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Abstract—We present a technique for simulating coagulation among any number of aerosol types, each
with a different composition. The semi-implicit solution mechanism solves the coagulation equations over
size ranges divided into any number of discrete bins. The scheme conserves particle volume, requires no
iterations, and is numerically stable, regardless of the time-step. We compared the accuracy of the solution
to both analytical and time-series numerical solutions. Practical use of the scheme demonstrates that it is

computationally fast in a multiple grid-cell model.
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1. INTRODUCTION

Aerosol coagulation is important because it alters the
composition and size distribution of particles prim-
arily smaller than one micron in diameter, and these
particles affect visibility, health, and physical pro-
cesses in the atmosphere. For example, sulfate, nitrate,
and organic carbon particles between 0.2 and 1.0 um
in diameter scatter light, and soot particles smaller
than 1.0 um absorb light efficiently (Waggoner et al.,
1981; Ouimette and Flagan, 1982). Also, particles be-
tween 0.1 and 1.0 um penetrate to the deepest parts of
human lungs. Finally, small particles serve as cloud
condensation nuclei and surfaces on which chemical
reactions take place, and small aqueous particles ab-
sorb gases and serve as hosts for internal chemical
reactions.

Simulating coagulation requires computing colli-
sion and coalescence rates and changes in particle size
and composition over time. Atmospheric particles
collide as a result of Brownian motion, differences in
fall velocities, turbulent motions, and intraparticle
forces. Generally, Brownian motion affects particles
smaller than 1 ym in diameter, differential fall velo-
cities and turbulent motions affect particles larger
than 1 um, and intraparticle forces affect particles
independently of size (Fuchs, 1964).

Smoluchowski (1918) calculated an expression for
the coagulation kernel associated with Brownian
motion in the continuum regime, where the Knudsen
number (Kn) is much less than unity. In the free
molecular regime (Kn> 1), the Brownian coagulation
kernel appears to follow the kinetic theory of binary
collisions for gas molecules (Hidy and Brock, 1970;

Hirschfelder et al., 1951). Fuchs (1964) developed an
interpolation formula, described in Section 3.3, for
the Brownian kernel in the transition regime
(0.1 <Kn<10). Fuchs’ kernel matches the continuum
value at low Knudsen number and the free molecular
value at high Knudsen number (see also Sitarski and
Seinfeld, 1977).

To simulate changes in the size distribution of
coagulating aerosols, modelers have developed
a number of approaches that assume either a continu-
ous size spectrum or discrete bins that vary in size (e.g.
Lushnikov, 1975; Turco et al., 1979a,b; Suck and
Brock, 1979; Gelbard and Seinfeld, 1980; Tsang and
Brock, 1982; Seigneur, 1982; Friedlander, 1983;
Warren and Seinfeld, 1985; Toon et al., 1988; Kim and
Seinfeld, 1990; Strom et al., 1992). While all of these
models simulate changes in size of coagulating par-
ticles, few calculate changes in composition of such
particles, and fewer calculate changes in size and com-
position among different types of particles, each with
a different composition.

In one such case Turco et al. (1979a,b) derived
a basic semi-implicit algorithm to describe aerosol
droplets coagulating with condensation nuclei to
form mixed aerosols. Their equations assumed a geo-
metrically related size distribution, with the volume
ratio of adjacent size bins equal to two. Toon et al.
expanded this semi-implicit technique to allow the
fixed volume ratio between adjacent bins to exceed
two. Here, we further develop the coagulation equa-
tions to allow the volume ratio of adjacent bins to
approach unity. Furthermore, while we show results
using a geometric size distribution, the method pres-
ented here solves over randomly spaced size bins as
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well. Finally, the scheme simulates coagulation
among any number of particle types, each containing
any number of volume fraction components.

2. TYPES AND SIZES OF AEROSOLS SIMULATED

The size-resolved model we present simulates co-
agulation over any number of externally mixed (EM)
particle types and a single internally mixed (IM) type.
EM types can contain any number of volume fractions
(EMVFs). Examples of EM particles with one volume
fraction are those containing only elemental carbon,
organic carbon, or dust. An example of EM particles
with two volume fractions are those containing sul-
furic acid and water.

The internally mixed particle type can also contain
any number of volume fractions (IMVFs), but must
contain at least the sum of the number of volume
fractions in EM types. For example, if we have one
EM type with one volume fraction and another with
two volume fractions, then we require at least three
IMVFs because coagulation of the two EM types
results in IM particles containing three components.
The IM type, however, can contain any number of
volume fractions beyond the minimum number.
Examples of such additional components are con-
densed liquids, dissociated ions, aqueous chemistry
by-products, emitted species, or background species.
We can have more than one IM type; however, each
IM type must contain all components in the system.
For simplicity, we discuss modeling a single IM type
in this paper.

The term, “internally mixed” as used here, does not
necessarily mean that the components are well-mixed
in solution. It merely means that the components exist
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together in the same particle, possibly even in different
phases (e.g. liquid and solid). Some of the components
may be well-mixed in solution, but others may not be.
The only difference between “externally mixed” and
“internally mixed” particles, as defined here, is that
the IM particles must contain at least the number of
components in all the EM particles, combined. Fig-
ure 1 shows an example of the particle types, and
Table 1 shows the intended effect of different-type
particles coagulating.

