourly demand at a low cost level. A 100% renewable energy based system could be a reality economically and technically in Southeast Asia and the Pacific Rim with the cost assumptions used in this research and it may be more cost competitive than the nuclear and fossil carbon capture and storage (CCS) alternatives.

Keywords: 100% renewable energy; Southeast Asia; Australia; energy system optimization; storage; grid integration; economics

1. Introduction

Electricity is a significant factor for rapid industrialization, urbanization and improving quality of life [1]. In the 21st century, demand for electricity is rising and will continue to do so due to industrialization in developing and emerging countries. Providing affordable, accessible, reliable, low to zero carbon electricity in developing and emerging countries will be the main aim of electricity generation in the next decades [2]. The region of Southeast Asia and the Pacific Rim (from hereafter Southeast Asia and the Pacific Rim will be called Southeast Asia) consists of developed countries such as Australia, New Zealand and Singapore, as well as fast developing and emerging economies such as Brunei, Cambodia, Indonesia, Laos, Malaysia, Myanmar, Papua New Guinea, the Philippines, Thailand, Timor-Leste and Vietnam [3]. The developing region was home to approximately 630 million people in the year 2015 [4] and the need for energy has been higher and growing rapidly due to increasing population and industrialization since the Asian Financial Crisis of 1997–1998 [5–7]. To sustain growth and development, demand for electricity will be 3–4 times the demand of the year 2013 by 2040 [5]. On the other hand, Australia and New Zealand, which are well developed economies, have higher per capita electricity use than the Southeast Asian member states. Australia has one of the highest emissions per capita in the developed world due to its use of coal in electricity generation [8]. To overcome
Electricity system based on 100% renewable energy for India and SAARC

Ashish Gulagi1*, Piyush Choudhary2, Dmitrii Bogdanov1, Christian Breyer1

1 Lappeenranta University of Technology, Lappeenranta, Finland, 2 Indian Institute of Technology (BHU), Varanasi, India

* Ashish.Gulagi@lut.fi

Abstract

The developing region of SAARC (South Asian Association for Regional Cooperation) is home to a large number of people living below the poverty line. In future, providing affordable, universally accessible, reliable, low to zero carbon electricity in this region will be the main aim. A cost optimal 100% renewable energy system is simulated for SAARC for the year 2030 on an hourly resolved basis. The region was divided into 16 sub-regions and three different scenarios were set up based on the level of high voltage direct current (HVDC) grid connections. The results obtained for a total system levelised cost of electricity (LCOE) showed a decrease from 71.6 €/MWh in a decentralized to 67.2 €/MWh for a centralized grid connected scenario. An additional scenario was simulated to show the benefits of integrating industrial gas production and seawater reverse osmosis desalination demand, and showed the system cost decreased by 5% and total electricity generation decreased by 1%. The results show that a 100% renewable energy system could be a reality in the SAARC region with the cost assumptions used in this research and it may be more cost competitive than nuclear and fossil carbon capture and storage (CCS) alternatives. One of the limitations of this study is the cost of land for installation of renewables which is not included in the LCOE calculations, but regarded as a minor contribution.

1. Introduction

Energy is critical, directly or indirectly, to the entire process of evolution, growth and survival of all living beings. In addition, it plays a vital role in the socio-economic development and human welfare of a country, and any uncertainty in its supply can threaten the functioning of an economy, particularly in developing countries [1]. The region of interest for this research is the developing region of South Asia, which is made up of the following countries: Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, and Sri Lanka. Collectively, they are also called SAARC (South Asian Association for Regional Cooperation). Providing affordable, universally accessible, reliable, low to zero carbon electricity in the developing countries will be the main aim of electricity generation in the next decades [2]. A report published by WWF lists ten recommendations for a 100% renewable energy (RE) future. The top two recommendations include, firstly, developing new and existing renewable energy sources to provide
Article

Can Australia Power the Energy-Hungry Asia with Renewable Energy?

Ashish Gulagi *, Dmitrii Bogdanov, Mahdi Fasihi and Christian Breyer

School of Energy Systems, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta, Finland; Dmitrii.Bogdanov@lut.fi (D.B.); Mahdi.Fasihi@lut.fi (M.F.); Christian.Breyer@lut.fi (C.B.)

* Correspondence: Ashish.Gulagi@lut.fi; Tel.: +358-46543-3739

Received: 20 December 2016; Accepted: 3 February 2017; Published: 8 February 2017

Abstract: The Paris Agreement points out that countries need to shift away from the existing fossil-fuel-based energy system to limit the average temperature rise to 1.5 or 2 °C. A cost-optimal 100% renewable energy based system is simulated for East Asia for the year 2030, covering demand by power, desalination, and industrial gas sectors on an hourly basis for an entire year. East Asia was divided into 20 sub-regions and four different scenarios were set up based on the level of high voltage grid connection, and additional demand sectors: power, desalination, industrial gas, and a renewable-energy-based synthetic natural gas (RE-SNG) trading between regions. The integrated RE-SNG scenario gives the lowest cost of electricity (€52/MWh) and the lowest total annual cost of the system. Results contradict the notion that long-distance power lines could be beneficial to utilize the abundant solar and wind resources in Australia for East Asia. However, Australia could become a liquefaction hub for exporting RE-SNG to Asia and a 100% renewable energy system could be a reality in East Asia with the cost assumptions used. This may also be more cost-competitive than nuclear and fossil fuel carbon capture and storage alternatives.

Keywords: East Asia; Australia; 100% renewable energy; power-to-gas; synthetic natural gas; grid integration; system optimization; economics

1. Introduction

In December 2015, the annual Conference of Parties (COP) 21 held in Paris, also known as the Paris Agreement [1] was an action-driven event with several concrete achievements [2]. The conference presented several political and business leaders with the opportunity to take the critical decisions needed to keep the average global temperature rise to no more than 1.5 or 2 °C, which finally requires net zero greenhouse gas emissions shortly after the middle of this century [1]. According to Schellnhuber et al. [3], the 2 °C limit is economically achievable due to rapidly falling costs of renewable energy, particularly solar PV, but is constrained by politics. It is observed that change is happening in energy supply for a lot of countries, but this needs to happen faster. The region of interest for this research is East Asia, which is comprised of Northeast Asia and Southeast Asia, the latter including Australia and New Zealand.

Energy is a key driver for social and economic development, particularly in developing countries where many people have no access to basic forms of energy. Many developing countries have programs to electrify the non-electrified population and at the same time maintain a high level of economic development. Thus, the demand for electricity is growing very fast, particularly in East Asia. According to Taggart [4], leading up to 2050, East Asia—comprised of China, Japan, the ASEAN states, and Australia—will become the world’s largest economy. To keep up with economic development and improve living conditions, there will be a rapid increase in energy needs, which will put our climate at risk, as the energy sector is one of the main sources of greenhouse gas emissions.
A Techno-Economic Study of an Entirely Renewable Energy-Based Power Supply for North America for 2030 Conditions

Arman Aghahosseini * 1, Dmitrii Bogdanov and Christian Breyer 1,2

Department of Electrical Engineering, School of Energy Systems, Lappeenranta University of Technology, Skinnarilankatu 34, Lappeenranta 53850, Finland; dmitrii.bogdanov@lut.fi (D.B.); christian.breyer@lut.fi (C.B.)

* Correspondence: arman.aghahosseini@lut.fi; Tel.: +358-41-3697925

Received: 29 June 2017; Accepted: 3 August 2017; Published: 9 August 2017

Abstract: In this study power generation and demand are matched through a least-cost mix of renewable energy (RE) resources and storage technologies for North America by 2030. The study is performed using an hourly resolved model based on a linear optimization algorithm. The geographical, technical and economic potentials of different forms of RE resources enable the option of building a super grid between different North American regions. North America (including the U.S., Canada and Mexico in this paper), is divided into 20 sub-regions based on their population, demand, area and electricity grid structure. Four scenarios have been evaluated: region-wide, country-wide, area-wide and an integrated scenario. The levelised cost of electricity is found to be quite attractive in such a system, with the range from 63 €/MWh el in a decentralized case and 42 €/MWh el in a more centralized and integrated scenario. Electrical grid interconnections significantly reduce the storage requirement and overall cost of the energy system. Among all RE resources, wind and solar PV are found to be the least-cost options and hence the main contributors to fossil fuel substitution. The results clearly show that a 100% RE-based system is feasible and a real policy option at a modest cost. However, such a tremendous transition will not be possible in a short time if policy-makers, energy investors and other relevant organizations do not support the proposed system.

Keywords: energy scenario; energy system modelling; solar PV; wind power; energy storage; North America; Canada; United States; Mexico

1. Introduction

Over the past few decades, global population has increased and living standards have advanced dramatically in many parts of the world. Consequently, energy demand is increasing, particularly in the Organization for Economic Cooperation and Development (OECD) countries due to their high economic development and advanced lifestyle. In fact, although the U.S. has less than 5% of the world’s population [1], it consumes as much as 25% of the global primary energy used [2]. Increasing world population will lead to several formidable challenges, such as climate change, a greater gap between energy demand and supply, and depletion of fossil fuel resources. Phasing out nuclear and fossil fuels is unlikely to be generally acceptable, but eliminating greenhouse gas emissions, known also as the “net zero emissions” target by mid-21st century agreed at Conference of the Parties (COP21) in Paris, clearly guides the pathway towards sustainability [3].

The technical, geographical and economic potentials of various forms of renewable energy (RE) resources in North America enable a lucrative “super grid” connection between the continent’s regional energy systems to obtain synergy effects and make a 100% RE supply possible [4–7]. North America’s wealth of RE resources are comprised of solar energy, wind energy, hydropower, geothermal, biomass and waste-to-energy resources. As the cost of RE technologies begins to compete with that of
100% renewable electricity in Australia

Andrew Blakers*, Bin Lu, Matthew Stocks

Australian National University, Australia

Abstract

An hourly energy balance analysis is presented of the Australian National Electricity Market in a 100% renewable energy scenario, in which wind and photovoltaics (PV) provides about 90% of the annual electricity demand and existing hydroelectricity and biomass provides the balance. Heroic assumptions about future technology development are avoided by only including technology that is being deployed in large quantities (> 10 Gigawatts per year), namely PV and wind.

