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Objectives of this Talk

1 Suggest a new approach to the representation of catastrophic risk in
integrated assessment models.

2 Introduce some of the ideas behind decision theoretic reasoning.

3 Measure the sensitivity with respect to “time consistency”

4 Illustrate the integration of stochastic control elements in an “off the
shelf” integrated assessment model with solution times on the order
of a few minutes.
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Key Ideas

1 Most integrated assessment models focus on the avoidance of market
and non-market damages as an incentive for short-run mitigation.

2 Some more recent work (e.g., Lemoine and Traeger (2011) or Cai,
Judd and Lontzek (2013)) have introduced a precautionary motive for
mitigation. Mitigation in the short run is desireable because it reduces
the rate of temperature change and thereby reduces the likelihood of
catastrophic impacts.

3 Unlike most decision-theory integrated assessment models, the
introduction of uncertain catastrophic damages demands a stochastic
control rather than a stochastic programming format.

4 The purpose of this model is to illustrate a minimalist framework for
investigating the impact of uncertain catastrophic loss on near term
mitigation.
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Model Features

1 DICE 2013 (one world, market and non-market damages, costly
mitigation, Ramsey growth model, simple climate model driven by
carbon emissions)

2 tE time periods of economic activity (2015,2020,. . . ,2115)

3 tC > tE time periods of climate evolution and damages
(2015,2020,. . . ,2300)

4 s states of world (scenarios) each associated with the year in which
catastrophic damage is realized or “never”
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Scenario Structure
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Scenario Indexing
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Bayesian Learning

Following Lemoine and Traeger we adopt a simple uniform prior: the
probability of a catastrophe at a temperature T > T2015 is ex-ante
assumed to be:

pT =
T − T2015

T̄ − T2015

Let ht denote the hazard rate, the contitional probability of a disaster
during period t assuming there has been no catastrophe to that point.
If no catastrophe has yet occured in period t when the temperature is Tt ,
the Bayesian hazard rate of catastrophe during period t if the temperature
in t + 1 is Tt+1 is:

ht =
Tt+1 − Tt

T̄ − Tt
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Probabilities

1 Let ξt denote the probability that no catastrophic loss has occured to
the start of period t.

2 With a base year of 2015, ξ2015 = 1

3 Probability that catastrophic loss has not taken place at the start of
period t + 1 is then:

ξt+1 = (1 − ht)ξt

4 Probability the scenario s is realized is then:

πs =


htξt s = t

ξ2115 s = never

5 By definition, πs ≥ 0 and
∑

s πs = 1.
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A Couple Equations

1 Aggregate output (Y ) is allocated to consumption (C ), investment (I ),
climate damages (D) and mitigation cost (A):

Yst = Cst + Ist + Dst + Ast

2 Damage costs are determined as a fraction of gross output, depending on
temperature change and whether the catastrophic temperature threeshold
has been exceeded:

Dst = Yst

(
α1Tst + α2Tα3

st + δst

(
∆

(
Tst

T̃s

)φ))
in which T̃s is the catastrophic temperature threshold for scenario s (i.e.,
T̃s = Tnever ,t when s = t), and δst is an indicator function which is equal to
unity if t > s (catastrophe has occured) and zero otherwise. Code:

DAMAGE(s,t) =E= Y(s,t) * (aa1*TATM(s,t) + aa2*TATM(s,t)**a3 +

ifcat(s,t) * damcat * (TATM(s,t)/THRESH(s))**asl3);
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Expected Utility

• Nested Constant Elasticity of Substitution

EU =

∑
s

πs

(∑
t

βtC
1−θ
st

)(1−γ)/(1−θ)
1/(1−γ)

EU Expected utility
βt The utility discount factor (accounting for both

population and impatience)
θ = 1.45 Elasticity of marginal utility of consumption (the inverse

of the intertemporal elasticity of substitution)
γ = 2 The coefficient of relative risk aversion

• Cobb-Douglas assumes γ = θ = 1:

EU =
∑
st

πsβt log(Cst)
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Limitations

• Problem with Cobb-Douglas model: no distinction between attitudes
toward time and uncertainty.

• Problem with constant elasticity model: time consistency.