Among the assumptions we make is that when an
EM particle hetero-coagulates (e.g. an EM particle
coagulates with any particle except an EM of the same
type), then the resulting particle enters a multicompo-
nent mixture (IM) representing all particle types. In
reality, when two particles of different composition
collide, they form a third particle of unique composi-
tion. However, while we can write the equations to
solve for every combination of particles, modeling
every combination is computationally impractical be-
yond a small number of particles and spatial grid-
cells. For example, if we initially have 11 distinct
particle types, then they will coagulate into 2047 mix-
tures (the sum of combinations of 11 taken 1,2, ..., 11
at a time). If we distribute 72 volume fractions (typical
of an air pollution model we currently run) among the
11 types, then each of the 2047 combinations will have
between one and 72 components. In a model with 30
size bins and 10,000 grid-cells, we would track 12.3
billion pieces of information each time-step if the
average combined species had 20 components. The
memory requirements for such a model are beyond
most current computer capabilities.

However, by assuming that EM particles become
IM particles when they hetero-coagulate, we reduce
the number of resulting particle types in the above

s
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Fig. 1. Simplified example of particle types in the model. Externally mixed (EM) types can

contain one or more volume fraction components and the single internally mixed (IM)

type contains at least the number of EM components but can also contain any number of
additional components.
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Table 1. The intended effects on number and volume concentrations when particles of one type coagulate
with particles of either the same or another type. EM1 is one set of externally mixed particles, EM2 is
another set, IM is the internally mixed type, EMVF1s and EMVF2s are volume fractions of EM1 and EM2,
respectively, and IMVFs are volume fractions of the IM type. A (—) indicates a decrease in either number of
volume, a (+) indicates an increase, a (0) indicates no change, and a (—) indicates that no effect is
applicable. For example, when EM coagulate with IM particles, EM particles decrease and IM particles
increase in number and volume, and volume fractions of EM particles transfer to IM particles

Number Volume
Coagulating pairs EM1 EM2 IM EM1 EMVF1 EM2 EMVF2 IM IMVF
EM1 w/EM1 (=) — — (0) (0) — — — —
EM1 w/EM2 = = #H == == ®m W
EM1 w/IM (=) — 0 =) ) — - +)  (+)
IM w/IM — - (=) = — — 0) (0)
case from 2047 to 12. With 86 total elements (e.g. 10 1 | od
EM types with one volume fraction each, one EM Ci =C;+5Atj§1P k. j _Atj=1L*-i 3

with two volume fraction, and one IM with 72 volume
fractions) the model would track 25.8 million pieces of
information over the 10,000-cell grid-domain, which
is a factor of 500 savings in array space. Thus, while
we can code all possible particle combinations, the
computer memory requirements in a three-dimen-
sional model are prohibitively large, and our assum-
ing that different-type particles coagulate to a single
IM type is more practical, although less ideal.

3. SOLUTIONS TO THE COAGULATION EQUATION

3.1. Semi-implicit solution for particles of uniform
composition

We first derive the semi-implicit solution to the
coagulation equation for particles of uniform com-
position and later expand the derivation to particles
of different composition. To derive the semi-implicit
solution, we start with the integro-differential equa-
tion (Muller, 1928)

ac, 1
L C Cdv
ot ZJ‘ﬁv—E.Ta v=0 U v
0o

0o

where C is the time-dependent number concentration

(No. cm~3) of particles of volume v,v—7, or 3, and
is the coagulation kernel (cm™3No."!s™%) of two
colliding particles. For size bins consisting of mono-
mers (e.g. the volume of bin k equals k x the volume of
bin one), we rewrite equation (1) as

aC, 1%} <
o 2 Y Bi-iniCi-iC— G LBsCi @
i=1 =1

where we substituted the volume subscripts in equa-
tion (1) with the size-bin subscripts in equation (2).

The next step in the derivation of the semi-implicit
solution is to write equation (2) in fully implicit finite
difference form as

where At is the time-step (s), superscripts ¢ and ¢+ 1
indicate initial and final concentrations, respectively,
while

Pk.j‘_‘ﬁk-j, jcit,lic;ﬂ )
and
Lk.j=Bk'jCi+ 1C;‘+1 (5)
arel production and loss rates (No. cm~s™?), respect-
ively.

Third, to obtain the semi-implicit‘solution, we re-
define the loss term from equation (5) in semi-implicit
form as

Lk. J= ﬁk. jC;+ lC}. (6)

Using equation (6) instead of equation (5) will allow
a non-iterative solution to coagulation that approx-
imates an exact solution. Equations (4) and (5) require
that P, ;=L,_; ; for each k and j. Applying this
equality to equation (6) and plugging the result and
equation (6) into equation (3), we obtain the semi-
implicit coagulation solution for monomer particles
of uniform composition as
k-1

By, iCiZiC
=1 SN
1+AtY B ;C5

j=1

1
C,+-At
T2

t+1
GHi=

where k varies from one to infinity. While equation
(7) correctly accounts for the reduction in particle
number when two particles coagulate (reducing the
number by one-half), it does not conserve-volume
(equation (3) correctly accounts for both number and
volume, but is fully implicit). In order to conserve
volume (which coagulation physically does) while giv-
ing up some accuracy in number, we reform equation
(7) as
k=1
wCL+AL Y By - CitiC5
nC= = . ®

1+A8) B, ;C}

i=1
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Equation (8) satisfies thé volume-conservation re-
quirement, v, _;P, ;=v,_;L,_; , for each k and j.