Additional energy storage and stronger interconnection between regions was found to be necessary for stability. Pumped hydro energy storage (PHES) constitutes 97% of worldwide electricity storage, and is adopted in this work. Many sites for closed loop PHES storage have been found in Australia. Distribution of PV and wind over 10–100 million hectares, utilising high voltage transmission, accesses different weather systems and reduces storage requirements (and overall cost).

The additional cost of balancing renewable energy supply with demand on an hourly rather than annual basis is found to be modest: AU$25–30/MWh (US$19–23/MWh). Using 2016 prices prevailing in Australia, the levelised cost of renewable electricity (LCOE) with hourly balancing is estimated to be AU$93/MWh (US$70/MWh). LCOE is almost certain to decrease due to rapidly falling cost of wind and PV.

Introduction

In this paper, Australian dollars are used and an exchange rate of AU$1.00 = US$0.75 is assumed.

It is interesting to consider the practicalities of supplying all of Australia’s electricity from renewable energy. In this study a scenario is developed in which the National Electricity Market (NEM) is exclusively supplied by renewable energy. The focus is on hourly energy balance (meeting demand for every hour of the year).

Deployment of wind and solar photovoltaic (PV) electricity is overwhelmingly dominant in terms of new low emissions generation technology because they cost less than alternatives. PV and wind constitute half of the world’s new generation capacity installed in 2014–16 (Fig. 1). In recent years, these sources provided nearly all new generation capacity installed in Australia.

In Australia, wind and PV are unconstrained by land or resource availability or water requirements or material supply or security issues. Hydro power is unable to keep pace due to the constraint that there are a limited number of rivers to dam, and bioenergy is severely limited by sustainable biomass availability [4,5]. Heroic growth rates are required for other renewable or low emission technologies (nuclear, carbon capture & storage, concentrating solar thermal, ocean, geothermal) to span the 10–1000-fold difference in annual deployment (GW per year) to approach the scale of wind and PV – which are moving targets since both industries are themselves growing rapidly and both access large economies of scale.

Currently, two thirds of Australian electricity comes from coal fired power stations. However, by 2030, three quarters of these power stations will be more than 40 years old, and replacement of these generators by coal, gas or renewable energy will be a looming necessity. For instance, Wallerawang C 960 MW (NSW), Anglesea 150 MW (Victoria) and Northern 530 MW (South Australia) and Hazelwood 1640 MW (Victoria) were closed during 2013–17 [6,7]. It seems unlikely that more coal fired generators will be constructed in Australia due to public opposition and risk aversion of financiers. In contrast, there is strong financial support for wind and PV in Australia, as evidenced by the fact that about 9 GW of wind and PV will be constructed over the next 3 years [8] in an economy whose GDP is about one thirteenth that of the United States of America.

Australia has excellent wind and solar resources. If current deployment rates of PV and wind (approximately 1–2 GW per year of each) continue then about half of the electricity generated in
90–100% renewable electricity for the South West Interconnected System of Western Australia

Bin Lu*, Andrew Blakers, Matthew Stocks
Australian National University, Australia

Abstract

Rapidly increasing penetration of renewables, primarily wind and photovoltaics (PV), is causing a move away from fossil fuel in the Australian electric power industry. This study focuses on the South West Interconnected System in Western Australia. Several high (90% and 100%) renewables penetration scenarios have been modelled, comprising wind and PV supplemented with a small amount of biogas, and compared with a “like-for-like” fossil-fuel replacement scenario. Short-term off-river (closed cycle) pumped hydro energy storage (PHES) is utilised in some simulations as a large-scale conventional storage technology. The scenarios are examined by using a chronological dispatch model. An important feature of the modelling is that only technologies that have been already deployed on a large scale (>150 gigawatts) are utilised. This includes wind, PV and PHES. The modelling results demonstrate that 90–100% penetration by wind and PV electricity is compatible with a balanced grid. With the integration of off-river PHES, 90% renewables penetration is able to provide low-carbon electricity at competitive prices. Pumped hydro also facilitates a 100% renewables scenario which produces zero greenhouse gas emissions with attractive electricity prices. A sensitivity analysis shows the most important factors in the system cost are discount rate and wind turbine cost.

Keywords:
Energy system analysis
Renewable energy systems
Pumped hydro

1. Introduction

1.1. Decarbonisation of Australian energy sector

Australia announced its 2030 Emission Reduction Target at the historic Paris Agreement on climate change, namely to reduce greenhouse gas (GHG) emissions by 26–28% below 2005 levels by 2030 [1]. This translates to emission reductions of 50–52% per capita, although these figures are considerably smaller if a different baseline year is selected. Australia’s annual GHG emissions have averaged 570 Mt CO₂-e over the last decade with around two thirds produced by energy-related sectors including stationary energy, transport and fugitive emissions [2]. Electricity generation, currently dominated by fossil-fuel power stations, is the largest source of emissions accounting for around one third of the total.

Low carbon electricity has the greatest potential for rapid decarbonisation of the energy sector [3]. This is the approach adopted by the Australian Capital Territory (ACT) Government to achieve its early GHG target of 100% renewable electricity by 2020 [4]. Wind and photovoltaics (PV) systems constitute virtually all new generation systems in Australia now and for the foreseeable future. Over the last decade, wind power has grown at an annual average rate of 22% with a total installed capacity of about 4 GW at the end of 2015. Solar PV has seen even stronger growth, dominated by residential solar installations, rising from around 4 MW to 5 GW. Wind and PV contributed about 18 TWh in Australia in 2015, compared with hydroelectricity (14 TWh) and biomass electricity (3 TWh) [5].

New capacity installations in the worldwide renewable electricity industry is heavily dominated by wind and PV, which are unconstrained by resource availability or water requirements or material supply or security issues. Together, wind and PV constitute about half of new generation capacity installed in 2015 (Fig. 1). Hydro power is unable to expand considerably due to lack of rivers to dam, and bioenergy is severely limited by biomass availability [6]. Heroic growth rates are required for other renewable or low emission technologies (nuclear, carbon capture & storage, concentrating solar thermal, ocean, geothermal) to span the 20 to 1000-fold difference in scale to catch up with wind and PV.
Vision and initial feasibility analysis of a recarbonised Finnish energy system for 2050

Michael Child *, Christian Breyer

Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta, Finland

A R T I C L E I N F O

Article history:
Received 23 October 2015
Received in revised form 24 March 2016
Accepted 1 July 2016

Keywords:
Energy system analysis
Renewable energy
Finland
Energy storage
Power-to-Gas

A B S T R A C T

An energy system based entirely on renewable energy (RE) is possible for Finland in 2050 based on the assumptions in this study. High shares of solar PV (photovoltaics) were deemed to be feasible at extreme northern latitudes when supported by flexibility harnessed from other aspects of the energy system, suggesting that high variations in solar irradiation throughout the year may not be a barrier to the implementation of solar PV closer to the poles. A 100% RE system corresponds to a highly competitive cost solution for Finland, as total system costs decrease through interaction between the power, heating/cooling and mobility sectors. We incorporate these sectors on an hourly resolution using historical data and the EnergyPLAN modelling tool. In addition, we offer full transparency of all assumptions regarding the Finnish energy system. In 2050, a 100% renewable energy scenario has the lowest overall annual cost, at 24.1 €/a. This is followed by several scenarios that feature increasing levels of nuclear power, which range in annual costs to 26.4 €/a. Scenarios were also modelled with varying levels of forest-based biomass. Results suggest that annual costs do not increase dramatically with reduced levels of forest-based biomass fuel use. At the same time, it must be kept in mind that assigning costs to the future is inherently uncertain. How future societies assign risk to technologies or place value on emissions can make the scenarios under investigation more or less attractive. The 100% RE scenarios under investigation were seen as less exposed to such uncertainty.

© 2016 Elsevier Ltd. All rights reserved.

Contents

1. Introduction .. 518
2. Materials and methods ... 520
 2.1. The EnergyPLAN simulation tool ... 520
 2.2. Verification of the EnergyPLAN simulation tool .. 521
 2.3. Establishment of baseline scenarios ... 522
 2.3.1. Establishment of baseline scenario for 2020 ... 522
 2.3.2. Establishment of baseline scenario for 2050 ... 522
 2.4. Establishment of test scenarios for 2050 .. 523
 2.5. Cost assumptions for the Finnish energy system ... 526
3. Results .. 527
4. Discussion .. 528
5. Conclusions .. 533
Acknowledgements ... 533
Appendix A. Supplementary material .. 533

* Corresponding author.
E-mail address: Michael.Child@lut.fi (M. Child).

http://dx.doi.org/10.1016/j.rser.2016.07.001
1364-0321/c 2016 Elsevier Ltd. All rights reserved.
Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union

D. Connolly a,⁎, H. Lund b, B.V. Mathiesen a

⁎ Department of Development and Planning, Aalborg University, A.C. Meyers Vænge 15, 2450 Copenhagen SV, Denmark
b Department of Development and Planning, Aalborg University, Vestre Havnepromenade 9, 9000 Aalborg, Denmark

A B S T R A C T

This study presents one scenario for a 100% renewable energy system in Europe by the year 2050. The transition from a business-as-usual situation in 2050, to a 100% renewable energy Europe is analysed in a series of steps. Each step reflects one major technological change. For each step, the impact is presented in terms of energy (primary energy supply), environment (carbon dioxide emissions), and economy (total annual socio-economic cost). The steps are ordered in terms of their scientific and political certainty as follows: decommissioning nuclear power, implementing a large amount of heat savings, converting the private car fleet to electricity, providing heat in rural areas with heat pumps, providing heat in urban areas with district heating, converting fuel in heavy-duty vehicles to a renewable electrofuel, and replacing natural gas with methane. The results indicate that by using the Smart Energy System approach, a 100% renewable energy system in Europe is technically possible without consuming an unsustainable amount of bioenergy. This is due to the additional flexibility that is created by connecting the electricity, heating, cooling, and transport sectors together, which enables an intermittent renewable penetration of over 80% in the electricity sector. The cost of the Smart Energy Europe scenario is approximately 10–15% higher than a business-as-usual scenario, but since the final scenario is based on local investments instead of imported fuels, it will create approximately 10 million additional direct jobs within the EU.

