

MUG-WITCH

Enrica De Cian, FEEM, CMCC, BU Massimo Tavoni, FEEM, CMCC Valentina Bosetti, FEEM, CMCC

Snowmass, July 29 2013

The Modeling Tool

Basic structure:

- dynamic, optimal growth multi-country model (13 regions, 5 yrs time steps to 2100)
- focus on the energy sector (hard-linked)
- traces and controls all Kyoto gases
- adaptation and damage module (on/off)

Distinguishing features:

- 1. ETC in the energy sector (3 R&D sectors and LBD)
- 2. multiple externalities (climate, technology)
- 3. game theoretic set-up

Scenario matrix

	1	2	3	4	5
TFP	+1%	+0.5%	+0%	-0.5%	-1%
POP	+1%	+0.5%	+0%	-0.5%	-1%
TFC	+3°C	+1.5°C	0°C	-1.5°C	-3°C

Non-cooperative solution excluding climate feedback

This ppt

- focuses on TFP and POP
- illustrates concepts for extreme cases

TFP vs. POP

TFP: increase productivity of all factors, including energy POP: energy-using since sigma<1

$$Y_{i,t} = TFP_{i,t} (\alpha_{KL_i} (K_{i,t}^{\beta} L_{i,t}^{1-\beta})^{\frac{\sigma-1}{\sigma}} + \alpha_{EN_i} ES_{i,t}^{\frac{\sigma-1}{\sigma}})^{\frac{\sigma}{\sigma-1}}$$

$$i = 1,...,13 \text{ are the model regions}$$

$$t = 2005,...,2100$$

Effects of TFP vs. POP on CO2 emissions

The emission range spanned when varying TFP and POP growth is huge

196 Gton CO2 in 2100 74 Gton CO2 in 2050

Effect of TFP vs. POP on CO2 emissions

Focus on the extreme cases to illustrate

- The EMI-GDP relationship also varies
- TFP and POP have a different impact due to the neutral effect of the former and energy-using effect of the latter

Effect of TFP vs. POP on CO2 emissions

Fast pop and slow growth has higher emissions than fast growth and slow pop Fast growth => faster productivity improvement of all factors, including energy Fast pop => only have a E-U effect

Effect of TFP vs. POP on EMI-GDP relationship

Effect of TFP vs. POP on EMI-GDP relationship

Effect of TFP vs. POP on CO2 abatement

Fast growth, slow pop more abatement after 2050

and lower policy costs (cons) after 2060

Way forward

- TFP: neutral vs. labor augmenting
- Interaction effects are important given the non linear nature of our models and likely to be model-specific
- Assign probability to the various combinations, e.g. based on historical data, how likely fast pop and low TFP is? Relationship with SSP process and other projects?
- Usefulness of CS if no impacts included and CE analysis
- Can include damage and do SCC (shadow price)

Thanks