While equation (8) solves the equation over
a monomer size-bin structure, we wish to solve it over
different bin structures. For example, suppose we set
up geometric bins, where the volume of one bin equals
the volume of the previous bin multiplied by a con-
stant factor. In this particular distribution, the volume
of the smallest bin is v, =(4/3)n(r,)°, where r, is the
radius of the smallest bin. Furthermore Vg, =v;, ,/v;
is the volume ratio of two adjacent bins and Ny is the
total number of size bins. For any value of
Vrar greater than one, the volume of bin i is

©)

vi=viVir
and the radius is
(10)

Consequently, the number of bins that covers the
particle size range from radius r, to r; is

i=1+In[(ri/r)*]/In[Vg 7] (1)

Thus, for a radius from 0.01 um (107 cm) to 1 mm
(107" cm), the model requires 87 (=Nj) bins when
Vrar=1.5 and 26 bins when Vg, =4.

With this new bin structure, each time a model
particle of size i collides and sticks to a model particle
of size j, the resulting volume of the intermediate
particle is

= (i-1)/3
ry=ry VI;AT) .

V,.vj=v,-+vj. (12)

The intermediate particle has volume between those
of two model bins, k and k+1. We partition the .
intermediate particle between the two bins by defining
i, j. x> the volume fraction of intermediate particles of
size V; ; that we partition to each model bin k. More
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In equation (14), values for f; ; , are frequently zero;
thus, to speed the computer solution to equation (14),
we eliminate every multiplication by a zero value of f.
Also in equation (14) each C'*! term on the right-
hand side of the equation is a final concentration
calculated for a previous bin. No production occurs
in the first bin, k=1, since k—1=0 in equation (14).
Thus all Ci*! terms are known when calculating
Ci+t.

The advantage of using a semi-implicit equation.
such as equations (7), (8), or (14) instead of a fully
implicit equation, such as equation (2), is significant.
For example, equations (7), (8), and (14) allow immedi-
ate, volume-conserving solutions, using any time-step.
A solution to equation (2), on the other hand, requires
the use of an ordinary differential equation solver,
which performs iterations. The only disadvantage to
equations (8) and (14) is that, as with most other
schemes, particle number is not exactly accounted for.
However, by increasing the resolution of the bin struc-
ture (e.g. by decreasing V), the error in number
approaches zero (e.g. Section 4) while the solution
remains non-iterative and volume conserving.

3.2. Semi-implicit solution for particles of different type
and composition

The coagulation equations for particles of different
type and composition are similar to those for particles
of uniform composition. However, because the variety
of particle types in the more complicated case can
cause confusion, we present a simplified scenario and
some definitions in the Appendix.

As discussed earlier, the particle types we use are
externally mixed (EM) and internally mixed (IM). We

precisely
f
Vh+1"Vi_j Vi
_— <V, < ; k<N
(vk+1—vk >Vi.j v" “i SV ?
f,-,j,,‘=< L=f k-1 Vi1 <V <vig k>1 (13)
1 ViiZve k=Npg
0 all other cases
\

The fractions in equation (13) are independent of the
size-bin structure. Thus, they work with monomer
structures (where all values of f would be 1 or 0),
geometric structures, or random structures. Applying
the fractions in equations (13)—(8), we obtain the gene-
ral formula for volume-conserving, semi-implicit
coagulation for particles of uniform composition as
wCi+Ar Y,

Al

Ns
1+AtY

j=1

k (k-1

Z f: » B, j"iC: 1 CZ}

i=1

<1 _f;‘, i k)ﬁk. jC}

vkc;‘-rl:

(14)

first solve for the final concentration of all compon-
ents in EM types by marching from bin k=1 through
bin k=N EM types lose volume by coagulating
either with other EM types or with the IM type. When
such heterogeneous loss occurs, the IM type gains
volume. When EM particles self-coagulate, their vol-
ume shifts to larger particles of the same type; thus,
volume does not escape to the IM type. In sum, for
each N=1, Nz EM type and each U=1, Ty compon-
ent, where @=L, , is thés<component number (terms
defined in Appendix), the final concentration in each
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t+1
VkCQk =

M=1
M#N

i=1

Thus, equation (15) accounts for homogeneous pro-
duction and loss and heterogeneous coagulation loss
of EM particles. No production occurs into the first
bin of EM types. In equation (15), B is the coagulation
kernel. However, the subscripts refer to particles of
different types. For example, By, ; indicates the rate
that a particle of bin k, type N (an EM) coagulates
with a particle of bin j, type M (either a different EM,
or the IM).

After solving for concentrations of EM compon-
ents, we solve for those of IM particles. IM particles
gain volume when EM particles coagulate with them
or when EM particles coagulate with EM particles of
another type. IM particles never lose volume through
coagulation; however, volume shifts to higher bins
upon hetero- or self-coagulation. To solve for IM
concentrations, we march from bin k=1 through
bin k=Nz—1 (we do not allow IM particles to lose
volume from the largest size-bin but we allow hetero-
geneous production into the first bin of IM particles).
For the single N=N; IM type and each U=1, Ty
component of the IM type, where @=Ly y, the final
concentration is

Nr k k-1

Nz Nt °
1 +At z {(1 —fk,j. k)ﬂNh. Njci~.1j+ z ﬁNk, Mjciu.xj}

(15)

will also contain a homogeneous coagulation produc-
tion term, a homogeneous loss term, and a heterogen-
eous loss term, all similar to those in equation (15).