© 2016 Elsevier Ltd. All rights reserved.

Contents

1. Introduction ... 1635
2. Methodology ... 1637
 2.1. Key Principles ... 1637
 2.2. The transition to a Smart Energy System 1637
3. Results and discussion .. 1640
 3.1. General consensus .. 1640
 3.2. Individual heating .. 1642
 3.3. Network heating .. 1644
 3.4. Renewable electrofuels .. 1645
 3.5. Important changes in the final scenario 1647
4. Limitations ... 1649
5. Conclusions ... 1649
Acknowledgements .. 1650
Appendix A. Cost assumptions ... 1650
References .. 1652

⁎ Corresponding author. Tel.: +45 9940 2483.
E-mail address: david@plan.aau.dk (D. Connolly).

http://dx.doi.org/10.1016/j.rser.2016.02.025
1364-0321/© 2016 Elsevier Ltd. All rights reserved.
North-East Asian Super Grid for 100% renewable energy supply: Optimal mix of energy technologies for electricity, gas and heat supply options

Dmitrii Bogdanov*, Christian Breyer
Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta, Finland

A R T I C L E I N F O

Article history:
Received 21 July 2015
Accepted 5 January 2016

Keywords:
100% renewable energy
North-East Asia
Energy system optimization
Grid integration
Power-to-gas
Storage

A B S T R A C T

In order to define a cost optimal 100% renewable energy system, an hourly resolved model has been created based on linear optimization of energy system parameters under given constrains. The model is comprised of five scenarios for 100% renewable energy power systems in North-East Asia with different high voltage direct current transmission grid development levels, including industrial gas demand and additional energy security. Renewables can supply enough energy to cover the estimated electricity and gas demands of the area in the year 2030 and deliver more than 2000 TW h of heat on a cost competitive level of 84 €/MW h for electricity. Further, this can be accomplished for a synthetic natural gas price at the 2013 Japanese liquefied natural gas import price level and at no additional generation costs for the available heat. The total area system cost could reach 69.4 €/MW h, if only the electricity sector is taken into account. In this system about 20% of the energy is exchanged between the 13 regions, reflecting a rather decentralized character which is supplied 27% by stored energy. The major storage technologies are batteries for daily storage and power-to-gas for seasonal storage. Prosumers are likely to play a significant role due to favourable economics. A highly resilient energy system with very high energy security standards would increase the electricity cost by 23% to 85.6 €/MW h. The results clearly show that a 100% renewable energy based system is feasible and lower in cost than nuclear energy and fossil carbon capture and storage alternatives.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fast economic growth in the North-East Asian region provoked an extensive rise in electricity demand, based mainly on fossil fuel utilization, in the last decades [1]. Increasing ecological and social problems are caused by the fossil fuel based energy system, including increased anthropogenic pressure on nature in general [2] and an ongoing destruction of ecosystems all around the world [3]. This anthropogenic pressure leads in particular to climate change [4], which will have a dramatic negative impact on the economy on a global scale, as concluded by Stern [5]. Harmful and costly consequences of coal-based air pollution [6] have to be further taken into account for the full societal cost of energy supply. These issues drive the idea for a renewable energy (RE) based system development up to 100% RE [7] and the discussion of its competitiveness on a global scale [8] and in a rather distributed manner [9]. It is feasible that RE based systems can decrease the anthropological footprint [10] in particular since the most important RE technologies show a continued strong growth and the large majority of countries in the world have introduced respective policies [11].

Scenarios of energy systems based on very high shares of RE had been already discussed for several countries and regions. Connolly and Mathiesen [12] showed for the case of Ireland in an hourly modeling that 100% RE is technically feasible and economic affordable. Henning and Palzer [13] discussed that a 100% RE system for the sectors electricity and heat is technically doable and the cost are comparable to the current energy system, also based on hourly resolution. Thellufsen and Lund [14] pointed out that energy efficiency measures in the electricity and heat sector can even generate positive synergies for 100% RE for the case of Denmark. Critz et al. [15] emphasized that demand response measures help to integrate a high penetration of renewables into the existing system and that it can reduce the overall cost for the case of Hawaii. Huber et al. [16] found on the case of the ASEAN region that a well balanced mix of renewable resources and a geographic integration of a larger region is required for balancing high shares of RE.

Komoto et al. [17] proposed very large scale solar photovoltaic power plants for North-East Asia pointing out that excellent renewable resources of a large unpopulated region, such as the Gobi desert, can be utilized for a very large region by applying a
Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes

Mark Z. Jacobsona,1, Mark A. DelucchiBob, Mary A. Camerona, and Bethany A. Frewa

*Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305; and bInstitute of Transportation Studies, University of California, Berkeley, CA 94720

Edited by Stephen Polasky, University of Minnesota, St. Paul, MN, and approved November 2, 2015 (received for review May 26, 2015)

This study addresses the greatest concern facing the large-scale integration of wind, water, and solar (WWS) into a power grid: the high cost of avoiding load loss caused by WWS variability and uncertainty. It uses a new grid integration model and finds low-cost, no-load-loss, nonunique solutions to this problem on electrification of all US energy sectors (electricity, transportation, heating/cooling, and industry) while accounting for wind and solar time series data from a 3D global weather model that simulates extreme events and competition among wind turbines for available kinetic energy. Solutions are obtained by prioritizing storage for heat (in soil and water); cold (in ice and water); and electricity (in phase-change materials, pumped hydro, hydropower, and hydrogen), and using demand response. No natural gas, biofuels, nuclear power, or stationary batteries are needed. The resulting 2050–2055 US electricity social cost for a full system is much less than for fossil fuels. These results hold for many conditions, suggesting that low-cost, reliable 100% WWS systems should work many places worldwide.

Worldwide, the development of wind, water, and solar (WWS) energy is expanding rapidly because it is sustainable, clean, safe, widely available, and, in many cases, already economical. However, utilities and grid operators often argue that today’s power systems cannot accommodate significant variable wind and solar supplies without failure (1). Several studies have addressed some of the grid reliability issues with high WWS penetrations (2–21), but no study has analyzed a system that provides the maximum possible long-term environmental and social benefits, namely supplying all energy end uses with only WWS power (no natural gas, biofuels, or nuclear power), with no load loss at reasonable cost. This paper fills this gap. It describes the ability of WWS installations, determined consistently over each of the 48 contiguous United States (CONUS) and with wind and solar power output predicted in time and space with a 3D climate/weather model, accounting for extreme variability, to provide time-dependent load reliably and at low cost when combined with storage and demand response (DR) for the period 2050–2055, when a 100% WWS world may exist.

Materials and Methods

The key to this study is the development of a grid integration model (LOADMATCH). Inputs include time-dependent loads (every 30 s for 6 y); time-dependent intermittent wind and solar resources (every 30 s for 6 y) predicted with a 3D global climate/weather model; time-dependent hydropower, geothermal, tidal, and wave resources; capacities and maximum charge/discharge rates of several types of storage technologies, including hydrogen (H2); specifications of losses from storage, transmission, distribution, and maintenance; and specifications of a DR system.

Load and Storage. CONUS loads for 2050–2055 for use in LOADMATCH are derived as follows. Annual CONUS loads are first estimated for 2050 assuming each end-use energy sector (residential, transportation, commercial, industrial) is converted to electricity and some electrolytic hydrogen after accounting for modest improvements in end-use energy efficiency (22). Annual loads in each sector are next separated into cooling and heating loads that can be met with thermal energy storage (TES), loads that can be met with hydrogen production and storage, flexible loads that can be met with DR, and inflexible loads (Table 1).

Most (50–95%) air conditioning and refrigeration and most (85–95%) air heating and water heating are coupled with TES (Table 1). Cooling coupled with storage is tied to chilled water (sensible-heat) TES (STES) and ice production and melting [phase-change material (PCM)-ice] (SI Appendix, Table S1). All building air- and water-heating coupled with storage uses underground TES (UTES) in soil. UTES storage is patterned after the seasonal and short-term district heating UTES system at the Drake Landing Community, Canada (23). The fluid (e.g., glycol solution) that heats water that heats the soil and rocks is itself heated by sunlight or excess electricity.

Overall, 85% of the transportation load and 70% of the loads for industrial high temperature, chemical, and electrical processes are assumed to be flexible or produced from H2 (Table 1).

Six types of storage are treated (SI Appendix, Table S1): three for air and water heating/cooling (STES, UTES, and PCM-ice); two for electric power generation (pumped hydropower storage (PHS) and phase-change materials coupled with concentrated solar power plants (PCM-CSP)); and one for transport or high-temperature processes (hydrogen). Hydropower (with reservoirs) is treated as an electricity source on demand, but because reservoirs can be recharged only naturally they are not treated as artificially rechargeable storage. Lithium-ion batteries are used to power battery-electric vehicles but to avoid battery degradation, not to feed power from vehicles to the grid. Batteries for stationary power storage work well in this system too. However, because they currently cost more than the other storage technologies used (24), they are prioritized lower and are found not

Significance

The large-scale conversion to 100% wind, water, and solar (WWS) power for all purposes (electricity, transportation, heating/cooling, and industry) is currently inhibited by a fear of grid instability and high cost due to the variability and uncertainty of wind and solar. This paper couples numerical simulation of time- and space-dependent weather with simulation of time-dependent power demand, storage, and demand response to provide low-cost solutions to the grid reliability problem with 100% penetration of WWS across all energy sectors in the continental United States between 2050 and 2055. Solutions are obtained without higher-cost stationary battery storage by prioritizing storage of heat in soil and water; cold in water and ice; and electricity in phase-change materials, pumped hydrogen, hydropower, and hydrogen.

