

Importance of Scenarios for CCIAV

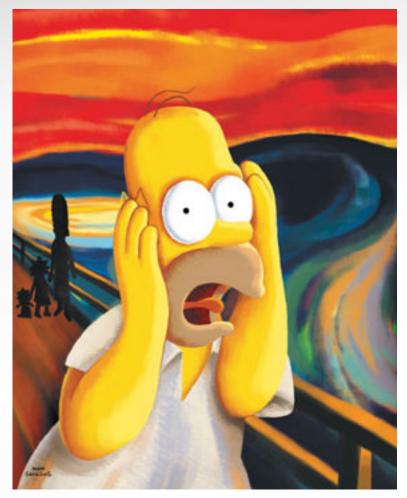
RICHARD MOSS, YANNICK LE PAGE, KATE CALVIN, STEPHANIE WALDHOFF, AND ALLISON THOMSON

Joint Global Change Research Institute Pacific Northwest National Labotory and University of Maryland College Park, MD

The authors are grateful to the U.S. Department of Energy's Integrated Assessment Research Program for long-term research support.

July 26, 2013 PNNL-SA-

AR5 and NCA are not even finished. And yet, its time to ...


Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

...plan scenarios for the next round of

research and assessment

- Are we already behind?
- What have we learned in the first round of the new scenario process?
- What are the policy and science questions that will need to be addressed in the AR6 and other assessments?
- What research design for scenarios is appropriate for these questions?

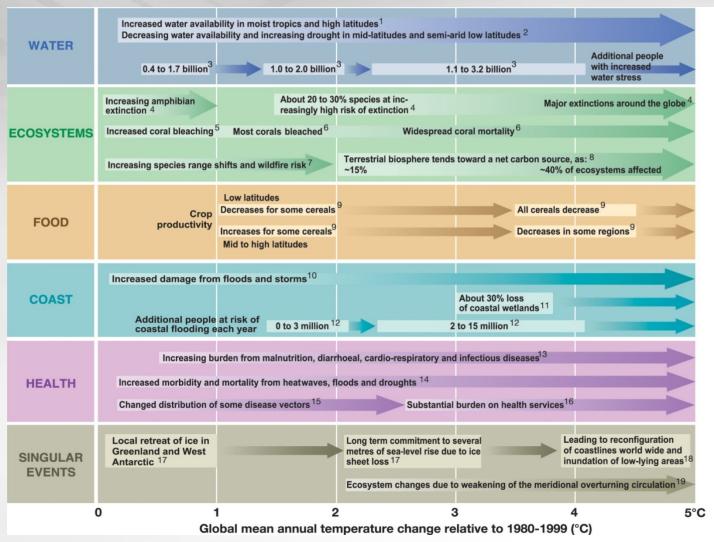
Topics I will cover

Proudly Operated by Battelle Since 1965

- 1. Drivers of scenarios development
- 2. How have RCPs been used?
- 3. Areas for improvement and potential next steps in improving scenarios for CCIAV