3.3. Coagulation kernel

For part of this work, we calculated the coagulation
kernel by assuming only Brownian diffusion. How-
ever, empirical equations in Pruppacher and Klett
(1978) describe additional coagulation rates, including
those for convective diffusion enhancement, gravi-
tation, turbulent shear, and turbulent inertial motion
(see also Saffman and Turner (1956) for coagulation
rates due to turbulent shear and inertial motion).
To calculate the Brownian diffusion kernel
(B? ;— cm® No.™ ! s~ *) we used Fuchs’ (1964) interpo-
lation formula

B _ 41z(r,+r1)(D,+D,) (17)
i r;+rj 4(D,+D1)
r,-+r,-+(5§+6})”2+(ﬁ§,.+6,j)”2(ri+r,-)

Ne k

viCoi+At Y Y Ch.; Y fiiwBui, mViCoi '+ Y Yfiisbn, m;¥iCsa, X

M=1 j=1 i=1

I=1 i=1
I#M
S¢.1>0

t+1 __
kaQk =

(16)

1+ At ZT { i(l—fk, . 0Bne, MiClu. :j}

M=1
K#Ns

Jj=1

where the Appendix defines the subscript array Sy .
As in equations (14) and (15), equation (16) contains
many values of fthat are zero. Each computation with
such a value should be eliminated. For a single par-
ticle type of uniform composition, equation (15) disap-
pears (N ;=0) and equation (16) simplifies to equation
(14).

Thus, equations (15) and (16) define the generalized,
volume-conserving, semi-implicit coagulation equa-
tions for multicomponent, multi-type aerosols. To
conserve volume at the boundary, equation (16) as-
sumes that particles cannot coagulate out of the lar-
gest size bin of IM particles. They can, however,
coagulate from the largest EM particles to become IM
particles. The equations also assume that, upon het-
ero-coagulation, all volume goes to IM particles. To
change this assumption so that when particles hetero-
coagulate, they produce a new mixture, we only need
to define the new particle types and shift the hetero-
geneous production term from equation (16) to the
equation for the new particle types. The new equation

where r; and r; are the radii (cm) of particles i and j,
respectively. Also, D; (or D)) is the particle diffusion
coefficient (cm? s~ *) defined as

ksT
D;= 1+Kn;| A+Bexp| —CKn?! (18)
6nrm

which simplifies to the Stokes—Einstein formula in the
continuum regime (Kn;<1). In equation (18),
Kn;=2,/r; is the Knudsen number of particle i, kg is
Boltzmann’s constant, T is the temperature (K), n is
the dynamic viscosity of air, and 4, B, and C are
corrections for particle resistance to motion (see
Millikan, 1923). We normally use the values 4=1.249,
B=0.42, and C=0.87, suggested by Kasten (1968).

In addition, the mean free path (cms™!) of a gas
molecule is

2
hy=—is

> (19)
Pglq
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where p, is the density of air, and #, is the mean
thermal velocity of an air molecule. The thermal velo-
city of an air molecule is similar to that of a particle of

size i
_ _ 8kgT\1/2
1) or Vpi=| —
¢ L m;

(20)

except that, for a particle of size i, m; is the mass of the
particle, and for an air molecule, m; is the mass of the
air molecule. Finally, Fuchs defined the mean distance
from the center of a sphere reached by particles leav-
ing the surface of the sphere and traveling a distance
of particle mean free path 4, as

{@ri+4,)° —@rZ + 22)*?) o

5 = i 21
; i @
where
Api=— (22)
Dy,

P

In the continuum regime, equation (17) simplifies to
its numerator, while in the free molecular regime
(Kn;> 10) it simplifies to

BL =i+ 1)) (05 +52)"2. 23

4. TESTS OF THE ALGORITHM

To demonstrate the basic features of the coagula-
tion solution scheme, we present tests against
Smoluchowski’s analytical solution, two numerical
solutions, an analytical solution to a self-preserving
distribution, and a published comparison. In the first
test, we compared our semi-implicit coagulation solu-
tion to the analytical solution of Smoluchowski
(1918—see also Hidy and Brock, 1970; Seinfeld, 1986).
Smoluchowski’s solution applies to an initial distribu-
tion where all particles are of uniform size (monodis-
perse) and composition, and where the coagulation
kernel (B) is constant for all interactions. The mono-
disperse distribution is the narrowest possible dis-
tribution. The size-bin grid use for Smoluchowski’s
solution has a monomer structure (as discussed
earlier), which is arranged so that the volume of the
kth bin equals k multiplied by the volume of the first
(k=1) bin. Given an initial number concentration C*
in the first bin, Smoluchowski predicted that the con-
centration at any time t+1 (or t+At) in bin k is

c1_ CHOSBC Arf~ .
Y T (140.58C ALt

Using a constant f=8kzT/3n and an initial num-
ber concentration of 10°cm~3 we compared
Smoluchowski’s solution to our solution after a 12 h
simulation period (Fig.2). For the semi-implicit
scheme, we calculated one case with Vg, =12 (39
bins per decade), another with V¢ .= 1.5 (18 bins per
decade), and a third with Vp,r=2 (11 bins per dec-
ade). Because the semi-implicit and analytical solu-

