

IAM Crosscut: Resource Scenarios

2013 CCI/IA Workshop July 22, 2013

Patrick Sullivan

Renewables Initiative Scenarios

Objective: explore models' responsiveness—especially in wind deployment—to changes in different model inputs/ assumptions in a few dimensions:

- Wind Resource (quantity and cost)
- Competition (availability of nuclear and CCS for mitigation, presence of carbon signal)
- Integration of VRREs (e.g., backup requirement)

Renewables Initiative Scenarios

	Wind Resource	Wind Cost	Carbon Policy	Integration Cost/Limit	Nuke/CCS Availability
1. Flagship	Model's existing supply curve	Standard	Тах	Standard	All tech
2. New Wind	NREL supply curve, new	Standard	Тах	Standard	All tech
3. No Policy	Model's existing supply curve	Standard	None	Standard	All tech
4. RE	Model's existing supply curve	Standard	Тах	Standard	Nuke phase-out, no CCS
5. Generous RE Integration	Model's existing supply curve	Standard	Тах	Relaxed	All tech
6. Strict RE Integration	Model's existing supply curve	Standard	Tax	Tightened	All tech
7. Low Cost	Model's existing supply curve	Low	Тах	Standard	All tech
8. High Cost	Model's existing supply curve	High	Тах	Standard	All tech
9. Low Resource	Model's existing supply curve, low	Standard	Тах	Standard	All tech
10. High Resource	Model's existing supply c., high	Standard	Tax	Standard	All tech
11. Climate Policy	Model's existing supply curve	Standard	550	Standard	All tech
12. Flip Offshore	NREL s.c., new, +/- offshore	Standard	Тах	Standard	All tech

NREL/CFDDA Resource Assessment

Increased resource compared to Hoogwijk et al. (2004) assessment used by IMAGE and other models.

Global Hoogwijk Resource < 103 \$/MWh: 330 EJ/yr

NREL/CFDDA Onshore >26% nCF near and mid, >30% far: 464 EJ/yr

NREL/CFDDA Offshore >30% nCF near and mid, >34% far: 581 EJ/yr

Wind Resource by IMAGE Region

Flagship Scenario Wind Production

Max wind output across model years (usually but not always final year).

Flagship resource inputs are the models' standard.

New Wind Scenario Wind Production

There is a general increase in wind production in the New Wind scenarios over the Flagship.

GCAM (green) declines from Flagship.

New Wind Scenario Wind Production

Resource portrayed is NREL/CFDDA resource with nCF > 26%.

There is uneven use of resource across models and regions: low-quality resource developed in India in several models.

Annual Wind Output

GCAM base resource is greater

Comparison of GCAM resource available for <103 \$/MWh to estimated comparable NREL/CFDDA resource.

Zhou writes "a [gross] capacity factor of 30% is equal to a generation cost of 11 cents/kWh."

For NREL/CFDDA comparison, use nCF>26% for near and mid distance to transmission, nCF>30% for far.

Global total:

GCAM 606 EJ/yr NREL 464 EJ/yr

Wind Resource by GCAM Region

Zhou, Y., Luckow, P., Smith, S. J., & Clarke, L. (2012). Evaluation of global onshore wind energy potential and generation costs. *Environmental science & technology*, *46*(14), 7857-7864.

POLES is not resource-constrained

Poles has "average wind deployment compared to other models

Across regions, POLES does not appreciably change wind deployment based on resource assessment.

(I regret that I do not have a comparison to POLES base resource assumptions.)

Level of economic competition with other technologies does effect deployment (Nico's talk tomorrow).

REMIND cares about resource

Resource assumptions are one of REMIND's largest drivers

New Wind scenario has highest wind deployment in several regions. High/Low Resource scenarios also diverge from Flagship.

2100 wind production 118 EJ/yr in Flagship, 178 EJ/yr in New Wind

More Resource in India

Several models showed substantial increases in wind production in India using the NREL/CFDDA supply curves.

MESSAGE results imply that offshore resource may be an important component of the increase.

India Wind Production: New Wind

Annual Wind Output: IMAGE 2.4, India

Annual Wind Output: MESSAGE V.4, India