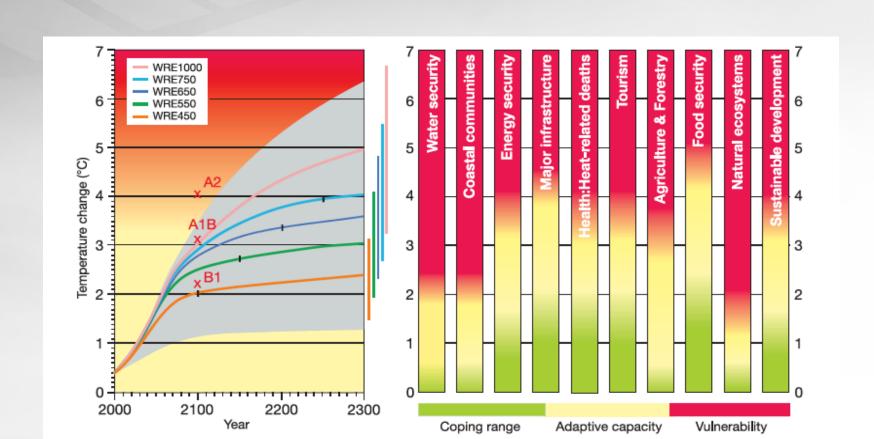
Drivers

Proudly Operated by Battelle Since 1965



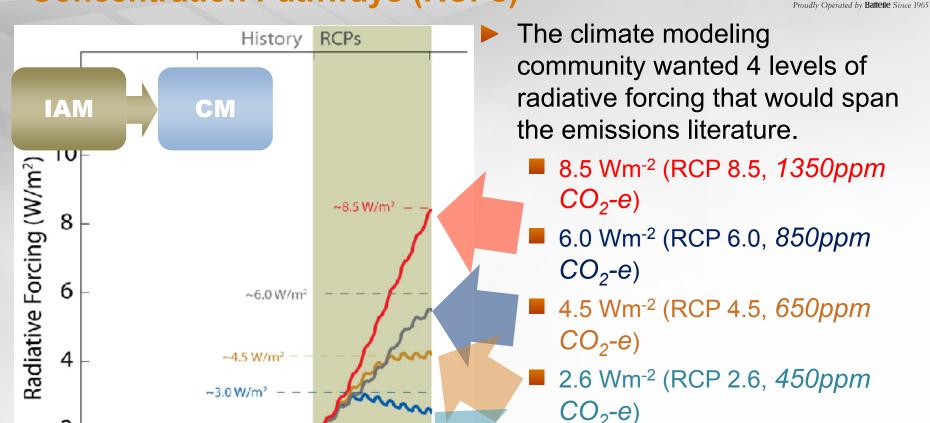
July 26, 2013 4

1. Scenarios as method to coordinate synthesis



Proudly Operated by Battelle Since 1965

Synthesis, IPCC Australia/New Zealand



Source: IPCC AR4 WG II Ch 11, Fig 11.4

7/26/13

2. Scenarios as inputs to ESMs: Representative Concentration Pathways (RCPs)

<u>CLIMATIC CHANGE</u>

<u>Volume 109, Numbers 1-2 (2011),</u>

<u>5-31, DOI: 10.1007/</u>

<u>s10584-011-0148-z</u>

Content of RCP database

Proudly Operated by Battelle Since 1965

Data for climate modelers or atmospheric chemists http://www.iiasa.ac.at/web-apps/tnt/RcpDb/

FORCING AGENTS

GHG Emissions and Concentrations from IAMs

- Greenhouse gases: CO₂, CH₄, N₂O, CFCs, HFC's, PFC's, SF₆
- Emissions of chemically active gases: CO, NO_x, NH₄, VOCs
- Derived GHG's: tropospheric O₃
- Emissions of aerosols: SO₂, BC, OC
- Land use and land cover [NEW]

EXTENSIONS

Extension of scenarios to 2300—ECPs.

WHAT YOU WON'T FIND

You will not find an integrated set of detailed socioeconomic storylines and scenarios (e.g., no common reference scenario)

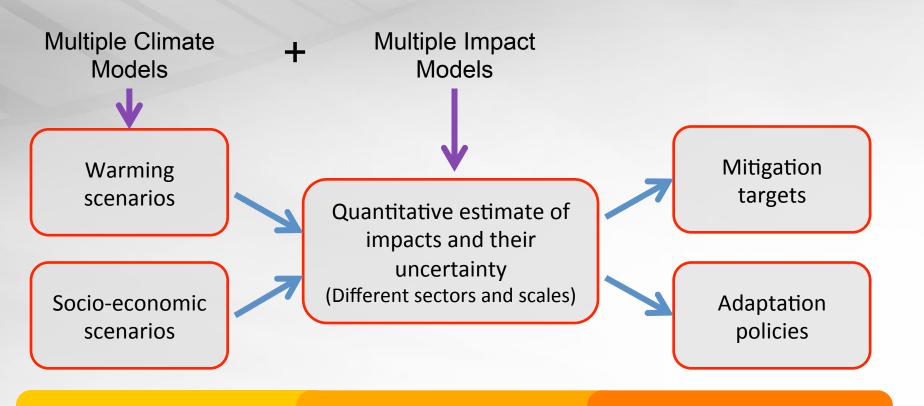
3. Scenarios as inputs to diverse CCIAV research