24
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Fig. 2. Comparison of semi-implicit and integrated co-
agulation results to Smoluchowski’s analytical solu-
tion. The coagulation period was 12 h, the initial distri-
bution was monodisperse, and the coagulation kernel
was constant. For each of the three semi-implicit cases
(Vgar=12,1.5 and 2.0), the time-step was 600s. We
used SMVGEAR to solve 1000 equations and un-
knowns to produce an integrated solution to equation
(2) for 1000 monomer size-bins. The first bin for the
Smoluchowski and SMVGEAR solutions were omitted
from the graph since the lower bin diameter in both
cases was zero, making dlog D infinite.

tions extend over bin-widths of different sizes, we
divided the number concentrations in Fig.2 by
dlog D, to normalize them. Also, for the geometric size
grid, when Vp,r<1.62 and particles in the first bin
coagulate with particles in the second bin, the result-
ing particles are larger than the third bin. Thus, a dip
will occur in the concentration of the second bin. To
remedy this, we made the volume of the second bin
equal to two times the volume of the first bin
(Vrar=2 for the second bin only), which is the same
ratio as that between the first and second bin of the
monomer structure. Since the semi-implicit solution is
independent of the bin structure, the modification to
the second bin when Vg, <1.62 requires no other
changes.

Figure 2 also shows a solution to this monodisperse
initial distribution generated by SMVGEAR, a Gear-
type solver of ordinary differential equations (Jacob-
son and Turco, 1994). With SMVGEAR, we solved
equation (2) simultaneously for 1000 monomer size
bins. Equation (2) applied to the given bin structure
resulted in a non-sparse matrix of partial derivatives
with order 1000. Since 1000 monomer bins covers
only one decade in radius space and the matrix of
partial derivatives has no sparsity, we conclude that
solving the monomer structure with an integrator is
inefficient for atmospheric models. However, as Fig. 2
shows SMVGEAR provided an exact solution to this
problem.

By comparison, the semi-implicit method gave
solutions that approached the analytical solution as
Vgar decreased. At Vy . =1.2, the semi-implicit solu-
tion almost matched th& exact solution for the full
range of sizes shown, while for larger values of
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Vear and large diameters, numerical diffusion in-
creased. To obtain the semi-implicit solutions, we
took a series of 600-s time-steps during the 12-h simu-
lation period. Using a larger (e.g. 3 h) or smaller (e.g.
60s) time-step hardly changed the results. For
example, with At=3 h and Vg ,,=1.2, the semi-impli-
cit solution resulted in less numerical diffusion than it
did with At=600 and V= 1.5. Thus, the time-step
had a smaller effect on numerical diffusion than did
the size bin resolution. Finally, the semi-implicit solu-
tion exactly conserved volume in all cases. As
Vear decreased, bin resolution increased, and the
total number concentration of particles approached
the correct value. This held true for all the cases tested
in Figs 2—4.

In the second and third tests, we compared two
time-series of semi-implicit solutions against those of
integrated solutions. For these results, we started with
initial lognormal distributions, both with mean dia-
meter 0.02um and number concentration of
108 cm™3. In one case (Fig. 3a) the initial geometric
standard deviation was 1.4, and in the other (Fig. 3b),
the deviation was 1.15. We integrated equation (2)
with SMVGEAR, using 5500 monomer size bins for
Fig. 3a and 2000 bins for Fig. 3b. In both cases, we
solved the semi-implicit equations using Vg, r=1.2,
1.5, and 2.0. However, Figs 3a and 3b show only the
Vear=1.2 time-series solutions. In both cases, the
figures show that the semi-implicit solutions followed
the integrated solutions almost exactly at each of the
2-, 4-, and 6-h marks. Again, we used a 600-s time-
step for the semi-implicit solutions. A larger or smaller
time-step hardly changed the results. However, in-
creasing Vg, increased numerical diffusion at higher
diameters, although not so much as in Fig. 2.

For the conditions of Figs 2, 3a, and 3b, the charac-
teristic time for coagulation, t=2/8C", was less than
1 h. Thus, the time intervals used (6—12 h) were reas-
onably long enough to test for numerical diffusion.

In the fourth test, we compared the semi-implicit
scheme to an analytical solution of a self-preserving
distribution described in Seinfeld (1986). For this solu-
tion, the initial number density, C’, of a uniform
aerosol was spread exponentially about bin i=p,
where v, is the volume of bin p. At any time ¢, coagula-
tion changed the number concentration in size bin i to

er1_ Cidv;/v, exp| — vi/vp 25)
) (140.58C*At)? (1+0.58CAr)
For the geometric size grid
Vear—1
dv;=2v, AT —, (26)
Vear+1

To compare solutions, we used the same initial num-
ber concentration and coagulation kernel as in the
previous examples. Also, the peak volume diameter
was 0.1 um while the time-step and total coagulation
period were 600s and 12h, respectively. Figure
4 shows results when Vp,=1.5 and Vi, =2. The