Author contributions: M.Z.J. designed research; M.Z.J. and M.A.D. performed research; M.Z.J., M.A.D., M.A.C., and B.A.F. contributed analytic tools; M.Z.J., M.A.D., and M.A.C. analyzed data; and M.Z.J., M.A.D., M.A.C., and B.A.F. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Data available upon request (from M.Z.J.).

1To whom correspondence should be addressed. Email: jacobson@stanford.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510028112/-/DCSupplemental.

Author contributions: M.Z.J. designed research; M.Z.J. and M.A.D. performed research; M.Z.J., M.A.D., M.A.C., and B.A.F. contributed analytic tools; M.Z.J., M.A.D., and M.A.C. analyzed data; and M.Z.J., M.A.D., M.A.C., and B.A.F. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Data available upon request (from M.Z.J.).
Smart Energy Systems for coherent 100% renewable energy and transport solutions

B.V. Mathiesen a,*, H. Lund b, D. Connolly a, H. Wenzel c, P.A. Østergaard b, B. Möller d, S. Nielsen b, I. Ridjan a, P. Karnøe a, K. Sperling b, F.K. Hvelplund b

a Department of Development and Planning, Aalborg University, A.C. Meyers Vænge 15, DK-2450 Copenhagen SV, Denmark
b Department of Development and Planning, Aalborg University, Vestre Havnepromenade 9, DK-9000 Aalborg, Denmark
c Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Denmark
d Department Energy and Environmental Management, University of Flensburg, Munketoft 3b, D-24937 Flensburg, Germany

HIGHLIGHTS

• Integrating smart electricity, smart thermal and smart gas grids to enable 100% RE.
• Cost and fuel synergies across electricity, heating, and transport can be exploited.
• Focusing only on a smart electricity grid reduces the potential for fluctuating RE.
• Smart Energy System design can ensure biomass use is limited to a sustainable level.
• Smart Energy Systems can pave the way for bioenergy-free 100% RES incl. transport.

ARTICLE INFO

Article history:
Received 20 August 2014
Received in revised form 19 January 2015
Accepted 19 January 2015
Available online 27 February 2015

Keywords:
Smart Energy Systems
100% Renewable energy systems
Energy storage
Smart grids
Thermal grids
Gas grids

ABSTRACT

The hypothesis of this paper is that in order to identify least cost solutions of the integration of fluctuating renewable energy sources into current or future 100% renewable energy supplies one has to take a Smart Energy Systems approach. This paper outline why and how to do so. Traditionally, significant focus is put on the electricity sector alone to solve the renewable energy integration puzzle. Smart grid research traditionally focuses on ICT, smart meters, electricity storage technologies, and local (electric) smart grids. In contrast, the Smart Energy System focuses on merging the electricity, heating and transport sectors, in combination with various intra-hour, hourly, daily, seasonal and biannual storage options, to create the flexibility necessary to integrate large penetrations of fluctuating renewable energy. However, in this paper we present the development and design of coherent Smart Energy Systems as an integrated part of achieving future 100% renewable energy and transport solutions. The transition from fossil fuels towards the integration of more and more renewable energy requires rethinking and redesigning the energy system both on the generation and consumption side. To enable this, the Smart Energy System must have a number of appropriate infrastructures for the different sectors of the energy system, which are smart electricity grids, smart thermal grids (district heating and cooling), smart gas grids and other fuel infrastructures. It enables fluctuating renewable energy (such as wind, solar, wave power and low value heat sources) to utilise new sources of flexibility such as solid, gaseous, and liquid fuel storage, thermal storage and heat pumps and battery electric vehicles. Smart Energy Systems also enable a more sustainable and feasible use of bioenergy than the current types allow. It can potentially pave the way to a bioenergy-free 100% renewable energy and transport system.

© 2015 Elsevier Ltd. All rights reserved.
Comparing least cost scenarios for 100% renewable electricity with low emission fossil fuel scenarios in the Australian National Electricity Market

Ben Elliston a,b,*, Iain MacGill a,b, Mark Diesendorf c

a School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia
b Centre for Energy and Environmental Markets, University of New South Wales, Sydney, NSW 2052, Australia
c Institute of Environmental Studies, University of New South Wales, Sydney, NSW 2052, Australia

A R T I C L E I N F O

Article history:
Received 23 August 2013
Accepted 8 December 2013
Available online 31 December 2013

A B S T R A C T

Policy makers face difficult choices in planning to decarbonise their electricity industries in the face of significant technology and economic uncertainties. To this end we compare the projected costs in 2030 of one medium-carbon and two low-carbon fossil fuel scenarios for the Australian National Electricity Market (NEM) against the costs of a previously published scenario for 100% renewable electricity in 2030. The three new fossil fuel scenarios, based on the least cost mix of baseload and peak load power stations in 2010, are: (i) a medium-carbon scenario utilising only gas-fired combined cycle gas turbines (CCGTs) and open cycle gas turbines (OCGTs); (ii) coal with carbon capture and storage (CCS) plus peak load OCGT; and (iii) gas-fired CCGT with CCS plus peak load OCGT. We perform sensitivity analyses of the results to future carbon prices, gas prices, and CO2 transportation and storage costs which appear likely to be high in most of Australia. We find that only under a few, and seemingly unlikely, combinations of costs can any of the fossil fuel scenarios compete economically with 100% renewable electricity in a carbon constrained world. Our findings suggest that policies pursuing very high penetrations of renewable electricity based on commercially available technology offer a cost effective and low risk way to dramatically cut emissions in the electricity sector.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

There is a growing recognition of the urgency for large, rapid and sustained emissions reductions to avoid dangerous global warming. Achieving deep cuts to greenhouse gas emissions in some sectors (e.g., transportation, agriculture) is likely to be more difficult than the electricity sector. The Australian Government has a policy to reduce greenhouse gas emissions to 80% below year 2000 levels by 2050. Electricity generation in the Australian National Electricity Market (NEM) is responsible for around one third of national emissions [1] and is therefore an obvious candidate for early efforts to reduce emissions. Given the availability of low carbon options for electricity generation, it could be argued that the electricity sector should be almost completely decarbonised to contribute towards the 2050 target. One approach to decarbonising the electricity sector being considered world-wide is a transition to 100% renewable energy sources.

In this paper, we compare the cost estimates of previously published scenarios for 100% renewable electricity (“RE100”) hour-by-hour in the NEM against a number of alternative options available to policy makers: greater use of efficient gas-fired generation, and the use of carbon capture and storage (CCS). Nuclear power is not examined as it is prohibited in Australia under the Commonwealth Environment Protection and Biodiversity Conservation Act 1999. The key question being addressed is how these alternative scenarios compare with the RE100 scenario and whether they are likely to be significantly lower cost. Indeed, is it worth either deploying gas-fired generation with lower, but still substantial emissions, or waiting for immature CCS technologies to emerge at sufficient scale? The intent of this paper is to help inform policy as governments develop strategies in the face of significant uncertainty about technology development and costs.

The national circumstances of Australia are somewhat unique for a developed country. Australia is a wealthy nation with a well educated workforce and a technological services sector, but with a large share of commodity exports from primary industries. The electricity sector has an ageing fleet of fossil-fuelled thermal generators and is highly emissions intensive by world standards due to
A technical and economic analysis of one potential pathway to a 100% renewable energy system

David Connolly* and Brian Vad Mathiesen

Department of Development and Planning, Aalborg University, A.C. Meyers Vænge 15, DK-2450 Copenhagen SV, Denmark

ABSTRACT

This paper outlines how an existing energy system can be transformed into a 100% renewable energy system. The transition is divided into a number of key stages which reflect key radical technological changes on the supply side of the energy system. Ireland is used as a case study, but in reality this reflects many typical energy systems today which use power plants for electricity, individual boilers for heat, and oil for transport. The seven stages analysed are 1) reference, 2) introduction of district heating, 3) installation of small and large-scale heat pumps, 4) reducing grid regulation requirements, 5) adding flexible electricity demands and electric vehicles, 6) producing synthetic methanol/DME for transport, and finally 7) using synthetic gas to replace the remaining fossil fuels. For each stage, the technical and economic performance of the energy system is calculated. The results indicate that a 100% renewable energy system can provide the same end-user energy demands as today’s energy system and at the same price. Electricity will be the backbone of the energy system, but the flexibility in today’s electricity sector will be transferred from the supply side of the demand side in the future. Similarly, due to changes in the type of spending required in a 100% renewable energy system, this scenario will result in the creation of 100,000 additional jobs in Ireland compared to an energy system like today’s. These results are significant since they indicate that the transition to a 100% renewable energy system can begin today, without increasing the cost of energy in the short- or long-term, if the costs currently forecasted for 2050 become a reality.

Keywords:
100% renewable energy; smart energy system; Ireland; technical analyses; economic analyses; wind power; job creation;

URL: dxdoi.org/10.5278/ijsepm.2014.1.2

1. Introduction

The energy sector is in a state of change and uncertainty. A change is necessary due to the environmental damage and risks associated with the existing energy system such as climate change, pollution, security of supply concerns, and unpredictable future energy prices. Numerous studies, debates, and public figures have highlighted the need for a radical change in the very near future, including the International Energy Agency who have recently stated that a radical change is necessary by 2017 [1].

Unfortunately, the pace of change is relatively slow today, even with all of these concerns and the large body of research to prove that a change is necessary. This could be attributed to numerous factors such as the strength of existing institutions in the energy sector and the lack of suitable policy and markets. In the authors’ opinion, one of the key issues obstructing change in the energy sector is uncertainty.

