Relative Effects of Fossil Fuel Soot, Biofuel Soot and Gases, and Methane on Climate, Arctic Ice, and Air Pollution Human Health

Mark Z. Jacobson Atmosphere/Energy Program Dept. of Civil & Environmental Engineering Stanford University

> EPA Region 9 San Francisco, California, May 24, 2010

Goals of Project

Simulate the relative effects of controlling fossil-fuel soot (FS), biofuel soot and gases (BSG), and methane on global and Arctic climate and human health.

Simulations run

- 1) Baseline (all gases, particles from all sources)
- 2) Time-dependent simulations without FS
- 3) Time-dependent simulation without FS or BSG
- 4) Equilibrium climate simulation without methane.

Aerosol Size Distributions

Two distributions, each with multiple size bins and components per bin

- Emitted fossil-fuel soot (EFFS) Emission sources: fossil-fuel combustion
- $\circ \circ \circ$

Internally-mixed (IM)

Emission sources: biofuel burning, biomass-burning, sea spray, soil dust, road dust, volcanos, pollen, spores, bacteria

Homogeneous nucleation: H₂SO₄-HNO₃-H₂O into IM distribution

Coagulation:

EFFS + EFFS	= EFFS
EFFS + IM	= IM
IM + IM	= IM

Growth: Organic matter, H₂SO₄, HNO₃, HCl, NH₃ H₂O grow on both EFFS & IM

Clouds: Both distributions activate size-resolved liquid, ice, graupel clouds

Fossil- and Bio-fuel Emissions (Tg/yr)				
	Fossil-Fuel	Biofuel		
BC	3.2	1.6		
POC	2.4	6.5		
S(VI)	0.03	0.3		
Na ⁺		0.023		
K ⁺ as Na ⁺		0.14		
Ca ²⁺ as Na ⁺		0.18		
Mg ²⁺ as Na ⁺		0.08		
NH ₄ +		0.018		
NO ₃ -		0.16		
Cl-		0.30		
H ₂ O-hydrated	calculated	calculated		
H+	calculated	calculated		

+ 43 gases

BC/POC from Bond et al. (2004); other emis factors Andreae, Ferek

Cloud Microphysical and Chemical Processes

Baseline Modeled vs. Measured Precip.

Despite factor of 20 lower resolution than data, model predicts locations of main features of observed precipitation and, with no flux adjustment, correctly does not produce a double ITCZ as nearly all models at coarse resolution do.

Modeled vs. Measured Cloud Fraction

Modeled vs. Measured Annual Lightning Flash Rate

Model calculates lightning by accounting for size-resolved bounceoffs and charge separation in clouds. It predicts nearly the magnitude and the location of the peak observed lightning (Congo) and most locations of lightning.

Modeled vs. Measured Thermal-IR

Data from Kiehl et al., 1998

Modeled vs. Measured 500-hPa Jan Temperature

Data from AIRs

Modeled vs. Measured Paired in Space Monthly T/T_d

Data from FSL (2008)

Despite coarse resolution, model captures data features at exact location of data - Little numerical diffusion of water vapor or energy to stratosphere

Modeled vs. Measured Paired in Space Monthly O₃

Data from Logan et al. (1999)

Model predicts the magnitude and altitude of the lowerstratospheric ozone layer

Modeled vs. Measured Sea Ice Area

Model (at 4 x 5 degree resolution) predicts stable sea ice area after only two years of simulation

Data from NASA Team (2009)

Emitted- and Internally-Mixed BC From FF soot alone and from FF+BF Soot

BC in emitted FF soot particles (BC+POM+SIV)

Internally-Mixed FF BC

BC from FF soot is about half that of BC from FF+BF soot +BF gases

BC in Snow Due to FF+BF Soot + BF gases and FF Soot Alone

Both FF+BF soot and FF soot increase BC in snow

Surface Albedo Changes Due to FF+BF Soot + BF gases and to FF Soot Alone

Most albedo loss due to FF+BF soot +BF gases is due to FF soot

AOD Changes Due to FF+BF Soot + BF gases and to FF Soot Alone

FF+BF soot +BF gases increased AOD more than did FF soot

Cloud Absorption Due to BC Inclusions in Clouds

 \rightarrow FF+BF soot +BF gases increased cloud absorption more than FF soot

Cloud OD Changes Due to FF+BF Soot + BF gases and to FF Soot Alone

FF+BF soot +BF gases increased COD; FF soot decreased COD

Cloud Versus Aerosol Opt. Depth From Data

MODIS, binned by percentile column water vapor 2004-07

MODIS / Calipso Lidar Aug. 12, 2006

Ten Hoeve, Remer, and Jacobson (2010)

Surface Solar Changes Due to FF+BF Soot + BF gases and to FF Soot Alone

 \rightarrow FF+BF soot +BF gases decreased surface solar; FF soot increased it

Temperature Changes Due to FF+BF Soot + BF gases and to FF Soot Alone

Most temperature inc. due to FF+BF soot +BF gases is due to FF soot

Changes in PM and Resulting Deaths due to FF+BF soot + BF gases and to FF soot

FF+BF soot + BF gases

FF soot

Deaths due to BF soot+gases ~7 times those due to FF soot

Arctic Warming Due to Anth. CH₄, Fossil Soot and Biofuel Soot+Gases (FSBSG), & FS

FF+BF soot + BF warm mid & high northern latitudes more than anthropogenic CH_4 or FF soot alone

Global Cooling Due to Eliminating Anthropogenic CH₄, Fossil Soot and Biofuel Soot+Gases (FSBSG) and FS Emissions only

Global Cooling Due to Eliminating Anthropogenic CO₂, CH₄, FSBSG, and FS Emissions only

FF Soot, BC Global Warming Potential

	20-yr STRE	100-yr STRE	100-yr STRM
BC+POC in FS	2400-3800	1200-1900	0.5-1.1million
BC in FS	4500-7200	2900-4600	1-2.4 million
BC+POC in BSC	G 380-720	190-360	36,000-100,000
BC in BSG	2100-4000	1060-2020	0.35-1 million
Methane	52-92	29-63	21-45

STRE = Near-surface temperature change after 20 or 100 years per unit continuous emission of X relative to the same for CO_2 (similar to GWP e.g., 20-, 100-yr GWPs for CH_4 are 72, 25)

STRM = Near-surface temperature change after 20 or 100 years per unit mass in the atmosphere of X relative to the same for CO_2 -C.

Summary

FSBSG soot is the second-leading cause of global warming behind CO_2 and ahead of CH_4 . FS causes 3 x the warming of BSG, but BSG causes ~7x more deaths than FS.

Net global warming (0.7-0.8 K) is due primarily to gross warming from FF GHGs (2-2.4 K) and FSBSG (0.4-0.7 K) offset by cooling due to non-FSBSG aerosol particles (-1.7 to -2.3 K).

FS and FSBSG may contribute to 13-16% and 17-23% of gross warming due to atmospheric pollutants.

Controlling FS, FSBSG, CH_4 in isolation may reduce warming above the Arctic Circle by ~1.2 K, ~1.7 K, 0.9 K respectively.

Control of FS, FSBSG is fastest method of reducing Arctic loss www.stanford.edu/group/efmh/jacobson/controlfossilfuel.html