Proudly Operated by Battelle Since 1965

	Impact	Vulnerability	Adaptation	Integrated
Scientific objectives	Impacts and risks under future climate	Processes affecting vulnerability to climate change	Processes affecting adaptation and adaptive capacity	Interactions and feedbacks between multiple drivers and impacts
Practical aims	Actions to reduce risks	Actions to reduce vulnerability	Actions to improve adaptation	Global policy options and costs
Research methods	Standard approach to CCIAV Drivers-pressure-state- impact-response (DPSIR) methods Hazard-driven risk assessment	Vulnerability indica Past and presen Livelihood Agent-based Narrative r Risk perception includid Development/sustainabil Relationship of adaptive of	t climate risks analysis I methods nethods ng critical thresholds ity policy performance capacity to sustainable	Integrated assessment modelling Cross-sectoral interactions Integration of climate with other drivers Stakeholder discussions Linking models across types and scales Combining assessment approaches/methods
Spatial domains	Top-down Global → Local	Local → Regional		Linking scales Commonly global/regional Often grid-based
Scenario types	Exploratory scenarios of climate and other factors (e.g., SRES) Normative scenarios (e.g., stabilisation)	Socio-economic conditions Scenarios or inverse methods	Baseline adaptation Adaptation analogues from history, other locations, other activities	Exploratory scenarios: exogenous and often endogenous (including feedbacks) Normative pathways
Motivation	Research-driven	Research-/stakeholder-driven	driven	Research-/stakeholder-driven e: IPCC AR4, WG2, CH2

Content of DDC data base for CCIAV research

Proudly Operated by Battelle Since 1965


DDC_Variables for AR4

	DDC-Variable	Acronym	PCMDI- Variables	Table/ Nr
	2m surface air temperature	TEMP2	tas	A1a/3
	2m mean max. air temperature		tasmin	A1f/5
_	2m mean min. air temperature		tasmax	A1f/6
ate	total precipitation		pr	A1a/2
0	total incident solar radiation		Rreds	A1a/13
oore data	mean scalar wind speed		uas/vas	A1a/26+27
	humidity		huss	A1a/28
	mean sea level pressure		psl	A1a /1
	global mean sea level change (th. exp.)		zostoga	O1c/2
	frost days		fd	A4/1
	extreme temperature range		etr	A4/2
80	growing season length		gsl	A4/3
extreme Indices	heat wave duration		hwdi	A4/4
⊆	fraction of time (90th percentile min temp)		tn90	A4/5
e e	rain > 10 mm/d		r10	A4/6
t _e	consecutive dry days		cdd	A4/7
ŏ	max. 5day precipitation		r5d	A4/8
	simple daily intensity index		edii	A4/9
	fraction of annual total prec. > 95th percentile		r95t	A4/10

Scenarios for CCIAV intercomparison: ISI-MIP

Proudly Operated by Battelle Since 1965

Common Background
Scenarios

Quantitative Impact Models

Policy-relevant, society- focused metrics

Source: Katja Frieler

Discussing Priorities

Making Choices

Reviewing Scenarios

Discussing Implementation

Proudly Operated by Battelle Since 1965

II. If we're re-examining scenarios for future research/assessment, a reasonable question is how have the RCPs been used?