Thanks to Svenn Jensen for helping me understand these issues and the usefulness of
the Epstein-Zin model.
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Dynamic Inconsistency

In economics, dynamic inconsistency, or time inconsistency,
describes the situation: A decision-maker’s preferences change
over time, in such a way that a preference, at one point in time,
is inconsistent with a preference at another point in time.
It is often easiest to think about preferences over time in this
context by thinking of decision-makers as being made up of
many different “selves”, with each self representing the
decision-maker at a different point in time.
Wikipedia

• A concrete example: a government climate policy commission
produces a full schedule of state-contingent policies. Ten years later,
policy is revised, even though there has be no change in the
likelihoods of different states of world.

• An more mundane example: the third or fourth beer may be regretted
in the morning.
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Epstein-Zin Preferences

A recursive utility function can be constructed from two components: a
time aggregator that characterizes preferences in the absence of
uncertainty and a risk aggregator that defines the certainty equivalent
function that characterizes preferences over static gambles and is used to
aggregate the risk associated with future utility.

Ut =

{
C

(1−γ)/(1−θ)
t + β̃tEt

[
U1−γ
t+1

]1/(1−θ)}(1−θ)/(1−γ)

The time discount parameter β̃t is a parameter reflecting pure time
preference, growth and concavity of utility which is related but not equal
to βt in the CES model.
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Mitigation Before and After Catastrophe

Damage rates jump following realization of a catastrophe and mitigation
becomes more profitable:
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Diagnostic Simulations

• Stochastic simulations with a uniform Bayesian prior

max3 Catastrope is certain with a 3 ◦C temperature change
max5 Catastrope is certain with a 5 ◦C temperature change
max7 Catastrope is certain with a 7 ◦C temperature change

• Deterministic simulation

never Catastrophe is ignored and unrealized.
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Catastrophe and the Shadow Price of Carbon
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Decomposing the Precautionary Motive

We run the Bayesian stochastic control model with endogenous hazard
rates. Let h∗

t denote the resulting hazard rates. We can solve a stochastic
program to decompose the precautionary motive. We do this by dropping
the Bayesian update expression and assigning:

ht = h∗
t

The hazard rate in each period remains unchanged, but the optimal
program then undertakes less aggressive abatement because the transition
probabilities are fixed.
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Illustrated Scenario Probabilities π∗
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Decomposing Precautionary Abatement
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Time Consistency with Stochastic Programming
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Lack of Time Consistency with Stochastic Control?
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Research Agenda going Forward

• Evaluate the expected value of perfect (or imperfect) information.

• Assess the qualitative importance of the prior distribution.

• Incorporate precautionary adaptation investments.

• Investigate the scientific basis for tipping points and catastrophes.
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Lemoine and Traeger

• Increase in climate sensitivity from 3 up to 6 deg C

• Increase in CO2 atmospheric lifetime weakening sinks (decay rate)
25% to 75%

• Temperature threshold uniformly distributed between historic
maximum and upper bound

• Endogenous hazard rate (i.e., probability of exceeding threshold
contingent on not having crossed)

Issues: (1) Thresholds and impacts theoretical; (2) Rapid transition, and
sudden yet perpetual realization seems unrealistic.
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Cai, Judd, Lontzek

• Stochastic increase in GDP loss (2.5, 5, 10, 20%)

• Abrupt and gradual tipping point impact

• Tipping point probabilities from previous expert elicitations broad
ranges

• Inferred hazard rates

Issues: Thresholds, impacts, and timing strike us as hypothetical.
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Calibrated

Sea-level rise 
(Nordhaus, 2010)

Equilibrium SLR 
temperature 
thresholds

Tipping points? 

Reversible?
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Calibrated

Terrestrial carbon 
feedback (Tol, 2009)

No thresholds and 
reversible

Tipping points? 
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Geophysical

Greenland ice sheet 
(Stone et al., 2010)

Ice sheet extent with 
CO2 concentrations

Collapse found 
between 400-560 
ppmv

“Collapse?”

400 ppmv

560 ppmv

1120 ppmv

Illustrative sample of results

Today
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Geophysical

Permafrost melt 
(Schneider von 
Deimling et al., 2012)

Permafrost emissions 
with temperature 
thresholds

Abrupt or gradual?
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The End

• Slides: http://www.mpsge.org/dicesc.pdf

• GAMS model directory: http://www.mpsge.org/dicesc.zip
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