A lot of this uncertainty is created by the variety of alternatives being proposed and debated for the energy sector. Typically, every country will have a few very powerful institutions in each of the electricity, gas, oil, and renewable energy sectors. Each of these institutions would like to remain powerful in the future and so, when debating the design of the future energy system,
Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions

Sarah Becker a, b, *, Bethany A. Frew b, Gorm B. Andresen d, b, Timo Zeyer c, Stefan Schramm a, Martin Greiner d, e, Mark Z. Jacobson b

a Frankfurt Institute for Advanced Studies, Goethe-Universität, 60438 Frankfurt am Main, Germany
b Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
d Department of Physics, Aarhus University, 8000 Aarhus C, Denmark
e Department of Engineering, Aarhus University, 8200 Aarhus N, Denmark

Article history:
Received 31 January 2014
Received in revised form 15 May 2014
Accepted 17 May 2014
Available online 18 June 2014

Keywords:
Energy system design
Large-scale integration of renewable power generation
Wind power generation
Solar PV power generation
Power transmission

A B S T R A C T

A future energy system is likely to rely heavily on wind and solar PV. To quantify general features of such a weather dependent electricity supply in the contiguous US, wind and solar PV generation data are calculated, based on 32 years of weather data with temporal resolution of 1 h and spatial resolution of 40 x 40 km², assuming site-suitability-based and stochastic wind and solar capacity distributions. The regional wind-and-solar mixes matching load and generation closest on seasonal timescales cluster around 80% solar share, owing to the US summer load peak. This mix more than halves long-term storage requirements, compared to wind only. The mixes matching generation and load best on daily timescales lie at about 80% wind share, due to the nightly gap in solar production. Going from solar only to this mix reduces backup energy needs by about 50%. Furthermore, we calculate shifts in FERC (Federal Energy Regulatory Commission)-level LCOE (Levelized Costs Of Electricity) for wind and solar PV due to differing weather conditions. Regional LCOE vary by up to 29%, and LCOE-optimal mixes largely follow resource quality. A transmission network enhancement among FERC regions is constructed to transfer high penetrations of solar and wind across FERC boundaries, employing a novel least-cost optimization.

1. Introduction

CO₂ and air pollution emission reduction goals as well as energy security, price stability, and affordability considerations make renewable electricity generation attractive. A highly renewable electricity supply will be based to a large extent on wind and solar photovoltaic (PV) power, since these two resources are both abundant and either relatively inexpensive or rapidly becoming cost competitive [1]. Such a system demands a fundamentally different design approach: While electricity generation was traditionally constructed to be dispatchable in order to follow the demand, wind and solar PV power output is largely determined by weather conditions that are out of human control. We therefore collectively term them VRES (variable renewable energy sources).

Spatial aggregation has a favorable impact on generation characteristics, as was found both for wind and solar PV power in numerous studies [2–9]. Especially for wind, smoothing effects are much more pronounced on large scales, as can be seen from the comparison of the US East coast (about 3000 x 500 km²), discussed in Ref. [8], to Denmark (about 200 x 300 km²), cf. Ref. [9]. In spite of the leveling effects of aggregation, there is still a considerable mismatch between load and generation left, which is partly due also to load variability.

This paper aims to identify general design features for the US power system with a high share of wind and solar PV. While several studies have demonstrated the feasibility of high penetrations of VRES generators in the regional or nationwide US electric system [11–14], these have only evaluated one individual US region and/or have only considered a small set of hours for their analysis. This paper is based on data for the entire contiguous US of unprecedented temporal length and spatial resolution. Relying on 32 years of weather data with hourly time resolution and a spatial resolution of 40 x 40 km², potential future wind and solar PV generation time
Grid vs. storage in a 100% renewable Europe

Florian Steinke a,⁎, Philipp Wolfrum a, Clemens Hoffmann b

a Siemens Corporate Technology, Otto-Hahn-Ring 6, Munich 81739, Germany
b Siemens Infrastructure & Cities, Erlangen, Germany

A R T I C L E I N F O
Article history:
Received 23 January 2012
Accepted 31 July 2012
Available online 13 September 2012

Keywords:
Intermittency
Renewable energy
Grid expansions
Storage

A B S T R A C T
Intermittent renewable power production from wind and sun requires significant backup generation to cover the power demand at all times. This holds even if wind and sun produce on average 100% of the required energy. Backup generation can be reduced through storage — averaging in time — and/or grid extensions — averaging in space. This report examines the interplay of these technologies with respect to the reduction of required backup energy. We systematically explore a wide parameter space of combinations of both technologies. Our simple, yet informative approach quantifies the backup energy demand for each scenario. We also estimate the resulting total system costs which allow us to discuss cost-optimal system designs.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Renewable power generation is growing quickly in Europe. In 2006, the EU defined its 20-20-20 goals calling for 20% renewables in 2020 [1]. Today, already 40% of renewables seem a realistic target for the end of this decade, at least in Germany with its strong photovoltaics (PV) sector [2]. Scenarios with close to 100% renewables are now typically dated for 2050, e.g. [3,4], but they may possibly arrive much earlier.

Yet there is still considerable uncertainty about what a 100% renewable Europe would look like. The largest renewable contributions will probably come from wind turbines and PV, since water, biomass and waste resources are limited. Due to their intermittent nature, significant backup generation is needed for power from wind and sun, even if they cover on average 100% of the demand. This is depicted with an exemplary time line in Fig. 1.

Regarding the required backup power, one can see from Fig. 1 that almost the whole demand has to be covered from backup sources alone at certain times. Thus the installed backup capacity should roughly match the peak demand. This is in line with [5] where the capacity credit of wind is rated at only 16%, assuming a well-connected Europe.

The interesting question about the backup system is thus rather how much energy the backup power plants have to provide — and how this depends on grid extensions and novel storage capacities. Grids and storage help to reduce backup energy demand by averaging intermittent power generation in space and time. The interplay of these technologies and their effect on the remaining backup energy demand is the central focus of this paper.

Backup energy demand is critical in two respects. First, backup energy would have to come from renewable sources in a fully renewable scenario. The most important source of renewable backup energy is biomass, since only a minimal fraction of Europe’s water energy is dispatchable. The yearly energy potential of biomass, however, is limited to roughly 10% of the average power consumption [6]. It could thus be asked under which constellation of generation, grids and storage a fully renewable power system in Europe would be possible at all. For other constellations the backup energy is directly related to remaining CO2 emissions of the system, since additional backup energy would have to come from fossil sources. Such not fully renewable systems might be acceptable even in the long run, if the financial benefits are significant. The backup energy is thus also an important measure for determining the optimal trade-off between CO2 emission reduction targets and economic feasibility.

In this paper we use scenarios for Europe where wind and sun, the variable renewable energies (VRE), produce on average 100% or more of the required electric energy. We employ a simple model to quantify the backup energy demand for a wide range of choices of grid and storage. While there are many ways of modelling the different power system components in much greater detail, we think it is important to reduce the problem to the most basic characteristics to maintain an overview and obtain robust order of magnitude results. We also determine optimal system designs. First, optimality means minimising the use of backup energy, a physics perspective. Second, we estimate the financial consequences of each scenario to determine also economically optimal designs.
Least cost 100% renewable electricity scenarios in the Australian National Electricity Market

Ben Elliston a,*, Iain MacGill a, b, Mark Diesendorf c

a School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia
b Centre for Energy and Environmental Markets, University of New South Wales, Sydney, NSW 2052, Australia
c Institute of Environmental Studies, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

Least cost options are presented for supplying the Australian National Electricity Market (NEM) with 100% renewable electricity using wind, photovoltaics, concentrating solar thermal (CST) with storage, hydroelectricity and biofuelled gas turbines. We use a genetic algorithm and an existing simulation tool to identify the lowest cost (investment and operating) scenarios of renewable technologies and locations for NEM regional hourly demand and observed weather in 2010 using projected technology costs for 2030. These scenarios maintain the NEM reliability standard, limit hydroelectricity generation to available rainfall, and limit bioenergy consumption. The lowest cost scenarios are dominated by wind power, with smaller contributions from photovoltaics and dispatchable generation: CST, hydro and gas turbines. The annual cost of a simplified transmission network to balance supply and demand across NEM regions is a small proportion of the annual cost of the generating system. Annual costs are compared with a scenario where fossil fuelled power stations in the NEM today are replaced with modern fossil substitutes at projected 2030 costs, and a carbon price is paid on all emissions. At moderate carbon prices, which appear required to address climate change, 100% renewable electricity would be cheaper on an annual basis than the replacement scenario.

1. Introduction

This paper presents the findings of a study seeking to investigate least cost options for supplying the Australian National Electricity Market (NEM) with 100% renewable electricity in 2030. Different scenarios of technology mix and locations were assessed through simulations of electricity industry operation. A genetic algorithm was used to identify the lowest investment and operating cost scenarios.

The electricity sector is a prime candidate for rapid decarbonisation due to its significant greenhouse gas emissions yet wide range of zero emission supply options. The NEM is highly emissions intensive by world standards (Garnaut, 2011a), producing in excess of 190 megatonnes (Mt) of greenhouse gas emissions per year. This is the single largest source of emissions in Australia (Ison et al., 2011) and represents around one third of Australia’s greenhouse gas emissions. Over the past decade, however, and even with relatively modest renewable energy targets, there has been significant deployment of wind and solar generation.

Recently announced renewable electricity targets for 2050 by Germany (80%) and Denmark (100%) are a bottom-up approach to mitigating greenhouse gas emissions at the national level, simultaneously addressing other objectives such as energy independence (Lilliestam et al., 2012) and competitiveness in clean technology industries (Schreurs, 2012). Although there is a well established body of academic literature going back over a decade evaluating 100% renewable energy scenarios on various geographic scales, more detailed studies are now emerging from government and industry (German Advisory Council on the Environment, 2011; Hand et al., 2012). In Australia, the Federal Government Multi-Party Climate Change Committee (2011) has requested the Australian Energy Market Operator (AEMO) to expand its current planning scenarios to “include further consideration of energy market and transmission planning implications in moving towards 100% renewable energy”. Previous work by the authors has demonstrated the potential technical feasibility of using 100% renewable energy sources to supply current NEM demand while meeting the market’s reliability standard in a given year (Elliston et al., 2012b). We simulated a 100% renewable electricity system for one year, using actual hourly demand data and weather observations for 2010. In the simulations, demand is met by electricity generation mixes based on current NEM reliability standard in a given year.

