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a b s t r a c t

A new generator portfolio planning model is described that is capable of quantifying the carbon emis-
sions associated with systems that include very high penetrations of variable renewables. The model
combines a deterministic renewable portfolio planning module with a Monte Carlo simulation of system
operation that determines the expected least-cost dispatch from each technology, the necessary reserve
capacity, and the expected carbon emissions at each hour. Each system is designed to meet a maximum
loss of load expectation requirement of 1 day in 10 years. The present study includes wind, centralized
solar thermal, and rooftop photovoltaics, as well as hydroelectric, geothermal, and natural gas plants. The
portfolios produced by the model take advantage of the aggregation of variable generators at multiple
geographically disperse sites and the incorporation of meteorological and load forecasts. Results are
presented from a model run of the continuous two-year period, 2005e2006 in the California ISO
operating area. A low-carbon portfolio is produced for this system that is capable of achieving an 80%
reduction in electric power sector carbon emissions from 2005 levels and supplying over 99% of the
annual delivered load with non-carbon sources. A portfolio is also built for a projected 2050 system,
which is capable of providing 96% of the delivered electricity from non-carbon sources, despite a pro-
jected doubling of the 2005 system peak load. The results suggest that further reductions in carbon
emissions may be achieved with emerging technologies that can reliably provide large capacities without
necessarily providing positive net annual energy generation. These technologies may include demand
response, vehicle-to-grid systems, and large-scale energy storage.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In the United States, approximately 40% of the total annual
carbon dioxide emissions are associated with the generation of
electricity [1]. Significant reductions in carbon emissions within the
United States will therefore require a dramatic shift in the
composition of the electric power sector. Several technologies
already exist to replace generation from coal and natural gas with
cleaner alternatives, but the variability and uncertainty in many
renewable resources is anticipated to pose political, financial, and
technological challenges to large-scale grid integration. Without
practical examples of large systems with very high penetrations of
variable generation, models must be employed to predict the
behavior of these systems. To date, most grid integration models
have focused on wind power, though some have included solar
technologies. An extensive review of wind power integration
: þ1 650 7237058.

All rights reserved.
studies across Europe can be found in [2] and a review of current
energy system modeling tools can be found in [3].

Early attempts at modeling grid integration of variable genera-
tion were based on load duration curve analyses, similar to those
used for portfolios of conventional generators [4e6]. More recently,
however, grid integration has been formulated primarily as an
optimization problem with load balance constraints over multiple
time steps. Deterministic load balance models have been used to
develop scenarios with high penetrations of wind power within
different types of preexisting generation portfolios [7], to study the
affects of aggregating multiple geographically disperse wind farms
[8], and to analyze the operational costs associated with intrahour
fluctuations of wind power output [9]. Other grid integration
studies have explored how the complementary nature of different
renewable energy resources (including wind, solar, wave,
geothermal, and/or hydroelectric power) can be used to best match
a time-varying power demand [10e16].

The stochastic nature of wind and solar complicates the
treatment of system reliability in grid integration studies. Proba-
bilistic models are already used to account for forced outages of
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conventional plants in analyzing system reliability, but these have
yet to be widely applied to variable generators with uncertain
resource availability. Models that assume that generation from
wind and solar facilities is completely deterministic may neglect
the additional strain that forecast uncertainty adds to the system,
while those that do not includemeteorological forecasts potentially
overestimate the costs associated with grid integration. These
issues are subtleties for low penetrations of variable renewables,
but may become major design factors for highly intermittent
generation portfolios. The WILMAR model includes a particularly
robust treatment of the uncertainty in wind power availability by
formulating the grid operation problem as a stochastic linear
program [17,18]. In the WILMARmodel, wind power forecast errors
are accounted for by producing a number of potential wind power
forecasts via a Monte Carlo method, similar to the methods used in
this study for producing wind speed, irradiance, load, and forced
outage realizations. Other studies with treatments of the stochastic
nature of wind power in grid integration include Refs. [19e21]. Few
studies have included an analysis of the carbon emissions associ-
ated with grid integration. Katzenstein and Apt provide one
exception, with their study on the emissions associated with
firming up wind and solar power with natural gas to provide
baseload power [22].

The goal of the present study is to build on this body of work to
develop a new generator portfolio planning tool. The model pre-
sented in this study utilizes the aggregation of geographically and
technologically diverse variable renewables and meteorological
and load forecasts to design systems capable of meeting time-
dependent loads with a specified reliability. These systems are
characterized by the composition of their generator portfolios and
the expected carbon emissions associated with system operation.
The model provides analyses of systems with very high penetra-
tions of renewables and quantifies the ability of variable renew-
ables to both displace carbon-based dispatchable generation and to
reduce the carbon emissions associated with electric power
generation.
2. Methodology

The model discussed here combines a deterministic planning
optimization module with a Monte Carlo simulation of system
operation (See Fig. 1). These modules are described in detail in
Sections 2.4 and 2.5. Given historical or modeled system-wide
hourly load data and site-specific hourly wind speed, irradiance,
and temperature data, the model produces a renewable portfolio
and calculates the following output: the installed capacities and
capacity factors of renewable and conventional generators; the
expected annual system-wide emissions; the expected levelized
cost of generation; and additional information about system
Fig. 1. Schematic of m
operation, including wind and solar curtailment statistics. Both
modules rely on simplified linear models of each of the generator
technologies, which are described in the following sections.
Generation technologies are classified as baseload, dispatchable, or
variable, depending on their availability and flexibility.

2.1. Baseload generators

Baseload generators in the model operate at a constant power
output that is equal to the installed capacity, except in the case of
forced outages in the stochastic simulation. In the present study,
only geothermal power is assumed to operate as baseload.
Geothermal generation in the deterministic optimization is there-
fore equal to the total geothermal installed capacity, which is an
optimization variable subject to a constraint on the total resource
availability.