1333

(@) 107 prrrry ——
o F ]
= 10 .[ 1-
I ]
3: 10° 3 \ ]-
3 \ E
E 10* | 4 ]
1 \ 3
Q 3 L1 P ‘.\ 3
& E /¢ initial [ 3
S 8L i/ — -SMVGEARGD) W ]
® E /;/ - » -SMVGEAR(@4h) : 3
Z f ;7 --<-- SMVGEAR (6h) : 3
5 2L —¢ - semi-implicit (2 h) X
1 - . «- - semi-implicit (4 h) v
[ -- -4 -- semi-implicit (6 h) i ]
100 s . PP L)
0.01 0.1
PARTICLE DIAMETER (1 m)
(b) 107 -— ——rr
3 - init
108 —s - SMVGEAR (2h)
o P _\\ — » - SMVGEAR (4 h)
§ w05 Y\ --<-- SMVGEAR (6h)
* 1 \\\\ — ¢ - semi-implicit (2 h)
v F ~\\\ - - «- - semi-implicit (4 h)
z 10° o semi-implicit (6 h
& 103 i W
® bit
© E 13
~< 102 “ '_':'
5 1
10! \ U3
E U
mo [ " '.\r.blﬁ:.
0.01 0.1
PARTICLE DIAMETER (1 m)

Fig. 3. Comparisons of semi-implicit to integrated co-
agulation results when the initial distributions were log-
normal. The initial mean number diameter and concen-
tration in both figures were 0.02 yum and 10°cm ™3,
respectively. The initial geometric standard deviation
was 1.4 in Fig. 3a and 1.15 in Fig. 3b. The coagulation
kernel was constant and the same as in Example 1. The
coagulation period was 6 h, with results shown every
2 h. For each of the semi-implicit cases, V,, was 1.2
and the time-step was 600s. We used SMVGEAR to
solve equation (2) over 5500 monomer size-bins (5500
equations and unknowns) for Fig. 3a and 2000 bins for
Fig. 3b.

semi-implicit solution followed the analytical solution
except at large sizes, where numerical diffusion caused
some error. However, with decreasing Vg 47, numer-
ical diffusion decreased while with a smaller or larger
time-step (not shown), the results changed insignific-
antly.

In the fifth test we compared the semi-implicit
scheme to results from the continuous representation,
J-space transformation model (COAGUL) of Suck
and Brock (1979), as shown in Seigneur et al. (1986).
The aerosol tested was uniform in composition and
had an initial tri-modal distribution with mean vol-
ume diameters of 0.038, 0.32, and 5.7 um, geometric
standard deviations of 1.8, 2.16, and 2.21, and volumes
of 0.63, 38.4, and 30.8 um3cm ~3, respectively, in each
mode (data from Whitby, 198). The only coagulation
rate term used was that for Brownian coagulation



1334

(equation (29)). Figure 5 shows results of the com-
parison after 12h of simulated coagulation. The
semi-implicit model predicted the aerosol distribution
similarly to that of COAGUL. Furthermore, semi-
implicit coagulation conserved volume exactly, de-
creased the number density of particles, and moved
particles to larger sizes. Because this was a model to
model comparison, it is difficult to determine the
extent of numerical diffusion.

5. APPLICATION OF THE ALGORITHM

Here, we apply the semi-implicit model to a multi-
component set of aerosols and concentrations that
could exist in an automobile tunnel. The purpose of
the demonstration is to show the features, speed, and
volume conservation of our mechanism and to sug-
gest that pure particles quickly coagulate to become
mixed particles in a particle-rich environment. The

10 :

qg 1051- r
= E i
é 10‘? 3
2 10° 1
£ 107 ] r
z —ﬂ‘ﬁ”m 1(12 1) t i
z 104" semi mplii(121) Vi p =15 i 3
3----- semi-implicit(12h) Viar =2~ | 11\ i

10° ——————rry v L T
0.01 0.1 !
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Fig. 4. Comparison of semi-implicit coagulation results
to the analytical solution of equation (25). The coagula-
tion period was 12 h, the initial distribution centered
about a peak at 0.1 um diameter, and the coagulation
kernel was constant. The figure shows semi-implicit solu-
tions for ¥y ,,=1.5 and ¥, =2. The time-step for the
semi-implicit method was 600 s.
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only process included in this simulation was coagula-
tion.

For the example, we used the species and condi-
tions listed in Table 2. For modeling purpeses, we
separated elemental and organic carbon into separate
EM types with one component each, constructed the
organic carbon size distribution different from that of
elemental carbon, and put no initial carbon in IM
particles. Elemental carbon and other particles are
not spherical in reality; however, we modeled them as
such for simplicity. Because the semi-implicit model is
independent of the size-bin structure, it can coagulate
particles of odd shapes so long as the kernel is modi-
fied and average particle shapes are known.

Among the data we used were size-resolved elemen-
tal carbon data gathered from the Caldecott Tunnel
(Venkatram, 1992). We also assumed that the ratio of
elemental to organic carbon particle concentrations in
the tunnel was 1.4 (Hering et al., 1984). Finally, we fit
lognormal distributions to all carbon data.