© 2013 Elsevier Ltd. All rights reserved.
Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time

Cory Budischak a,b,*, DeAnna Sewell c, Heather Thomson c, Leon Mach d, Dana E. Veron c, Willett Kempton a,c,e

a Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
b Department of Energy Management, Delaware Technical Community College, Newark, DE 19713, USA
c Center for Carbon-Free Power Integration, School of Marine Science and Policy, College of Earth Ocean and Environment, University of Delaware, Newark, DE 19716, USA
d Energy and Environmental Policy Program, College of Engineering, University of Delaware, Newark, DE 19716, USA
e Center for Electric Technology, DTU Elektro, Danmarks Tekniske Universitet, Kgs. Lyngby, Denmark

HIGHLIGHTS
- We modeled wind, solar, and storage to meet demand for 1/5 of the USA electric grid.
- 28 billion combinations of wind, solar and storage were run, seeking least-cost.
- Least-cost combinations have excess generation (3× load), thus require less storage.
- 99.9% of hours of load can be met by renewables with only 9–72 h of storage.
- At 2030 technology costs, 90% of load hours are met at electric costs below today’s.

ARTICLE INFO
Article history:
Received 7 June 2012
Received in revised form 13 September 2012
Accepted 15 September 2012
Available online 11 October 2012

Keywords:
Variable generation
Renewable energy
Electrochemical storage
High-penetration renewables

GRAPHICAL ABSTRACT

ABSTRACT
We model many combinations of renewable electricity sources (inland wind, offshore wind, and photovoltaics) with electrochemical storage (batteries and fuel cells), incorporated into a large grid system (72 GW). The purpose is twofold: 1) although a single renewable generator at one site produces intermittent power, we seek combinations of diverse renewables at diverse sites, with storage, that are not intermittent and satisfy need a given fraction of hours. And 2) we seek minimal cost, calculating true cost of electricity without subsidies and with inclusion of external costs. Our model evaluated over 28 billion combinations of renewables and storage, each tested over 35,040 h (four years) of load and weather data. We find that the least cost solutions yield seemingly-excessive generation capacity—at times, almost three times the electricity needed to meet electric load. This is because diverse renewable generation and the excess capacity together meet electric load with less storage, lowering total system cost. At 2030 technology costs and with excess electricity displacing natural gas, we find that the electric system can be powered 90%–99.9% of hours entirely on renewable electricity, at costs comparable to today’s—but only if we optimize the mix of generation and storage technologies.

© 2012 Elsevier B.V. Open access under CC BY-NC-ND license.

* Corresponding author. Department of Energy Management, Delaware Technical Community College, 400 Stanton-Christiana Road, Newark, DE 19713, USA. Tel.: +1 302 453 3099; fax: +1 302 368 6620.
E-mail address: cbudischak@gmail.com (C. Budischak).

0378-7753 © 2012 Elsevier B.V. Open access under CC BY-NC-ND license.
http://dx.doi.org/10.1016/j.jpowsour.2012.09.054
Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market

Ben Elliston a, *, Mark Diesendorf b, Iain MacGill a, c

a School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia
b Institute of Environmental Studies, University of New South Wales, Sydney, NSW 2052, Australia
c Centre for Energy and Environmental Markets, University of New South Wales, Sydney, NSW 2052, Australia

A R T I C L E I N F O

Article history:
Received 11 January 2012
Accepted 5 March 2012
Available online 20 March 2012

Keywords:
100 per cent scenarios
Base-load
Renewable electricity

A B S T R A C T

As a part of a program to explore technological options for the transition to a renewable energy future, we present simulations for 100% renewable energy systems to meet actual hourly electricity demand in the five states and one territory spanned by the Australian National Electricity Market (NEM) in 2010. The system is based on commercially available technologies: concentrating solar thermal (CST) power with thermal storage, wind, photovoltaic (PV), existing hydro and biofuelled gas turbines. Hourly solar and wind generation data are derived from satellite observations, weather stations, and actual wind farm outputs. Together CST and PV contribute about half of total annual electrical energy supply.

A range of 100% renewable energy systems for the NEM are found to be technically feasible and meet the NEM reliability standard. The principal challenge is meeting peak demand on winter evenings following overcast days when CST storage is partially charged and sometimes wind speeds are low. The model handles these circumstances by combinations of an increased number of gas turbines and reductions in winter peak demand. There is no need for conventional base-load power plants. The important parameter is the reliability of the whole supply-demand system, not the reliability of particular types of power plants.

1. Introduction

This paper reports on the on-going development of energy system simulations to identify and quantify the challenges of reliably supplying 100% renewable electricity to the five states and one territory spanned by the Australian NEM. The current climate science suggests that developed countries must aggressively reduce greenhouse gas emissions over the next several decades to a point of near-zero emissions by 2050 in order to avoid global warming of more than 2 °C (IPCC, 2007). The International Energy Agency (2011) notes that 80% of the total energy related emissions permissible by 2035 in its 450 parts per million scenario are already ‘locked in’ by our existing capital stock of energy infrastructure. Continuing development patterns for the next 5 years would then require that all subsequent energy supply be zero carbon.

Today, the NEM produces around one-third of total Australian greenhouse gas emissions, as the system derives around 90% of supply from lignite, bituminous coal and natural gas. If Australia, currently one of the world’s highest per capita greenhouse emitters, is to make its fair contribution to such emission reductions then its highly emissions intensive electricity industry must rapidly transition to zero carbon sources (Garnaut, 2011). Given the long life of electricity industry assets, Australian energy and climate policy must therefore now consider the potential for future low emission electricity systems based on rapid deployment of commercially available zero carbon technologies. The only zero carbon ‘sources’ that are commercially available and seem likely to be able to make large contributions before 2020 in the Australian context are certain renewable energy sources (Department of Resources, Energy and Tourism, 2011) and demand reduction (e.g., through efficient energy use).

Numerous scenario studies have been published that model the potential for countries, regions, and the entire world, to meet 80–100% of end-use energy demand from renewable energy by some future date, typically mid-century. National scenarios exist for Australia (Wright and Hearps, 2010), Ireland (Connelly et al., 2011), New Zealand (Mason et al., 2010), Portugal (Krajačić et al., 2011), Japan (Lehmann, 2003), the United Kingdom (Kemp and Wexler, 2010), Germany (German Advisory Council on the Environment, 2011) and Denmark (Lund and Mathiesen, 2009). More broadly, a regional study has been produced for northern Europe (Sørensen, 2008) and several studies of the global situation have been produced including by Sørensen and Meibom (2000), Jacobson and Delucchi (2011), Delucchi and Jacobson (2011) and WWF (2011). These scenario studies do not typically specify a transition path nor do they share a common methodology for analysis (Nielsen and Karlsson, 2007). However, they are valuable in showing that aggressive reduction in fossil fuel use is possible, and provide a vision of how the future energy system might look.
Storage and balancing synergies in a fully or highly renewable pan-European power system

Morten Grud Rasmussena,b,c,*, Gorm Bruun Andresenb,c, Martin Greinerb,c

a Center for Mathematical Sciences, Technische Universität München, Boltzmannstraße 3, 85748 Garching, Germany
b Department of Engineering, Aarhus University, Ny Munkegade 118, 8000 Aarhus C, Denmark
c Department of Mathematics, Aarhus University, Ny Munkegade 118, 8000 Aarhus C, Denmark

HIGHLIGHTS

- We model a wind and solar based European power system with storage and balancing.
- We find that storage needs peaks when average renewable generation matches load.
- We find strong synergetic effects when combining storage and balancing.
- We study the effects of a storage capable of storing 6 h average use.
- We find a realisable fully renewable scenario based on wind, solar and hydro power.

ARTICLE INFO

Article history:
Received 24 March 2012
Accepted 4 September 2012
Available online 25 September 2012

Keywords:
Energy system design
Large-scale integration
Storage

ABSTRACT

Through a parametric time-series analysis of 8 years of hourly data, we quantify the storage size and balancing energy needs for highly and fully renewable European power systems for different levels and mixes of wind and solar energy. By applying a dispatch strategy that minimizes the balancing energy needs for a given storage size, the interplay between storage and balancing is quantified, providing a hard upper limit on their synergy. An efficient but relatively small storage reduces balancing energy needs significantly due to its influence on intra-day mismatches. Furthermore, we show that combined with a low-efficiency hydrogen storage and a level of balancing equal to what is today provided by storage lakes, it is sufficient to meet the European electricity demand in a fully renewable power system where the average power generation from combined wind and solar exceeds the demand by only a few percent.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A fully renewable pan-European power system will depend on a large share of non-dispatchable, weather dependent sources, primarily wind and solar power (Czisch, 2005; Jacobson and Delucchi, 2011). The optimal ratio between and necessary amount of wind and solar power depends on storage and balancing resources (Heide et al., 2010, 2011; Hedegaard and Meibom, 2012), transmission (Czisch et al., 2007; Kempton et al., 2010; Schaber et al., 2012a,b), and the characteristics of the climate (Widén, 2011; Aboumahboub et al., 2010) and load (Yao and Steemers, 2005). Based on meteorological data, it was shown that even with unlimited transmission within Europe, a scenario with only wind and solar power in combination with either only storage (Heide et al., 2010) or only balancing (Heide et al., 2011) requires a very large amount of excess generation in order to be technically feasible. Here, we study the intermediate and more realistic scenarios where power generation from the two weather-driven variable renewable energy (VRE) sources is backed up by specific combinations of storage and balancing. We identify a class of realistic and feasible scenarios for building a fully or partially renewable pan-European power system.