2.2. Dispatchable generators

The term dispatchable is applied to conventional technologies
that can be used to balance the load. In this study, these technol-
ogies include natural gas and hydroelectric plants. The fleet of
natural gas generators is represented by two types of plants that
differ in their day-ahead scheduling schemes. Class I plants are
scheduled on a day-ahead basis in order to load balance given day-
ahead meteorological and load forecasts. These plants are intended
to deal with the forecastable variability of the load and generation.
Class II plants, which are included to account for the stochastic
nature of the load and generator availability, operate as spinning
reserves, capable of responding to real-time meteorological and
load forecasting errors. The available capacity of Class II plants in
each hour is the minimum of the Class II installed capacity and the
total forecasted load in that hour. The roles of Class I and II natural
gas plants are illustrated by a comparison of the scheduled gener-
ation with real-time dispatch in Fig. 2. Both classes of plants are
capable of ramping down to 0 and up to the maximum scheduled
capacity in each time step. The emissions associated with the
operation of the natural gas fleet are calculated using an empiri-
cally-derived emissions equation for the Westinghouse 501FD
turbine from [22]:

EðtÞ ¼ 0:2528PðtÞ þ 17:46NðtÞ (1)

where E(t) is the emissions rate in tCO2/hr, P(t) is the power output
in MW, and N(t) is the number of turbines operating at time t,
which is described by Eq. (2).

NðtÞ ¼ ceil
�
PðtÞ
Pturb

�
(2)
odeling approach.



Fig. 2. Comparison of possible scheduled generation with Class I natural gas plants and one possible corresponding real-time dispatch. Class II natural gas plants are dispatched
in real-time to mitigate day-ahead forecast errors.
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where Pturb is the average turbine size in MW. Both types of natural
gas plants assume a ramp rate limit consistent with the specifica-
tions of the Westinghouse 501FD turbine. Note that the natural gas
plants considered by the deterministic planning optimization are
assumed to operate as spinning reserves in order to ensure
convexity, but the installed capacities, annual generation, and
emissions of both classes of plants are recalculated in the Monte
Carlo simulation.

Hydroelectric plants are broken into three classes: large-scale
plants with storage, small hydroelectric plants, and pumped-
storage facilities. Output from large-scale hydroelectric plants is
scheduled on a day-ahead basis and is constrained by the total
installed capacity of large hydroelectric plants and the estimated
historical daily generation on that day. This ensures that the solu-
tion accounts for the seasonal fluctuations in the availability of
hydroelectric power due to both meteorological effects and human
use. Small hydroelectric plants are assumed to operate as baseload
generators on each day, where the daily power output changes
seasonally based on historical data. Output from pumped-storage
facilities in the model is limited by the total installed capacity of
pumped-storage and by an additional constraint that requires that
the total daily generation is equal to zero for all days in the simu-
lation period. The model assumes no additional development of
hydroelectric facilities beyond 2006.
2.3. Variable generators

Variable generator technologies include wind power, solar
thermal generation with thermal energy storage, and distributed
photovoltaics. The wind generation model uses a REPower MM92
turbine power curve to compute maximum power output per
turbine at each hour from 100-m wind speed data [23]. The model
also assumes that wind power can be curtailed on an hourly basis in
order to balance the system load. Future studies will include energy
storage as an alternative to curtailment. In both the deterministic
planning model and the dispatch model these assumptions reduce
to the simple linear constraint:

PWi ðtÞ � Wi�gðviðtÞÞ (3)

where PWi ðtÞ is the power output at the ith wind farm at time t,Wi is
the installed capacity of the ith wind farm, g(v) is a function that
maps the wind speed to the fraction of maximum power output for
a single turbine based on the turbine’s power curve, and vi(t) is the
100-m wind speed.
The solar thermal model assumes that all solar thermal plants
utilize single-axis tracking parabolic trough technology, with
thermal energy storage (TES) systems that can dump excess energy
if necessary. The model reduces to the following linear constraint:

SðtÞ � hSSðt � 1Þ �
X
j

"
hcollectAjI

ST
j ðtÞ �

PSTj ðtÞ
hturb

#
(4)

where hS is the fraction of the stored energy that remains after one
time step, hcollect is the fraction of the collectable solar power that is
transferred to steam, hturb is the turbine efficiency, Aj is the area of
the jth solar field, PSTj ðtÞ is the power output, and S(t) is the total
energy stored in all the TES systems, which is approximated from
experimental data on a single thermocline tank designed for use
with parabolic trough solar thermal systems [24]. Both the turbine
size and the array size are optimization variables, so that turbines
can be undersized or oversized for the solar array. The irradiance
that is collected by the parabolic trough array, ISTj ðtÞ, is a function of
the direct normal irradiance (DNI), the location, and the time of
year (see Supplemental Information and [25] for more details). The
present study assumes that the TES storage capacity is large enough
to provide 3 h of rated power output. A 2-h time delay between
sunrise and the availability of thermal energy from the collector
field is also introduced to allow the system to warm up each
morning.

The model includes residential rooftop photovoltaics that are
south-facing at a tilt angle equal to the latitude and commercial
photovoltaics that have zero tilt angles. Photovoltaic power output
depends only on the installed capacity, the irradiance, and the
temperature at each site:

PPV ðtÞ ¼
X
j

VjIPVj ðtÞhTj ðtÞhPV
1000 W=m2 (5)

where Vj is the installed capacity (in terms of dc rated power at
standard test conditions) at the jth photovoltaic site, IPVj ðtÞ is the
irradiance inW/m2 that strikes the panels at time t at this site, hTj ðtÞ
is an efficiency parameter that is related to temperature losses, and
hPV is an efficiency parameter that accounts for losses associated
with mismatch, dirt, and the inverter. The irradiance, IPVj ðtÞ, is
a function of the direct normal irradiance, the diffuse horizontal
irradiance (DHI), the site location, the time of year, and the tilt angle
(see Supplemental Information and [25] for more details).