70 A adaaaal i aaaal
';F: 60 ] oo e mplici (12h)
3 semi-i cit o
o i o oomv.ﬁ.az h)
E 504
= ]
" 4
2z 47
g »
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A 3
= ]
> 107
L] 3
0 ey ey
0.01 0.1 1 10
PARTICLE DIAMETER (1:m)

Fig. 5. Comparison of results from the semi-implicit
scheme to those of COAGUL (Suck and Brock,
1979—results shown in Seigneur et al., 1986). The co-
agulation period was 12 h, the initial distribution was
tri-modal (Whitby, 1978), and the kernel was that for
Brownian motion only. For the semi-implicit model,
At=600s, V,,,.=2, r;=0005 um, and Ny=40.

Table 2. Initial distribution of IM and EM aerosols. The distributions of each are the sum of their volume fraction
distributions. Dy, is the geometric mean volume diameter and o, is the geometric standard deviation of each mode

Nuclei mode Accumulation mode Coarse mode
Mass D, o Mass D,, g, Mass D, g,

Particle (ugm™3)  (um) (gm~3)  (um) (ugm™3)  (um)
1. EM1

la. Elemental C 67 0.107 1.66 0 0 0 0 0 0
2. EM2

2a. Organic C 47.6 0.136 1.50 0 0 0 0 0 0
3. EM3

3a. Sulfate 0.008 0.04 1.8 0.49 0.32 2.16 0.05 12.3 24

3b. Water 0.012 0.04 1.8 0.74 0.32 2.16 0.075 12.3 24
4 IM

4a. Elemental C 0 0 0 0 0 0 0 0 0

4b. Organic C 0 0 0 0 0 0 0 0 0

4c. Sulfate 0.072 0.04 1.8 443 0.32 2.16 045 12.3 24

4d. Water 0.1 0.04 1.8 5.00 0.32 2.16 = 20 12.3 24

4e. Nitrate 0.003 0.04 1.8 20 0.32 2.16 25 8.1 24
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Because vehicles emit little sulfur, we assumed
sulfate entered the tunnel with other background
material. For modeling purposes, we placed about
90% of initial sulfate in IM particles and 10% in EM
particles. We assumed the sulfate distributions were
tri-modal and used the urban average geometric mean
volume diameter and standard deviation from
Whitby (1978) for the nuclei and accumulation modes.
We also assumed a nuclei plus accumulation mode
sulfate mass of 5.0 ugm ™3 and distributed the mass
among these two modes and the IM and EM types.
For the coarse mode of sulfate, we used a size and
mass distribution from Noll et al. (1990).

Finally, we distributed nitrate in the IM type using
a tri-modal distribution. For the coarse mode, we
used a size and mass distribution from Noll et al.
(1990). For the other modes, we used the same distri-
bution as for sulfate, but set a smaller mass loading.
Nitrate was the only species in the IM type which did
not also appear in an EM type.

Figure 6 shows the initial and final sum of the
volume distributions of the four particle types we
coagulated for this application. Coagulation of four
types behaved similarly to self-coagulation of a single
type containing the same initial distribution as the
sum of the four separate distributions. The figure also
shows that coagulation affected the size distribution
of particles primarily less than one micron in dia-
meter.

By summing all volumes in EM and IM particles
before and after coagulation, we found that the
semi-implicit mechanism exactly conserved volume.
Furthermore, by summing the volume of each EM
type and its IMVF counterpart, both before and after
coagulation, we found that heterogeneous coagula-
tion exactly conserved volume.

Figure 7 shows the individual changes in EM and
IM particle size distributions. Many EM particles
hetero-coagulated to become IM particles. Since most
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Fig. 6. Volume distribution of the sum of EM and M
particle distributions before and after 12 h of coagula-
tion. Coagulation moved the sum of the distribution of
small particles towards larger sizes. Large particles
tended to coagulate with much smaller particles, hardly
affecting the total volume distribution of the large par-
ticles. While the sum of the coarse volume distributions
changed little, the distribution of individual particle
types changed dramatically (Figs 7-9).
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initial particles were small, most accumulation of IM
particles occurred at sub-micron sizes.

Figures 8 and 9 show the initial and final distribu-
tion and composition, respectively, of the IM type.
Initially, IM particles contained only sulfate, nitrate
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Fig. 7. Change in volume distributions due to 12 h of
coagulation. EM1 is elemental carbon, EM2 is organic
carbon, EM3 is the sulfuric acid—water mixture, and IM
is the internally mixed type. Most volume shifted from
EM to IM particles. Addition to the IM coarse mode is
hardly noticeable since few large particles existed ini-
tially, and they usually coagulated with small particles.
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Fig. 8. Initial composition and size distribution of IM

particles. IM particles initially consisted of water, sulfate,

and nitrate, but no elemental or organic carbon. Total IM

is the sum of the volumes of water, sulfate, and nitrate.
Table A.2 details the initial distributions.
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Fig. 9. Composition and size distribution of IM particles
after 12 h of coagulation. Total IM is the sum of the
volumes of elemental and organic carbon, water, sulfate,
and nitrate. Coagulation movéd a significant amount of
elemental and organic carbon from EM to IM particles.
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and water, in small amounts. Subsequently, signifi-
cant amounts of carbon coagulated with and became
part of IM particles, drowning out other sub-micron
components.

To obtain the computer results for this application,
we used 72 600-s time-steps for a total of 12 h. Also, we
set Ve r=2, r;=0.005 um, Ny=41, and T=298 K.
The 12-h simulation over one spatial grid-cell took
1.25s of CPU time on a CRAY Y-MP. Because we
vectorized the coagulation code over the grid-cell
dimension, increasing the number of grid-cells de-
creases the time to solve per grid-cell. For example,
the same solution, over 16,000 grid-cells, took 571 s at
a speed of 209 megaflops. Since we used 41 size bins,
11 distinct aerosol components, and 72 time-steps, the
required time was 1.1 x 1076 s per grid-cell per size
bin per component per time-step.