The main point of our paper is to outline what is possible in a wind and solar based European power system with storage and balancing systems. The power capacities of the storage and balancing facilities are not determined; this would require a more complex modeling with explicit inclusion of power transmission (Rodriguez et al., 2012). We focus on wind and solar power and assume no bottlenecks in the power grid, employ an optimal storage dispatch strategy and ignore storage charge and discharge capacities and economic aspects. The incentives for doing so are closely related and at least threefold.

*Corresponding author at: Center for Mathematical Sciences, Technische Universität München, 85748 Garching, Germany.
E-mail addresses: mgr@imf.au.dk, mortengrud@gmail.com (M.G. Rasmussen).
The carbon abatement potential of high penetration intermittent renewables†

Elaine K. Hart* and Mark Z. Jacobson

Received 18th December 2011, Accepted 23rd February 2012
DOI: 10.1039/c2ee03490e

The carbon abatement potentials of wind turbines, photovoltaics, and concentrating solar power plants were investigated using dispatch simulations over California with 2005–06 meteorological and load data. A parameterization of the simulation results is presented that provides approximations of both low-penetration carbon abatement rates and maximum carbon abatement potentials based on the temporal characteristics of the resource and the load. The results suggest that shallow carbon emissions reductions (up to 20% of the base case) can be achieved most efficiently with geothermal power and demand reductions via energy efficiency or conservation. Deep emissions reductions (up to 89% for this closed system), however, may require the build-out of very large fleets of intermittent renewables and improved power system flexibility, communications, and controls. At very high penetrations, combining wind and solar power improved renewable portfolio performance over individual build-out scenarios by reducing curtailment, suggesting that further reductions may be met by importing uncorrelated out-of-state renewable power. The results also suggest that 90–100% carbon emission reductions will rely on the development of demand response and energy storage facilities with power capacities of at least 65% of peak demand and energy capacities large enough to accommodate seasonal energy storage.

1 Introduction

In response to a growing concern over global warming, the last decade has seen a surge in proposals for reducing the carbon dioxide emissions associated with electric power generation, many of which include large build-outs of renewable technologies including wind, photovoltaics (PVs), concentrating solar power (CSP), geothermal, wave, and tidal power. This paper seeks to determine how the temporal characteristics of electric power demand, the variability of renewable resources, and the controls employed by renewable technologies influence the potential for a renewable portfolio to displace carbon-based generation and to reduce carbon dioxide emissions at very high penetrations. Furthermore, we seek to understand which of these factors has the strongest influence on the carbon abatement potential of a given technology, and in the case that a limit to the carbon abatement potential of intermittent renewables exists, what technologies are needed to achieve complete decarbonization of the electricity grid.

In the past, economic analyses of the carbon abatement potential of renewables have tended to assume that renewable...
A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables

Elaine K. Hart*, Mark Z. Jacobson

Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, MC 4020, Stanford, CA 94305, USA

Abstract

A new generator portfolio planning model is described that is capable of quantifying the carbon emissions associated with systems that include very high penetrations of variable renewables. The model combines a deterministic renewable portfolio planning module with a Monte Carlo simulation of system operation that determines the expected least-cost dispatch from each technology, the necessary reserve capacity, and the expected carbon emissions at each hour. Each system is designed to meet a maximum loss of load expectation requirement of 1 day in 10 years. The present study includes wind, centralized solar thermal, and rooftop photovoltaics, as well as hydroelectric, geothermal, and natural gas plants. The portfolios produced by the model take advantage of the aggregation of variable generators at multiple geographically disperse sites and the incorporation of meteorological and load forecasts. Results are presented from a model run of the continuous two-year period, 2005–2006 in the California ISO operating area. A low-carbon portfolio is produced for this system that is capable of achieving an 80% reduction in electric power sector carbon emissions from 2005 levels and supplying over 99% of the annual delivered load with non-carbon sources. A portfolio is also built for a projected 2050 system, which is capable of providing 96% of the delivered electricity from non-carbon sources, despite a projected doubling of the 2005 system peak load. The results suggest that further reductions in carbon emissions may be achieved with emerging technologies that can reliably provide large capacities without necessarily providing positive net annual energy generation. These technologies may include demand response, vehicle-to-grid systems, and large-scale energy storage.

1. Introduction

In the United States, approximately 40% of the total annual carbon dioxide emissions are associated with the generation of electricity [1]. Significant reductions in carbon emissions within the United States will therefore require a dramatic shift in the composition of the electric power sector. Several technologies already exist to replace generation from coal and natural gas with cleaner alternatives, but the variability and uncertainty in many renewable resources is anticipated to pose political, financial, and technological challenges to large-scale grid integration. Without practical examples of large systems with very high penetrations of variable generation, models must be employed to predict the behavior of these systems. To date, most grid integration models have focused on wind power, though some have included solar technologies. An extensive review of wind power integration studies across Europe can be found in [2] and a review of current energy system modeling tools can be found in [3].

Early attempts at modeling grid integration of variable generation were based on load duration curve analyses, similar to those used for portfolios of conventional generators [4–6]. More recently, however, grid integration has been formulated primarily as an optimization problem with load balance constraints over multiple time steps. Deterministic load balance models have been used to develop scenarios with high penetrations of wind power within different types of preexisting generation portfolios [7], to study the affects of aggregating multiple geographically disperse wind farms [8], and to analyze the operational costs associated with intrahour fluctuations of wind power output [9]. Other grid integration studies have explored how the complementary nature of different renewable energy resources (including wind, solar, wave, geothermal, and/or hydroelectric power) can be used to best match a time-varying power demand [10–16].

The stochastic nature of wind and solar complicates the treatment of system reliability in grid integration studies. Probabilistic models are already used to account for forced outages of
100% Renewable energy systems, climate mitigation and economic growth

Brian Vad Mathiesen a,*, Henrik Lund a, Kenneth Karlsson b

a Department of Development and Planning, Aalborg University, Denmark
b Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Denmark

Article history:
Received 10 September 2009
Received in revised form 18 February 2010
Accepted 1 March 2010
Available online 31 March 2010

Abstract
Greenhouse gas mitigation strategies are generally considered costly with world leaders often engaging in debate concerning the costs of mitigation and the distribution of these costs between different countries. In this paper, the analyses and results of the design of a 100% renewable energy system by the year 2050 are presented for a complete energy system including transport. Two short-term transition target years in the process towards this goal are analysed for 2015 and 2030. The energy systems are analysed and designed with hour-by-hour energy system analyses. The analyses reveal that implementing energy savings, renewable energy and more efficient conversion technologies can have positive socio-economic effects, create employment and potentially lead to large earnings on exports. If externalities such as health effects are included, even more benefits can be expected. 100% Renewable energy systems will be technically possible in the future, and may even be economically beneficial compared to the business-as-usual energy system. Hence, the current debate between leaders should reflect a combination of these two main challenges.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction
If temperature increases are to be held between 2 and 2.4 °C, the concentration of CO2 equivalents in the atmosphere should be kept below between 445 and 490 ppm, according to the most recent report from the United Nations Intergovernmental Panel on Climate Change from 2007, IPCC Fourth Assessment Report: Climate Change 2007 (AR4) [1]. As the concentration of greenhouse gases has already reached about 450 ppm CO2 equivalents in 2005, the IPCC has estimated that the discharge of greenhouse gases must peak as soon as possible, no later than the year 2015. Furthermore, the discharge of greenhouse gases must be reduced by 50–85% by 2050 compared with the year 2000. These reductions should lie closer to 85% than 50% to ensure a maximum of 2 °C increase. It is estimated that discharges per person must be reduced to between 0.8 and 2.5 tonnes of CO2 equivalents per person per year.

Even with a 2 °C increase, significant changes in the climates of individual regions and the world at large are inevitable. However, it can be ensured that climate change does not accelerate beyond the point where the effects become self-reinforcing. In August 2009, the concentration of CO2 in the atmosphere was 387 ppm [2]. The 2 °C increase estimate was based on a reduction to 350–400 ppm CO2 in the atmosphere. However, the latest IPCC report from 2007 is based on data from 2005, and the latest results found by James Hansen from NASA, among others, indicate that this level is no longer sufficient. The most recent observations and model calculations show that a reduction to 350 ppm CO2 in the atmosphere may be necessary, or even that anthropologically emitted climate gases must be avoided entirely in order to avoid irreparable damage [3–5]. In August 2009, the Chairman of the IPCC, recognised this point and stated that he now supports a 350 ppm CO2 maximum instead of the 450 ppm in AR4 from 2007.

In the USA, the European Union and China, among others, policies have been formulated with the objective of decreasing emissions. And in many nations around the world, policies to raise the share of renewable energy are being initiated as part of the global response to climate change. The major debate occurring in many countries is mostly concerned with the costs of mitigating greenhouse gases.