Because irradiance data are not available for every potential
photovoltaic development site and because inclusion of all
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potential sites would substantially increase the problem size, the
model aggregates available solar data by county and assumes that
the same fraction of the development potential is realized in each
county. This reduces the photovoltaic model to two variables in the
planning optimization problem: the total system-wide installed
capacities of residential and commercial rooftop photovoltaics.
Power output from photovoltaic systems is not subjected to
transmission and distribution losses in the model, as it is assumed
that most of the generation is used at or near the generation site.

2.4. Deterministic renewable portfolio planning model

The deterministic renewable portfolio planning problem is
posed as a linear program. For low-cost portfolios, the total annual
cost of generation (including annualized capital cost, fixed and
variable O&M costs, and fuel costs) is minimized. Alternatively,
low-carbon portfolios can be produced by minimizing the esti-
mated annual carbon emissions, a linear function of the installed
capacity of and the annual generation from natural gas plants. The
minimization is subject to a power balance constraint that ensures
that the generation (minus a constant fractional transmission and
distribution loss term) equals the load at every hour. The optimi-
zation variables include: total installed capacities of each genera-
tion technology, site-specific installed capacities of wind and solar
thermal plants, hourly generation from each technology, and
hourly total energy stored in the TES systems at the solar thermal
plants. Additional linear constraints are included in the renewable
portfolio optimization based on the generator models described in
the preceding sections and land/resource availability data. The
linear program is solved using CVX, a modeling system built on top
of MATLAB that solves convex optimization problems [26,27].

Because the hourly generation from each technology is a vari-
able in the optimization, the size of the optimization scales with the
length of the time period under consideration. Rather than
considering all time steps in the simulation time horizon, the
problem size is reduced significantly by selecting 20 random days
to characterize typical system behavior and eight specific days that
contain hours with extreme meteorological and load events. To
calculate annual cost and emissions, weights for each day are
assigned using least-squares to best match the annual load, wind
speed, and irradiance distributions.

2.5. Monte Carlo dispatch simulation

The dispatch module uses the installed capacities from the
deterministic planning optimization and a set of load and meteo-
rological realizations built from historical data, modeled data, and
simple statistical models to simulate potential dispatch scenarios.
The module includes a day-ahead scheduling optimization and an
hourly dispatch optimization. The day-ahead 24-h schedule of Class
I natural gas, large-scale hydro, and pumped-storage hydro is
produced by solving a least-cost dispatch optimization problem at
1 pm of each day in the simulation using meteorological and load
forecasts for the following day. An additional constraint requires
that no more than 65% of the scheduled generation in each hour
come from these inflexible generators in order to prevent over-
generation. At each hour, the hourly dispatch optimization then
determines the dispatch schedule for the next 24 h that minimizes
the expected cost of generation based on meteorological and load
forecasts, scheduled generation, and current conditions (which give
rise to forecast errors and forced outages). The first hour of the
dispatch solution gives the real-time dispatch for the hour of
interest. An additional term in the dispatch optimization allows for
a relatively expensive deficit in hours when the available genera-
tion does not meet the demand. This hourly deficit is used after the
dispatch simulation completes to calculate the capacity of and
generation from Class II natural gas plants that is required for the
system to meet the load with a loss of load expectation of 1 day in
10 years.

The Monte Carlo simulation relies on the assumption that
meteorological processes, demand fluctuations, and forced outages
can be approximated as Markov chain processes. Given this
assumption, simple statistical models are used to produce meteo-
rological and load realizations for the Monte Carlo simulation.
Wind speed realizations are produced using an algorithm that
includes treatments of the temporal and geographic correlations
and any diurnal character present in the wind speed dataset.
Because statistical studies of day-ahead wind speed forecasts have
primarily reported the error of the mean daily wind speed forecast,
the wind speeds for the kth realization are produced first by
randomly generating the mean daily wind speed, ui,k(d) on each
day, d, and each wind development site, i:

ui;kðdÞ ¼ buiðdÞ þ ~xi (6)

where u iðdÞ is the forecastedmean daily wind speed, ~xiwNð0; s2W Þ ,
and sW is the presumed rms error of the day-aheadmean daily wind
speed forecasts (25%). Realizations of the random variable ~xi are
generated using the Cholesky decomposition of the correlation
matrix built from site-specific mean daily wind speed data. This
approach maintains any geographical correlations due to proximity
or weather phenomena that are present in the wind dataset.
Diurnal character is imposed by a function, ai(t), which gives the
monthly-averaged ratio of the wind speed in the hour of the day
corresponding to the tth time step to the mean daily wind speed.
Hourly wind speeds, vi(t), are generated from the mean daily wind
speed realizations and ai(t), as well as a term that considers the
deviation from ai(t � 1) in the prior time step to preserve temporal
correlations, and a random variable term:

viðtÞ ¼ bi
�
viðt � 1Þ � ui;kðdðt � 1ÞÞaiðt � 1Þ�

þ ui;kðdðtÞÞaiðtÞ þ ~yi (7)

where ~yiwNð0; s2y;iÞ and bi and ay,i are calculated by a least-squares
fit of the model to the hourly wind dataset. The day-ahead forecast
for each hour, bviðtÞ, is produced using the samemodel, but using the
forecasted mean daily wind speed and excluding the random
variable term:

bviðtÞ ¼ buiðdðtÞÞaiðtÞ þ bi

hbviðt � 1Þ � buiðdðt � 1ÞÞaiðt � 1Þ
i

(8)

Maintaining the appropriate geographical and temporal corre-
lations in the irradiance model is complicated by the fact that both
the direct normal irradiance (DNI) and the diffuse horizontal irra-
diance (DHI) are required for the calculation of power output from
solar systems, while most studies of solar forecasting accuracy
report the errors in the mean daily global horizontal irradiance
(GHI). To account for these inconsistencies, the model assumes that
the system operator is provided with a day-ahead forecast of the
mean daily GHI and builds forecasts of hourly data from historical
data and a simple model. Rather than approximating the DNI and
the DHI from the GHI and a clear-skymodel, a statistical approach is
employed to account for the temporal and geographical variations
in both the clear-sky irradiance and the effects of cloud cover. Mean
daily GHI realizations are produced using a method similar to that
used to calculate mean daily wind speeds, with the Cholesky
decomposition of the correlation matrix formed from the historical
irradiance data. A statistical model based on several years of irra-
diance data is then used to produce the hourly DNI on each day, and
a location- and time-dependent affine function is used to generate
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the DHI from the DNI on each hour at each site. The details of this
statistical approach are described in the Supplemental Information.