In another coagulation example, not shown here,
we ran a simulation with the same 600-s time-step and
12-h interval, but with 6 components and 18 size bins.
Over a 16,000-cell grid domain, the solution took
126.4 s at a speed of 205 megafiops. Thus the time
required was 1.0 x 10~ s per grid-cell per size bin per
component per time-step, similar to the time in the
example above.

6. CONCLUSION

We have presented a model to compute coagu-
lation among any number of particle types, each
containing any number of components. The scheme is
volume conserving and unconditionally stable, uses
any time-step, and solves over any size-bin structure.
With a geometric distribution as described in this
paper, the scheme can solve for all cases where the
volume ratio of adjacent bins (¥ ,7) exceeds one. The
solution mechanism discussed is an expansion of the
semi-implicit numerical schemes of Turco et al.
(1979a,b) and Toon et al. (1988). Because the code
requires no iterations, it uses little computer time.
With the model, we can study effects of coagulation
on particle composition and size-distribution. For
example, we can simulate coagulation of particles of
the same size but of different composition.

The equations shown for multiple particle types
assume that whenever a particle of one type coagu-
lates with a particle of another type, the resulting
particle enters a multicomponent mixture represent-
ing all particle types. In reality, hetero-coagulation
results in unique types. We discussed a straight-
forward method of modifying the equations to ac-
count for all possible particle combinations. However,
including all combinations drastically increases the
number of aerosol constituents. Beyond a small num-
ber of spatial grid-cells, aerosol components, and size
bins, assuming unique particle types upon hetero-
coagulation presses most computer memory limits.

In this paper, we compared results to two analytical
solutions, two time-series numerical solutions, and
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a published solution. In all comparisons, the results
matched very well with Vg, =1.2 and reasonably
well with Vg ,r=1.5-2.0. With larger values of Vg ,,
numerical diffusion increased at larger size bins.
Finally, we demonstrated the use of the model in
a slightly more complicated application. The results of
the application suggest that single component par-
ticles quickly hetero-coagulate with particles of other
types when the air is particle-rich. Along with coagu-
lation, however, other processes—such as growth,
evaporation, nucleation, deposition, advection, chem-
ical reaction, and emissions — affect aerosol size
and composition. Thus, calculating the effects of all
processes, not just of coagulation, is important for
simulating particle size and composition.
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APPENDIX

Table A.1. Example set of aerosols used to describe coagulation among particles of

different size and composition. EM, externally mixed particles; EMVFs, volume*

fractions of EM particles; IM, internally mixed particles; and IMVF, volume fraction
of IM particles

Aerosol No. Description of type
1 EM1 (made of EMVFla)
2 EMVF1a (only volume fraction of EM1)
3 EM2 (made of EMVF2a and EMVF2b)
4 EMVF2a (first volume fraction of EM2)
5 EMVF2b (second volume fraction of EM2)
6 IM (made of IMVFa-f)
7 IMVFa (contains same material type as EMVF1a)
8 IMVFDb (contains same material type as EMVF2a)
9 IMVFc (contains same material type as EMVF2b)
10 IMVFd (appears only in IM)
11 IMVFe (appears only in IM)
12 IMVF( (appears only in IM)

Parameter definitions as applied to Table A.1.

total number of aerosol types (EM plus IM). Does not include volume

total number of volume fractions of each N =1, N aerosol type (V; =1,
total number of components of each N=1, Nr aerosol type.
aerosol number of each U =1, Ty component of each N =1, N1 aerosol

aerosol number mapping each Q=L , IM component to each EM
component that hetero-coagulates to form a portion of Q. Table A.2

{Total number concentration of particles of type N, size

Ng total number of aerosol size bins
Nr
fractions (N+=3 in Table A.1)
Ng total number of EM types (Ng=Nr—1=2 in Table A.1)
Vn
V,=2, V3=6in Table A.1)
Ty
Ty=1+Vy. In Table A1, Ty=2, T,=3, and T3=7
L
v type. Table A.2 lists example values resulting from Table A.1
SQ. I
lists example values resulting from Table A.1
Clui

j=Yre CL, j.} Since all concentrations, including those of volume
components, are in units of No. cm™ 3, the sum of the number concentra-
tions of all volume fractions of type N, size j equals the total number
concentration of particles of that type and size. Similarly, the total
volume of a particle (cm® particle ~!) multiplied by the numbe¥concen-
tration of one of its volume fractions equals the volume concentration

(cm® cm™3) of the volume fraction.
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Table A.2. Arrays of species number for the parameters Ly yand S, ,. N varies from 1 to N ,, U varies
from 1 to Ty, and Ng. The values apply to Table A.1

«N=1-> ——N=2—8 N=3
U 1 2 1 2 3 1 2 3 4 ) 6 7
o=L,, 1 2 3 4 5 6 7 8 9 10 11 12
So.1
I=1 0 0 0 0 0 1 2 0 0 0 0 0
I1=2 0 0 0 0 0 3 0 4 5 0 0 0