Often, the debate about measures to mitigate greenhouse gases between world leaders is intertwined with other issues. These issues reflect the current geopolitical situation, the current interdependency between countries in the demand and supply of energy products, or issues regarding the negotiations between developed and developing countries in e.g. the World Trade Organisation (WTO). While costs have always been a central issue in the climate debate, as well as concerns regarding human equality. Recently, since the Poznan COP14 conference and the Copenhagen Accord from the COP15, the debate on costs and on transactions between developed and undeveloped countries has also reflected the international financial crisis. Developing countries have used the situation to emphasise the need for further aid and support. Also some...
The first step towards a 100% renewable energy-system for Ireland

D. Connollya,*, H. Lundb, B.V. Mathiesenb, M. Leahey

a Department of Physics, University of Limerick, Ireland
b Department of Development and Planning, Aalborg University, Denmark

Abstract

In 2007 Ireland supplied 96% of the total energy demand with fossil fuels (7% domestic and 89% imported) and 3% with renewable energy, even though there are enough renewable resources to supply all the energy required. As energy prices increase and the effects of global warming worsen, it is essential that Ireland begins to utilise its renewable resources more effectively. Therefore, this study presents the first step towards a 100% renewable energy-system for Ireland. The energy-system analysis tool used was EnergyPLAN, as it accounts for all sectors of the energy-system that need to be considered when integrating large penetrations of renewable energy: the electricity, heat, and transport sectors. Initially, a reference model of the existing Irish energy-system was constructed, and subsequently three different 100% renewable energy-systems were created with each focusing on a different resource: biomass, hydrogen, and electricity. These energy-systems were compared so that the benefits from each could be used to create an 'optimum' scenario called combination. Although the results illustrate a potential 100% renewable energy-system for Ireland, they have been obtained based on numerous assumptions. Therefore, these will need to be improved in the future before a serious roadmap can be defined for Ireland's renewable energy transition.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

On a global scale in recent years the affects of climate have become more apparent, new fossil fuel reserves have become scarce, and energy prices have reached all-time highs. Meanwhile in Ireland, approximately 93% of the energy used for electricity generation in Ireland is fossil-fuel based, with 9% of this energy wasted due to transformation losses [1]. Also, approximately 89% of the total fuel consumed in Ireland is imported, which is an extremely volatile situation in the current economic climate [1]. In contrast to fossil fuels, Ireland has an abundant renewable energy resource [2,3] and hence under European Commission regulations, Ireland must supply 16% of the total energy requirement from renewable resources by 2020 [4]. With this in mind, it is essential that Ireland identifies the most effective transition from a fossil-fuel to a renewable energy-system (RES). Therefore, the aim of this work is to evaluate how Ireland can make this transition to a RES. Also, as the Irish energy-system is very similar to those that exist in most developed countries [5], the results obtained in this investigation reflect the changes necessary in a number of other energy-systems also. In addition, the Irish energy-system is an excellent laboratory for experimenting with new technologies as it is a relatively small country with 4.4 million people, it is an island which makes it specifically attractive for the implementation of alternative transport technologies such as electric vehicles, and it has an abundant resource of renewable energy in the form of wind, wave, tidal, solar, and biomass [2,3].

To date, a number of analyses have been carried out on the feasibility of integrating renewable energy onto the Irish electric grid. In 2003, Gardner et al. [6] investigated the effects of more wind energy on the electricity grid in Ireland and Northern Ireland, concluding that there is no technical limit on the wind penetration feasible, but instead costs are the limiting factor. Therefore, Garner et al. identified the most costly aspects of increasing the wind penetration as transmission reinforcement, wind curtailment, capital costs, and operating costs. In 2004, ESB National Grid [7] also analysed the costs associated with increasing the wind penetration in Ireland, but in addition this report also investigated the effects of large wind-penetrations on conventional generation. The report concluded that increasing the wind penetration in Ireland from 0% to 11.7% would increase the total generation costs by €196 million, and would minimally affect baseload plant. However, peaking and mid-merit power plants would be affected as the wind penetration increases due to their more frequent start-ups, increased ramping, and lower capacity factors. Finally, in 2007, Meibom et al. [8] modelled the Irish electricity grid using the WILMAR energy tool [9]. The objective was to identify the effects of large wind-penetrations on the island of Ireland in relation to overall...
A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources

I.G. Masona,*, S.C. Pageb, A.G. Williamsonc

aDepartment of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
bDepartment of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
cDepartment of Chemical and Process Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand

\textbf{ARTICLE INFO}

Article history:
Received 22 December 2009
Accepted 8 March 2010
Available online 18 April 2010

Keywords:
Electricity
Generation
Renewable

\textbf{ABSTRACT}

The New Zealand electricity generation system is dominated by hydro generation at approximately 60% of installed capacity between 2005 and 2007, augmented with approximately 32% fossil-fuelled generation, plus minor contributions from geothermal, wind and biomass resources. In order to explore the potential for a 100% renewable electricity generation system with substantially increased levels of wind penetration, fossil-fuelled electricity production was removed from an historic 3-year data set, and replaced by modelled electricity production from wind, geothermal and additional peaking options. Generation mixes comprising 53–60% hydro, 22–25% wind, 12–14% geothermal, 1% biomass and 0–12% additional peaking generation were found to be feasible on an energy and power basis, whilst maintaining net hydro storage. Wind capacity credits ranged from 47% to 105% depending upon the incorporation of demand management, and the manner of operation of the hydro system. Wind spillage was minimised, however, a degree of residual spillage was considered to be an inevitable part of incorporating non-dispatchable generation into a stand-alone grid system. Load shifting was shown to have considerable advantages over installation of new peaking plant. Application of the approach applied in this research to countries with different energy resource mixes is discussed, and options for further research are outlined.

\textcopyright 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Increased reliance on electricity generation from renewable resources is a key and urgently required strategy for reducing anthropogenic greenhouse gas (GHG) emissions worldwide. High per capita emitting countries like New Zealand have been signalled to require 20–40% emissions reductions by 2020, rising to 80–90% by 2050, based on global equity considerations e.g. Stern (2008), although the New Zealand government has since committed to a lesser target of 10–20% reduction on 1990 levels by 2020 (NZ Government, 2009). As the combustion of fossil fuels for electricity generation accounted for approximately 22% of total global GHG emissions (10.5 Gt-CO\textsubscript{2}) in 2002 (IPCC, 2005, 2007) and is rising, the displacement of fossil fuel emissions in the global electricity sector is an essential goal. Furthermore, emissions from transport at 13.1% of total global GHG emissions in 2004 (IPCC, 2007), are also significant. The New Zealand electricity and heat sector generated 8.8% of total emissions in 2007, and transport contributed 19.9% of total emissions (MFE, 2009). Given the attraction from an energetics point of view of long-term electrification of transport e.g. Lund and Kempton (2008), renewable electricity systems offer a timely, long-term and potentially sustainable pathway for substantially reducing GHG emissions across these two important sectors. System level efficiencies for electrical energy chains are significantly better than those for liquid fuel to propulsion energy chains e.g. Page and Krumdieck (2009) hence overall energy efficiency gains will arise from such a transition. Whilst continued use of fossil fuels for electricity generation in combination with carbon capture and storage (CCS) has been widely touted as a potential solution, and recently incorporated in the UK low carbon economy transition plan (UK Government, 2009), serious questions have been raised concerning the energy penalty, long-term storage risks and potential timeliness of this technology both globally, and for New Zealand (Page et al., 2008, 2009). Furthermore CCS is not applicable to mobile emissions sources such as motor vehicles.

In New Zealand, hydro generation has historically been, and remains, the dominant form of installed electricity generation capacity (Fig. 1). Hydro provided 55% of electricity production in 2007 (Fig. 2), of which 74% was generated in the South Island (MED, 2008). The majority of demand is located in the North

*Corresponding author. Tel.: +64 3 366 7001; fax: +64 3 364 2758.
E-mail address: ian.mason@canterbury.ac.nz (I.G. Mason).

0301-4215/$ - see front matter \textcopyright 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.enpol.2010.03.022
Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050

H. Lund *, B.V. Mathiesen

Department of Development and Planning, Aalborg University, Fåbagerstræde 13, DK-9220 Aalborg, Denmark

Article info

Article history:
Received 12 November 2007
Available online 16 May 2008

Keywords:
Energy system analysis
Renewable energy systems
Denmark

Abstract

This paper presents the methodology and results of the overall energy system analysis of a 100% renewable energy system. The input for the systems is the result of a project of the Danish Association of Engineers, in which 1600 participants during more than 40 seminars discussed and designed a model for the future energy system of Denmark. The energy system analysis methodology includes hour by hour computer simulations leading to the design of flexible energy systems with the ability to balance the electricity supply and demand. The results are detailed system designs and energy balances for two energy target years: year 2050 with 100% renewable energy from biomass and combinations of wind, wave and solar power; and year 2030 with 50% renewable energy, emphasising the first important steps on the way. The conclusion is that a 100% renewable energy supply based on domestic resources is physically possible, and that the first step towards 2030 is feasible to Danish society. However, Denmark will have to consider to which degree the country shall rely mostly on biomass resources, which will involve the reorganisation of the present use of farming areas, or mostly on wind power, which will involve a large share of hydrogen or similar energy carriers leading to certain inefficiencies in the system design.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In a recent report from 2007, the United Nations’ International Panel of Climate Change, IPCC, emphasises the many indicators on climate change and recommends that the world society respond to the serious problems. In the US, the European Union and China, policies have been formulated with the objective of decreasing CO₂ emissions. And in many nations around the world, policies to raise the share of renewable energy are being initiated as part of the global response to climate change [1–10]. In March 2007, the European Union defined a target of 20% renewable energy for year 2020. In Denmark, a target of 30% renewable energy for year 2025 has just been proposed by the Danish Government.

In Denmark, on the one hand, CO₂ emissions per capita have for many years been among the highest in the world on the other, an active energy policy has already led to remarkable results in the decrease of emissions [11]. For a period of 35 years, Denmark has managed to stabilise the primary energy supply, which is the same today as it was before the first oil crises in the early 70s. Furthermore, the share of oil is much smaller today. 20% of the electricity is supplied by wind power and 15% of the primary energy supply is renewable energy including biomass and waste incineration. Moreover, savings and efficiency measures have constituted an important part of the policy, leading to a situation today in which 50% of the electricity is produced by combined heat and power (CHP).

In his opening speech to the Danish Parliament in October 2006, the Prime Minister announced the long-term target of Denmark: 100% independency of fossil fuels and nuclear power. A few months later, the Danish Association of Engineers (IDA) put forward a proposal on how and when to achieve such targets. This proposal was the result of the “Energy Year 2006”, in which 1600 participants during more than 40 seminars discussed and designed a model for the future energy system of Denmark, putting emphasis on energy efficiency, CO₂ reduction, and industrial development. The proposal was presented as the IDA Energy Plan 2030 (see Fig. 1).

The design of 100% renewable energy systems involves at least three major technological changes [12]: energy savings on the demand side [13,14], efficiency improvements in the energy production [15,16], and the replacement of fossil fuels by various sources of renewable energy [17,18]. Consequently, large-scale renewable energy implementation plans must include strategies for integrating renewable sources in coherent energy systems influenced by energy savings and efficiency measures [19–26].