The production of load realizations is simplified by the avail-
ability of historical day-ahead hourly load forecast data from the
California ISO. The model assumes that the load at each time step, L
(t) can be approximated by a function of the forecasted load, bLðtÞ,
the forecast error in the prior time step, and a random variable
term:

LðtÞ ¼ g1
bLðtÞ þ g2

h
Lðt � 1Þ � bLðt � 1Þ

i
þ ~z (9)

where ~zwNð0;s2L Þ , and g1, g2, and sL are calculated using a least-
squares fit of the model to historical hourly load and load forecast
data.

Forced outages of conventional generators are included in the
simulation by sampling the binomial distribution. For a generator
type b, the available power generation in the kth realization, Pb,k(t) is
calculated as:

Pb;kðtÞ ¼ ~nbP
unit
b (10)

where Punitb is the average generator unit size and ~nb is a binomially-
distributed random variable:

~nbwb

 
ceil

"
Ptotb

Punitb

#
;1� qb

!
(11)

This distribution depends on the forced outage rate, qb, and the
total installed capacity, Ptotb . This method assumes that forced
outages are independent events.
2.6. Carbon emissions analysis

With the output of the model, a more detailed analysis of the
carbon emissions reductions can be undertaken using the frame-
work presented in [22]. Katzenstein and Apt describe a parameter,
h, which represents the fraction of expected emissions reductions
achievable from the displacement of carbon-based generation with
wind and solar power. They found that h is approximately 76% for
systems in which natural gas is used with wind and solar plants to
provide baseload power. That is, for a 1% increase in the energy
penetration of wind or solar, the carbon emissions are reduced by
only 0.76% due to the emissions associated with spinning reserves.
Applying a similar methodology to the portfolios presented in this
study, it is possible to quantify the fraction of the expected emis-
sions reductions than can be achieved in stochastic systems in
which variable renewables are used with a diverse conventional
generating portfolio to supply a time-dependent load. Because the
generator portfolios are more diverse in this study, the baseline
expected emissions reductions are determined by making the
deterministic assumption, rather than scaling the emissions
according to the penetration factor.

To sample different penetration levels, the capacities of wind
and solar produced for the low-carbon portfolios are uniformly
scaled by factors between 0 and 1 prior to running the dispatch
simulation. The generation composition and emissions data
provided by these simulations is used to build a plot of the carbon
intensity (in tCO2 per GWh) versus the penetration of wind and
solar power. The error associated with the deterministic assump-
tion is determined by comparing the slopes of the emissions versus
penetration curves derived from the stochastic simulations and
from the deterministic analyses. The deterministic simulations are
run using the same renewable portfolios that are used to build the
stochastic emissions curve. However, the dispatch simulation
considers only one realization inwhich themeteorological and load
conditions match the input hourly data and day-ahead forecasts
have zero error.

3. Model inputs and data

In this study, the model was run for the California ISO operating
area using hourly data from 2005 to 2006. All inputs and data were
obtained from public sources. Historical hourly forecasted and
actual load data was obtained from the California ISO via the OASIS
database [28]. Projected 2050 load data was approximated by
applying an affine function to the 2005 and 2006 load data to
match a peak demand that grows at an annual rate of 1.12% and an
annual generation that grows at a rate of 0.82% per year from 2010
to 2050 [29]. Modeled wind speed data were obtained from the
Western Wind Dataset (WWD) [30]. This dataset includes hourly
100-m wind speed data produced using the Weather Research and
Forecasting (WRF) model with a 2 km � 2 km resolution, regridded
to 1 arc-second. The WWD provides data at sites chosen based on
their developability, proximity to planned transmission projects,
and wind power density [31]. The model presented here considers
the 200 largest clusters of aggregated WWD sites in California and
assumes the same capacity density assumed in the WWD
(7.5 W-installed/m2). This amounts to a maximum potential wind
development of 73.6 GW over approximately 10,000 km2 (2.5% of
California’s total land area).

Solar irradiance data for 2005 were obtained from the
1991e2005 National Solar Radiation Database (NSRDB), which was
derived from meteorological data from the National Climatic Data
Center and the Meteorological-Statistical (METSTAT) model [32].
Data were obtained for all NSRDB stations in California. Solar data
for 2006 were obtained from the Solar Anywhere database [33],
which provides data produced using the SUNY model with
a 10 km � 10 km resolution [34,35]. Data were selected from grid
boxes containing the California NSRDB stations.

Potential solar thermal sites were chosen based on the locations
and sizes of proposed large-scale solar projects throughout Cal-
ifornia [36] and the Solar Energy Study Zones identified by the
Bureau of Land Management as suitable sites for the development
of solar [37]. The maximum installed capacity at each site was
calculated assuming a ratio of 47.2 W-installed/m2, which is
consistent with data from the SEG VI system [38], yielding a total
potential capacity of 76.2 GW over 1600 km2 (0.4% of California’s
land area). For each solar thermal site, irradiance data are used from
the nearest NSRDB station. For the photovoltaic study, the average
hourly irradiance for each county was calculated from the hourly
irradiance data at the NSRDB stations in each county in the
California ISO operating area and weighted according to the
county-wide development potential [39] in order to construct
the state-wide aggregated solar PV hourly resource. This yielded
amaximum capacity of residential and commercial photovoltaics of
28.2 GW.