Preliminary RCP citation analyses

Proudly Operated by Battelle Since 1965

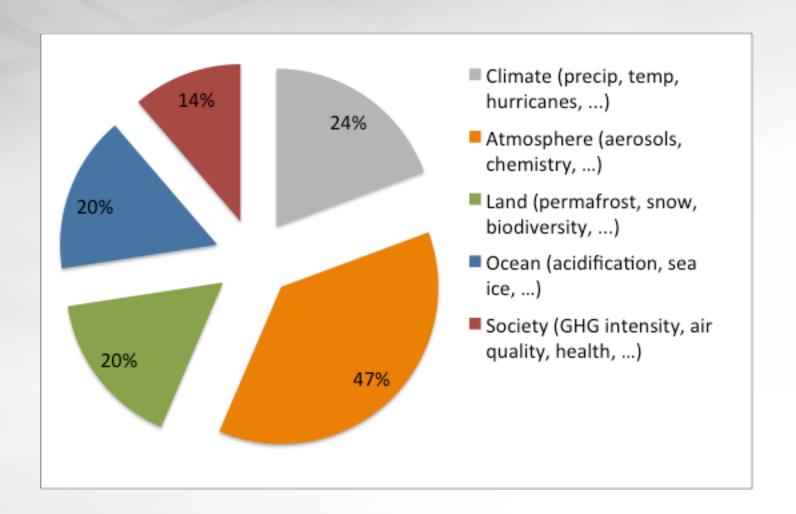
	Citation (web of science)	Using CMIP5 data	Using RCP data
Moss	267	45	31
Van Vuuren overview	101	25	24
van vuuren 2.6	29	3	7
Thomson 4.5	31	7	13
Masui 6.0	16	?	4
Riahi 8.5	30	12	7
Meinhausen extension	84	?	10
Hurtt Land Use	30	2	3

-> Total using RCP data: 67

Spatial scale

Global 52
Region 11
National and < 3

Data used


GHG and pollutant emissions		
Landuse		
Socio-economics	3	

Papers also using ESM data

Proudly Operated by Battelle Since 1965

Main topic of papers using RCP data

III. Areas for improvement and potential next steps

7/26/13

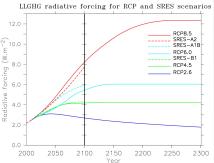
Improving use of scenarios in assessments and decision support

- Assessment: scenarios are not widely used
 - NCA experience (careful strategy, climate "outlooks")
 - IPCC WG II (is WG III a different story?)
- Supporting decisions: many end users can't relate to the substance of current global scenarios
 - Survey uses and needs (e.g., higher resolution, more 'near-term' information)
 - Test what communicates effectively, including evaluating the "climate outlooks" and SLR scenarios
 - Experiment with scenario planning methods and evaluate experience

Some specific areas of improvement needed

- Broader range of designs (e.g., Tony's normative approach)
- Continue developing SSPs, extensions, and alternatives
- Guidance on scenario matching and integration for specific uses:
 - Socioeconomic, climate, land use, etc.
- Guidance on pattern scaling
- Better advertising of availability
- Better user support
- Advance methods for nesting scenarios cross-scale dynamics
- Make progress on relatively likelihood of pathways (e.g., IPCC issue)
- Closer connection with users and importance of storylines, scenario planning

Snowmass scenarios workshop: Assessing recent experience and planning next scenarios for research and assessment


- Three issues that are expected to be important to national and international policy formulation:
 - land use
 - emissions of short-lived species, and
 - "overshoot" futures
- Needs for national or subnational assessments which require nesting and integration of different types of scenarios (e.g., climate, socioeconomic, land use, sea level) – several US cases
- Scenario recommendations for CMIP6
- Improvements to coordination across the three research communities.
- Other topics or ideas for scenarios: short presentations by participants

