IAM Crosscut: Resource Scenarios

2013 CCI/IA Workshop
July 22, 2013

Patrick Sullivan
Objective: explore models’ responsiveness—especially in wind deployment—to changes in different model inputs/assumptions in a few dimensions:

- Wind Resource (quantity and cost)
- Competition (availability of nuclear and CCS for mitigation, presence of carbon signal)
- Integration of VRREs (e.g., backup requirement)
Renewables Initiative Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Wind Resource</th>
<th>Wind Cost</th>
<th>Carbon Policy</th>
<th>Integration Cost/Limit</th>
<th>Nuke/CCS Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Flagship</td>
<td>Model’s existing supply curve</td>
<td>Standard</td>
<td>Tax</td>
<td>Standard</td>
<td>All tech</td>
</tr>
<tr>
<td>2. New Wind</td>
<td>NREL supply curve, new</td>
<td>Standard</td>
<td>Tax</td>
<td>Standard</td>
<td>All tech</td>
</tr>
<tr>
<td>3. No Policy</td>
<td>Model’s existing supply curve</td>
<td>Standard</td>
<td>None</td>
<td>Standard</td>
<td>All tech</td>
</tr>
<tr>
<td>4. RE</td>
<td>Model’s existing supply curve</td>
<td>Standard</td>
<td>Tax</td>
<td>Standard</td>
<td>Nuke phase-out, no CCS</td>
</tr>
<tr>
<td>5. Generous RE Integration</td>
<td>Model’s existing supply curve</td>
<td>Standard</td>
<td>Tax</td>
<td>Relaxed</td>
<td>All tech</td>
</tr>
<tr>
<td>6. Strict RE Integration</td>
<td>Model’s existing supply curve</td>
<td>Standard</td>
<td>Tax</td>
<td>Tightened</td>
<td>All tech</td>
</tr>
<tr>
<td>7. Low Cost</td>
<td>Model’s existing supply curve</td>
<td>Low</td>
<td>Tax</td>
<td>Standard</td>
<td>All tech</td>
</tr>
<tr>
<td>8. High Cost</td>
<td>Model’s existing supply curve</td>
<td>High</td>
<td>Tax</td>
<td>Standard</td>
<td>All tech</td>
</tr>
<tr>
<td>9. Low Resource</td>
<td>Model’s existing supply curve, low</td>
<td>Standard</td>
<td>Tax</td>
<td>Standard</td>
<td>All tech</td>
</tr>
<tr>
<td>10. High Resource</td>
<td>Model’s existing supply c., high</td>
<td>Standard</td>
<td>Tax</td>
<td>Standard</td>
<td>All tech</td>
</tr>
<tr>
<td>11. Climate Policy</td>
<td>Model’s existing supply curve</td>
<td>Standard</td>
<td>550</td>
<td>Standard</td>
<td>All tech</td>
</tr>
<tr>
<td>12. Flip Offshore</td>
<td>NREL s.c., new, +/- offshore</td>
<td>Standard</td>
<td>Tax</td>
<td>Standard</td>
<td>All tech</td>
</tr>
</tbody>
</table>
Increased resource compared to Hoogwijk et al. (2004) assessment used by IMAGE and other models.

Global Hoogwijk Resource < 103 $/MWh: 330 EJ/yr
NREL/CFDDA Onshore >26% nCF near and mid, >30% far: 464 EJ/yr
NREL/CFDDA Offshore >30% nCF near and mid, >34% far: 581 EJ/yr
Flagship Scenario Wind Production

Max wind output across model years (usually but not always final year).

Flagship resource inputs are the models’ standard.
New Wind Scenario Wind Production

There is a general increase in wind production in the New Wind scenarios over the Flagship.

GCAM (green) declines from Flagship.
Resource portrayed is NREL/CFDDA resource with nCF > 26%. There is uneven use of resource across models and regions: low-quality resource developed in India in several models.
GCAM is the outlier in showing more wind development in the Flagship.

POLES and WITCH are the least sensitive to resource changes: interestingly, they are at very different levels of deployment.
Comparison of GCAM resource available for <103 $/MWh to estimated comparable NREL/CFDDA resource.

Zhou writes “a [gross] capacity factor of 30% is equal to a generation cost of 11 cents/kWh.”

For NREL/CFDDA comparison, use nCF>26% for near and mid distance to transmission, nCF>30% for far.

Global total:
- GCAM 606 EJ/yr
- NREL 464 EJ/yr

POLES is not resource-constrained

Poles has ~average wind deployment compared to other models.

Across regions, POLES does not appreciably change wind deployment based on resource assessment.

(I regret that I do not have a comparison to POLES base resource assumptions.)

Level of economic competition with other technologies does effect deployment (Nico’s talk tomorrow).
REMIND cares about resource

Resource assumptions are one of REMIND’s largest drivers

New Wind scenario has highest wind deployment in several regions. High/Low Resource scenarios also diverge from Flagship.

2100 wind production 118 EJ/yr in Flagship, 178 EJ/yr in New Wind
More Resource in India

Several models showed substantial increases in wind production in India using the NREL/CFDDA supply curves.

MESSAGE results imply that offshore resource may be an important component of the increase.