Temperature data are also required in order to calculate the
expected output of photovoltaic systems. Because hourly temper-
ature data are not publicly available for the time period of interest,
a simple linear model was built to approximate the hourly
temperature as a function of the temperature in the prior hour, the
average daily temperature, and the GHI. This model was built using
hourly temperature and irradiance data from the NSRDB Typical
Meteorological Year [40].

The hydroelectric generation model requires as input the
approximate daily generation from both large-scale and small-scale
hydroelectric plants. These data are not publicly available, but can
be approximated from the daily discharge for power generation
data provided by the California Department of Water Resources
(DWR) through the California Data Exchange Center [41] and



Table 1
Cost data used for the 2005 scenarios. All costs are presented in 2006$.

Technology Capital
($/kW)

Fixed O&M
($/kW-yr)

Variable O&M
($/MWh)

Fuel
($/MBtu)

Reference

Hydroelectric 1408 13.57 3.41 0 [21]
Geothermal 3300 253.9 0 0 [21]
Natural Gas 792 14.62 3.05 6.53 [21,46]
Wind 1675 11.68 7.11 0 [21]
Photovoltaic 5335 74.69 0 0 [21]
Solar Thermal
Solar Field 1839 0 0 0 [47]
Power Plant 2321 0 27.37 0 [47]
Storage 22.42a 53.35a 0 0 [24]

a Storage capital cost is in $/kWh and fixed O&M cost is in $/kWh-yr.
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nameplate capacity data from the Bureau of Reclamation [42]. The
total state-wide installed capacities of conventional and pumped-
storage hydroelectric plants were obtained from the Energy Infor-
mation Agency [43] and the proportion of the conventional
capacity that qualifies as small hydroelectric power was approxi-
mated by solving for the capacities that best reproduce the capacity
factor obtained from [43], given the generation profiles approxi-
mated from the DWR discharge data. An additional 7,000 MW of
large-scale hydroelectric power was added to approximate the
imported generation from the Pacific Northwest [44]. These
assumptions resulted in a total capacity of in-state and imported
hydroelectric power of 20.8 GW.

Geothermal resource data for California were obtained from
a California Energy Commission study that includes resource esti-
mates for dry steam, dual flash, and binary plants totaling to
a maximum capacity of 4825 MW [45]. Cost data for the 2005
scenarios were obtained from the literature and are listed (with
references) in Table 1. Cost projections for the 2050 scenarios were
produced by scaling the 2005 cost data by the same ratios used in
the ReEDS study to project from 2005 to 2050 [21]. The 2050
scenario also includes a 100$/tCO2 cost of carbon. Most notable in
the 2050 cost projection is a 70% decrease in the capital cost of
distributed photovoltaics.

4. Results and discussion

The model was run in both least-cost and least-carbon modes
for two load and cost function scenarios to produce low-cost and
low-carbon portfolios for each scenario. The 2005 scenario was
simulated using the cost functions in Table 1 and the historical load
data from the California ISO. A 2050 scenario was also simulated
using the 2050 projected cost functions and projected load data
described in Section 3. These portfolios are not intended to repre-
sent forecasts, but are instead used to elucidate planning and
Table 2
System-level model results from low-carbon and low-cost portfolios produced for 2005 a
power sector in 2005. Results for the 2005 and 2050 scenarios are averaged over the two-y
technologies include wind, solar thermal, photovoltaic, all hydroelectric, and geotherm
“Renewable” technologies include wind, solar thermal, photovoltaic, small hydroelectric
Uncertainties are derived from the standard deviations of the model output across all M

2005 Scenarios

Low-CO2 Low-cost

Delivered Energy Composition
CO2-free Generation (%) 99.8 � 0.2 39.9 � 0.1
“Renewable” Generation (%) 78.6 � 0.2 18.8 � 0.1
Carbon Emissions
Annual Emissions (�106 tCO2) 10.2 � 0.1 58.2 � 0.1
CO2 Intensity (tCO2/GWh) 43.2 � 0.1 247 � 1
Generator Statistics
Total Capacity (GW) 174.3 � 0.1 68.4 � 0.1
Average Capacity Factor (%) 16.6 � 0.1 42.4 � 0.1
operational issues that arise for systems with different load char-
acteristics and penetrations of variable renewables. System-level
results from the four simulations are shown in Table 2. The energy
and capacity compositions of the four portfolios are shown in Fig. 3
(a) and (b), respectively. The low-carbon portfolio for 2005 is
marked by substantial increases in the installed capacities of wind
(73.6 GW) and solar (48 GW) power. Most of the generation from
natural gas in the low-cost portfolio is displaced by wind power in
the low-carbon portfolio, as solar power yields low capacity factors
due to curtailment in hours when wind power alone provides
sufficient generation to meet the load. The 2050 low-cost portfolio
boasts significant installed capacities of wind (35.1 GW) and solar
(36.7 GW) due to the projected reduction in costs of the these
technologies and the high cost of carbon, while the 2050 low-
carbon portfolio requires the development of all potential wind and
solar capacity.

The 2005 low-carbon portfolio is capable of meeting the 2005
California ISO demand with 99.8 � 0.2% of the energy generated by
non-carbon-based technologies, while the 2050 low-carbon
scenario provides 95.9 � 0.4% of the delivered energy from non-
carbon-based technologies. The hourly generation mix on four
randomly selected days in this low-carbon 2050 simulation are
shown in Fig. 4. Both low-carbon portfolios are characterized by
very large system-wide generating capacities; the 2005 low-carbon
scenario requires over 2.5 times California’s actual generating
capacity in 2005. The significant increase in capacity that accom-
panies high penetration grid integration of variable renewables will
necessarily require substantial investments in updating and
expanding transmission and distribution infrastructure.