Feeds into AGCI workshop on CMIP6 the week following

Conclusions

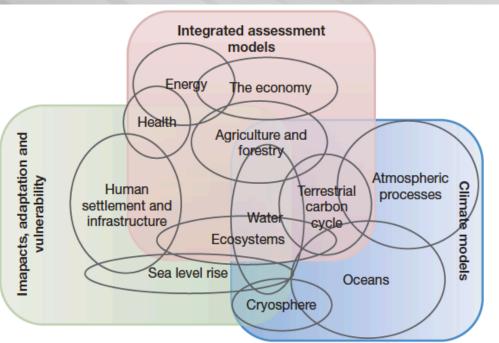
Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

- SSP 5. SSP 3: Socio-economic hallenges for mitigation (Mit. Challenges Dominate) Fragmentation Conventional Development (Intermediate Challenges Middle of the Road SSP 4: Inequality Sustainability

Socio-economic challenges for adaptation

- Reasons for concern (m) Impacts for some affected regions
 - I Risks to unique and threatened systems
 - II Risks from extreme climate events
 - III Distribution of impacts
 - IV Aggregate impacts
 - V Risks from future large-scale discontinuities


- Now is a good time to examine our use of scenarios
- Develop a plan that addresses specific questions or decision needs and goes beyond coordination of modeling
- Engage users in development of scenarios
- Improve integration of different types of scenarios
- Increase effort to disseminate and support proper use

Discussion

Proudly Operated by Battelle Since 1965

Improve integration and data sharing

Proudly Operated by Battelle Since 1965

GENERAL CHARACTERISTCS

- Uncertainty range of forcing in 2100
- Shape of radiative forcing over time

REPRESENTATIVE CONCENTRATION PATHWAYS (RCPs) (Four pathways from existing literature)

RADIATIVE FORCING

•GHGs
•Short-lived gases
and aerosols
•Land cover/use

NEW SOCIO-ECONOMIC and EMISSIONS SCENARIOS; VULNERABILITY STORYLINES

- Adaptation
- Mitigation
- Stabilization
- Overshoots

RCP-related

Independent of RCPs

CLIMATE SCENARIOS

- •Near-term (2035)
- •Long-term (2100+)
- •Regional climate modeling
- •Pattern scaling methods

INTEGRATION OF
CLIMATE
AND SOCIO-ECONOMIC
SCENARIOS

- Integrated scenarios
- Pattern scaling (climate)
- Downscaling of climate and socio-economic scenarios

• ...

NEW RESEARCH AND ASSESSMENTS

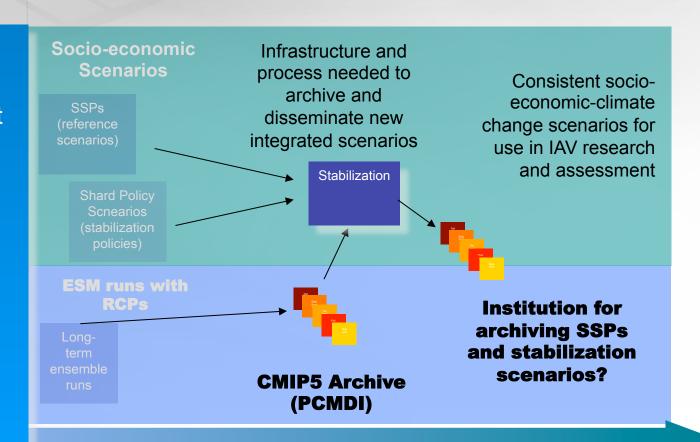
Impact, adaptation, and vulnerability

studies
•Feedbacks
•Model

development

• ...

Source: Moss et al. 2010


2008 2009 2010 2011 2012 2013

Improve framework for linking socioeconomic and climate scenarios

Proudly Operated by Battelle Since 1965

Needed for impact and regional mitigation assessments: integrated socioeconomic and climate scenarios in an accessible format from a distributed scenario archive

SSP5 SSP 3 SSP₂ SSP4 Χ Reference 8.5 Wm⁻² Replication 6.0 Wm⁻² Χ Х Χ Х 4.5 Wm⁻² Χ Χ Х Х Х 2.6 Wm⁻² Х X Χ