More specific results from the 2050 low-carbon portfolio,
including capacity, fraction of total annual generation, and capacity
factor for each type of generating technology are shown in Table 3.
The dramatic increase in installed capacity required to mitigate the
variability and uncertainty in generation in this low-carbon system
is a consequence of the relatively low capacity factors of wind and
solar and the large reserve requirements associated with their grid
integration. The capacity factors of wind and solar are further
reduced by allowing curtailment in hours when resource avail-
ability exceeds demand. The 2.6% capacity factor for natural gas
plants also indicates that mitigating intermittency with conven-
tional technology may require a new operating paradigm for dis-
patchable plants, in which reliable capacity is valued over energy
generation. The successful grid integration of very large-scale
intermittent renewables with conventional generating technology
will therefore likely require expanded capacity-based markets.

The model also determines that the installed capacity of natural
gas decreases only slightly between the low-cost and low-carbon
solutions, while the share of generation from natural gas decreases
nd 2050 scenarios, juxtaposed with the statistics from the actual California electric
ear simulation period and account only for the California ISO operating area. CO2-free
al. This category also includes nuclear and biomass for the actual 2005 portfolio.
, and geothermal. This category also includes biomass for the actual 2005 portfolio.
onte Carlo realizations, where it exceeds the precision of the reported data.

2050 Scenarios Actual 2005

Low-CO2 Low-Cost System [43]

95.9 � 0.4 64.6 � 0.4 49.7
82.8 � 0.4 51.4 � 0.4 11.8

35.9 � 0.1 68.9 � 0.1 54.7
94.2 � 0.1 181 � 1 273

281.7 � 0.1 182.0 � 0.1 66.1
16.5 � 0.1 25.6 � 0.1 34.6



a b 

Fig. 3. (a) Energy and (b) Capacity composition of each portfolio calculated using the full stochastic model. Solar power includes centralized solar thermal plants as well as
commercial and residential rooftop photovoltaics. Natural gas power includes both Class I and Class II plants. Hydropower includes in-state and imported large-scale, small-scale,
and pumped-storage hydro.

a b

c d

Fig. 4. Real-time power dispatch by generation technology on four days throughout the 2050 simulation period based on the low-carbon portfolio. The days were selected randomly
from each season.

Table 3
Generator fleet statistics by technology, calculated by the model for the 2050 low-
carbon portfolio. Uncertainties are derived from the standard deviations of the
model output across all Monte Carlo realizations unless this uncertainty is smaller
than the precision of the reported data.

Generating
Technology

Installed
Capacity (GW)

Share of
Generation (%)

Capacity
Factor (%)

Solar 110.5 24 � 1 10.1 � 0.4
Wind 73.6 48 � 1 30.3 � 0.8
Natural Gas 72.0 4.0 � 0.5 2.6 � 0.4
Geothermal 4.8 10.2 � 0.1 98.8 � 0.1
Hydroelectric 20.8 14.1 � 0.1 31.7 � 0.1
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dramatically (by over 99% in 2005 and 88% in 2050). Furthermore
these results demonstrate that the large capacities of dispatchable
generation that are required to balance the load in systems with
very high penetrations of variable renewables do not preclude
dramatic reductions in the carbon emissions associated with
system operation. The 2005 low-carbon portfolio achieves an 81%
reduction in electric power sector carbon emissions from 2005
levels and the 2050 low-carbon portfolio meets a 34% reduction in
emissions from 2005 levels.

The results from applying the carbon emissions analysis
described in Section 2.6 to the 2005 scenario are shown in Fig. 4.



Fig. 5. System-wide carbon dioxide emissions (per GWh of generated energy), as
a function of the energy penetration of wind and solar power in 2005e2006. The solid
line is a least-squares linear fit to results from the stochastic simulations with pene-
trations less than 60%. The dashed line is a least-squares linear fit to the results from
the deterministic simulations.
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The stochastic simulations suggest that for energy penetrations of
wind and solar less than 60%, the system-wide emissions can be
reduced by 2.8 tCO2/GWh for every 1% increase in the penetration
level. The deterministic simulations yield a carbon emissions
reduction rate of 3.7 tCO2/GWh per 1% of wind and solar penetra-
tion, suggesting that deterministic grid integration studies may
overestimate the achievable carbon emissions reductions by
approximately 33%. Exceeding a 60% energy penetration of wind
and solar in these simulations was inhibited by the inclusion of
additional non-carbon-based technologies like hydropower and
geothermal power, but as the installed capacities of wind and solar
continue to increase, the emissions can be further reduced to
43.2 tCO2/GWh due to a reduction in the natural gas reserve
requirements (Fig. 5).
5. Conclusions

A new Monte Carlo-based grid integration model has been
described that is capable of planning and providing analyses of
systems with large penetrations of variable renewables combined
with conventional generators that meet a time-dependent load
with a specified reliability. This model has been applied to the
California ISO operating area to identify a portfolio capable of
providing 99.8% of the 2005e2006 generation with non-carbon-
based technologies, including wind, solar thermal, photovoltaics,
geothermal, and hydropower. This system is expected to achieve an
81% reduction in electric power sector carbon emissions from 2005
levels. A comparison of the model results with deterministic
analyses shows that deterministic analyses may overestimate the
achievable carbon emissions reductions by approximately 33%.

The low-carbon systems described in this study require large
capacities of dispatchable generation with very low capacity
factors. As a consequence of the low capacity factor fleets required
by these systems, expanded capacity-based markets are expected
to aid in achieving high penetrations of variable renewables. The
large system-wide capacities of these systems will also require
significant investments in transmission and distribution infra-
structure to reliably bring the generation to load centers.

Furthermore this work has shown that significant carbon
emissions reductions can be achieved with variable renewables,
evenwhen natural gas provides the requisite dispatchable capacity.
This work also suggests that if high penetration variable renew-
ables are used to reduce electric power sector emissions, then
further reductions in emissions will rely on new technologies that
can replace the capacity-based role provided by natural gas in these
simulations. That is, in the context of a highly variable generation
portfolio, clean technologies with reliably large capacities, but low
(to zero) annual generation may better contribute to emissions
reductions than clean technologies that boast larger capacity
factors. Further reductions in electric power sector carbon emis-
sions might therefore be met with high penetration demand
response, vehicle-to-grid systems, and/or energy storage systems,
in addition to efficiency improvements.

Future work with this model will be directed towards charac-
terizing additional renewable portfolios, performing sensitivity
studies with these portfolios, and modeling emerging technologies.
The carbon emissions curves used to compare the stochastic solu-
tions to the deterministic results in this study can also be used to
compare the relative carbon abatement potential of both conven-
tional renewable technologies and emerging technologies. This will
provide a quantitative approach to comparing different clean
generating technologies and exploring potential synergies between
technologies.

Acknowledgments

This work was supported by the Precourt Institute for Energy
Efficiency, the National Science Foundation Graduate Research
Fellowship, and the Stanford Graduate Fellowship. The authors
would like to thank Eric Stoutenburg, Gilbert Masters, and Nicholas
Jenkins for their insights throughout this project and for their help
in the preparation of this manuscript.

Appendix. Supplementary material

Supplementary data related to this article can be found online at
doi:10.1016/j.renene.2011.01.015.

References

[1] Energy Information Administration. Annual energy outlook 2009, table a18,
http://www.eia.doe.gov/oiaf/aeo/pdf/appendixes.pdf; 2009.

[2] Holttinen H, Meibom P, Orths A, Hulle FV, Ensslin C, Hofmann L, et al. Design
and operation of power systems with large amounts of wind power, first
results of IEA collaboration. In: 2006. Global Wind Power Conference. Ade-
laide, Australia.

[3] Connolly D, Lund H, Mathiesen B, Leahy M. A review of computer tools for
analysing the integration of renewable energy into various energy systems.
Applied Energy 2010;87(4):1059e82.

[4] Milligan M, Graham M. An enumerative technique for modeling wind power
variations in production costing. In:1997. International conference on prob-
abilistic methods applied to power systems. Vancouver, BC.

[5] Milligan M, Porter K. The capacity value of wind in the United States: methods
and implementation. The Electricity Journal 2006;19(2):91e9.

[6] Environmental Defense Fund. Elfin: electric utility production simulation and
integrated planning system. Oakland, CA: Environmental Defense Fund; 1997.
Tech. Rep.

[7] Maddaloni JD, Rowe AM, van Kooten GC. Wind integration into various
generation mixtures. Renewable Energy 2009;34(3):807e14.

[8] DeCarolis JF, Keith DW. The economics of large-scale wind power in a carbon
constrained world. Energy Policy 2006;34(4):395e410.

[9] Hirst E. Integrating wind output with bulk power operations and wholesale
electricity markets. Wind Energy 2002;5(1):19e36.

[10] California Wind Energy Collaborative. California RPS integration cost analysis-
phase 1: one year analysis of existing resources. California Energy Commis-
sion; 2003. Final Report CEC-500-03-108C.

http://dx.doi.org/10.1016/j.renene.2011.01.015
http://www.eia.doe.gov/oiaf/aeo/pdf/appendixes.pdf


E.K. Hart, M.Z. Jacobson / Renewable Energy 36 (2011) 2278e22862286
[11] Lund H. Large-scale integration of optimal combinations of PV, wind and wave
power into the electricity supply. Renewable Energy 2006;31(4):503e15.

[12] Czisch G, Giebel G. Realisable scenarios for a future electricity supply based
100% on renewable energies. In: 2004. Proceeding of the Risø International
Energy Conference. Risø, DK.

[13] Hoste G, Dvorak M, Jacobson MZ. Matching hourly and peak demand by
combining different renewable energy sources; 2009. [VPUE Final Report].

[14] Jacobson MZ. Review of solutions to global warming, air pollution, and energy
security. Energy and Environmental Science 2009;2:148e73.

[15] Ekren O, Ekren BY. Size optimization of a PV/wind hybrid energy conversion
system with battery storage using simulated annealing. Applied Energy
2010;87(2):592e8.

[16] Zhou W, Lou C, Li Z, Lu L, Yang H. Current status of research on optimum
sizing of stand-alone hybrid solar-wind power generation systems. Applied
Energy 2010;87(2):380e9.

[17] Weber C, Meibom P, Barth R, Brand H. Wilmar: a stochastic programming tool
to analyze the large-scale integration of wind energy. In: Kallrath J, Pardalos P,
Rebennack S, Scheidt M, editors. Optimization in the energy industry. Berlin:
Springer Heidelber; 2009.

[18] Meibom P, Barth R, Brand H, Weber C. Wind power integration studies using
a multistage stochastic electricity system model. In: 2007. IEEE Power Engi-
neering Society General Meeting. Tampa, FL.

[19] Milligan M, Miller A, Chapman F. Estimating the economic value of wind
forecasting to utilities. In: 1995. p. 285e94. Windpower 95 American Wind
Energy Association Conference.

[20] Hirst E, Hild J. The value of wind energy as a function of wind capacity. The
Electricity Journal 2004;17(6):11e20.

[21] Short W, Blair N, Sullivan P. Reeds model documentation: base case data and
model description. Boulder, CO: National Renewable Energy Laboratory; 2008.
Tech. Rep.

[22] Katzenstein W, Apt J. Air emissions due to wind and solar power. Environ-
mental Science & Technology 2009;43(2):253e8.

[23] REPower Systems. Mm92 product brochure, http://www.repower.de/
fileadmin/download/produkte/PP_MM92_uk.pdf; 2009.

[24] Pacheco JE, Showalter SK, Kolb WJ. Development of a molten-salt thermocline
thermal storage system for parabolic trough plants. Journal of Solar Energy
Engineering 2002;124(2):153e9, http://link.aip.org/link/?SLE/124/153/1.

[25] Masters G. Renewable and efficient electric power systems. Hoboken, NJ: John
Wiley and Sons; 2004.

[26] Grant M, Boyd S. Graph implementations for nonsmooth convex programs. In:
Blondel V, Boyd S, Kimura H, editors. Recent advances in learning and control.
Lecture notes in control and information sciences. Springer-Verlag Limited. p.
95e110, http://stanford.edu/boyd/graph_dcp.html; 2008.

[27] Grant M, Boyd S. Cvx: Matlab software for disciplined convex programming,
version 1.21, http://cvxr.com/cvx; 2009.

[28] California Independent System Operator. System load query, oasis database,
http://oasishis.caiso.com; 2009.
[29] Kavalec C, Gorin T. California energy demand 2010e2020. Staff draft forecast
CEC-200-2009-012-SD. California Energy Commission; 2009.

[30] 3TIER. Wind integration datasets, www.nrel.gov/wind/integrationdatasets;
2010.

[31] 3TIER. Development of regional wind resource and wind plant output data-
sets; 2010. NREL Subcontract Report SR-550e47676.

[32] Wilcox S, Marion W. National solar radiation database, 1999e2005: user’s
manual. National Renewable Energy Laboratory, http://www.nrel.gov/docs/
fy07osti/41364.pdf; 2007. Technical Report TP-581e41364.

[33] Clean Power Research, LLC. SolarAnywhere, www.solaranywhere.com;
2010.

[34] Perez R, Ineichen P, Moore K, Kmiecik M, Chain C, George R, et al. A new
operational satellite-to-irradiance model. Solar Energy 2002;73(5):307e17.

[35] Perez R, Schlemmer J, Renne D, Cowlin S, George R, Bandyopadhyay B. Vali-
dation of the suny satellite model in a meteosat environment. In: 2009.
Proceedings of the ASES Annual Conference. Buffalo, New York.

[36] California Energy Commission. Large solar energy projects, http://www.
energy.ca.gov/siting/solar/index.html; 2009.

[37] Bureau of Land Management. Solar energy study areas, http://www.blm.gov/
wo/st/en/prog/energy/solar_energy/Solar_Energy_Study_Areas.html; 2009.

[38] National Renewable Energy Laboratory. Nrel troughnet: U.S. parabolic trough
power plant data, http://www.nrel.gov/csp/troughnet/power_plant_data.
html#segs_vi; 2009.

[39] Frantzis L, Graham S, Paidipati J. California rooftop photovoltaic (PV) resource
assessment and growth potential by county. Navigant Consulting, California
Energy Commission, http://www.energy.ca.gov/2007publications/CEC-500-
2007-048/CEC-500-2007-048.PDF; 2007. PIER Final Project Report CEC-500-
2007-048.

[40] Wilcox S, Marion W. Users manual for tmy3 data sets. National Renewable
Energy Laboratory, http://www.nrel.gov/docs/fy08osti/43156.pdf; 2008.
Technical Report TP-581e43156.

[41] Department of Water Resources. Historical data selector. California Data
Exchange Center, http://cdec.water.ca.gov/selectQuery.html; 2009.

[42] Bureau of Reclamation. Hydroelectric powerplants listed by capacity, http://
www.usbr.gov/power/data/faclcap.html; 2010.

[43] Energy Information Administration. Electric power annual 2007-data tables,
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sprdshts.html; 2009.

[44] Alvarado A, Griffin K. Revised methodology to estimate the generation
resource mix of California electricity imports. California Energy Commission;
2007. Staff Paper CEC-700-2007-007.

[45] Sison-Lebrilla E, Tiangco V. Geothermal strategic value analysis. California
Energy Commission; 2005. Staff Paper CEC-500-2005-105-SD.

[46] Energy Information Administration. Natural gas prices, California data tables,
http://tonto.eia.doe.gov/dnav/ng/ng_pri_sum_dcu_SCA_a.htm; 2009.

[47] Enermodal Engineering Ltd. Cost reduction study for solar thermal power
plants. Enermodal Engineering Ltd., Markbek Resource Consultants Ltd.; 1999.
Final Report.

http://www.repower.de/fileadmin/download/produkte/PP_MM92_uk.pdf
http://www.repower.de/fileadmin/download/produkte/PP_MM92_uk.pdf
http://link.aip.org/link/?SLE/124/153/1
http://stanford.edu/boyd/graph_dcp.html
http://cvxr.com/cvx
http://oasishis.caiso.com
http://www.nrel.gov/wind/integrationdatasets
http://www.nrel.gov/docs/fy07osti/41364.pdf
http://www.nrel.gov/docs/fy07osti/41364.pdf
http://www.solaranywhere.com
http://www.energy.ca.gov/siting/solar/index.html
http://www.energy.ca.gov/siting/solar/index.html
http://www.blm.gov/wo/st/en/prog/energy/solar_energy/Solar_Energy_Study_Areas.html
http://www.blm.gov/wo/st/en/prog/energy/solar_energy/Solar_Energy_Study_Areas.html
http://www.nrel.gov/csp/troughnet/power_plant_data.html#segs_vi
http://www.nrel.gov/csp/troughnet/power_plant_data.html#segs_vi
http://www.energy.ca.gov/2007publications/CEC-500-2007-048/CEC-500-2007-048.PDF
http://www.energy.ca.gov/2007publications/CEC-500-2007-048/CEC-500-2007-048.PDF
http://www.nrel.gov/docs/fy08osti/43156.pdf
http://cdec.water.ca.gov/selectQuery.html
http://www.usbr.gov/power/data/faclcap.html
http://www.usbr.gov/power/data/faclcap.html
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sprdshts.html
http://tonto.eia.doe.gov/dnav/ng/ng_pri_sum_dcu_SCA_a.htm

	A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations  ...
	Introduction
	Methodology
	Baseload generators
	Dispatchable generators
	Variable generators
	Deterministic renewable portfolio planning model
	Monte Carlo dispatch simulation
	Carbon emissions analysis

	Model inputs and data
	Results and discussion
	Conclusions
	Acknowledgments
	Supplementary material
	References


