Uncertainty Analysis in Integrated Assessment Models

Major Steps Over the Last Year

Kenneth Gillingham

Major Progress Since Snowmass 2012

Fall 2012

- Further analyzed Snowmass 2012 "feasibility" results
- Developed decomposition methodology
- February 2013 meeting
 - Reviewed first round results
 - Decided to simplify to 3 variables
 - Agreed to "two-track" methodology
 - Discussed approaches to determining PDFs
- Spring/Summer 2013
 - Developed Snowmass 2013 protocol
 - Participating models completed protocol

First Round: Snowmass 2012 Feasibility Exercise

7 models performed a "feasibility" exercise

- 1. Each model began with a baseline (no policy) run
- 2. Six sensitivity runs are were then performed
 - Reduce output by a one-time decline of 5% of world GDP in 2020
 - Increase world GDP growth rate by 0.5 % per year 2020-2100
 - Change equilibrium climate sensitivity by +1 °C
 - Increase population growth by 1 % per year from 2020 to 2050
 - CO₂ tax from \$13 in 2010 to \$427 in 2100 (from AMPERE AM3ND1)
 - Add an emissions pulse of 10 Gt of CO₂ in 2020

Which Scenarios Are Feasible?

- Reduce output by a one-time decline of 5% of world GDP in 2020
 - Feasible: EPPA, GCAM, MERGE, PHOENIX, RICE, WITCH
 - Not feasible: PAGE
- Increase world GDP growth rate by 0.5 % per year 2020-2100
 - Feasible: All models
- Change equilibrium climate sensitivity by +1 °C
 - Feasible: EPPA, GCAM, MERGE, PAGE, RICE, WITCH
 - Not feasible: PHOENIX

Which Scenarios Are Feasible? (cont.)

- Increase population growth by 1 % per year from 2020 to 2050
 - Feasible: All models
- CO₂ tax from \$13 in 2010 to \$427 in 2100 (from AMPERE AM3ND1)
 - Feasible: EPPA, GCAM, MERGE, PHOENIX, RICE, WITCH
 - Not feasible: PAGE
- Add an emissions pulse of 10 Gt of CO₂ in 2020
 - Feasible: EPPA, GCAM, MERGE, PAGE, RICE, WITCH
 - Not feasible: PHOENIX

These Results Led to Decision: Start with Three Uncertain Parameters

We chose three uncertain parameters based on importance and ability to easily perturb across (nearly all) models:

- 1. Population growth
- 2. Productivity growth
- 3. Temperature sensitivity

Next Decisions

- Where to get the distributions of the uncertain input parameters $f(\alpha)$?
- How to take these input distributions to the models?
 - Have each model run full Monte Carlo simulations?
 - Two-track approach?

PDFs from Where?

Where to get the distributions of the uncertain input parameters $f(\alpha)$?

- Decision: Literature when possible, expert elicitations when not possible.
- Will discuss this more this afternoon

Taking Input Distributions to the Models

How to take these input distributions to the models?

Decision: Two-track approach

"Decomposition Procedure"

- 1. On one front we push forward on expert elicitations
- 2. On the second front we begin model runs:
 - Determine the support of f(lpha)
 - Divide the domain of each element of α into S intervals
 - Include the endpoints of each interval
 - Populate a grid (or matrix) of α
 - Run the models for each point in the entire grid

We will discuss the integration of the two this afternoon

Decomposition Approach

- This approach has advantages
 - If we have a limited number of input parameters, then the approach is simple, easy to implement, and would not require thousands of runs
 - Provides insight into the correlation structure
 - *Does not requires knowing the PDFs of the input variables first*
- Has some disadvantages
 - May not easily extend to multiple correlated parameters
 - We need to predetermine the support of $f(\alpha)$

How To Determine the Support of $f(\alpha)$?

This determines the computational complexity of the approach

- Need to decide on the size of the intervals
- Need to know the plausible range of the parameters
 - What is the plausible range of the temperature sensitivity parameter?

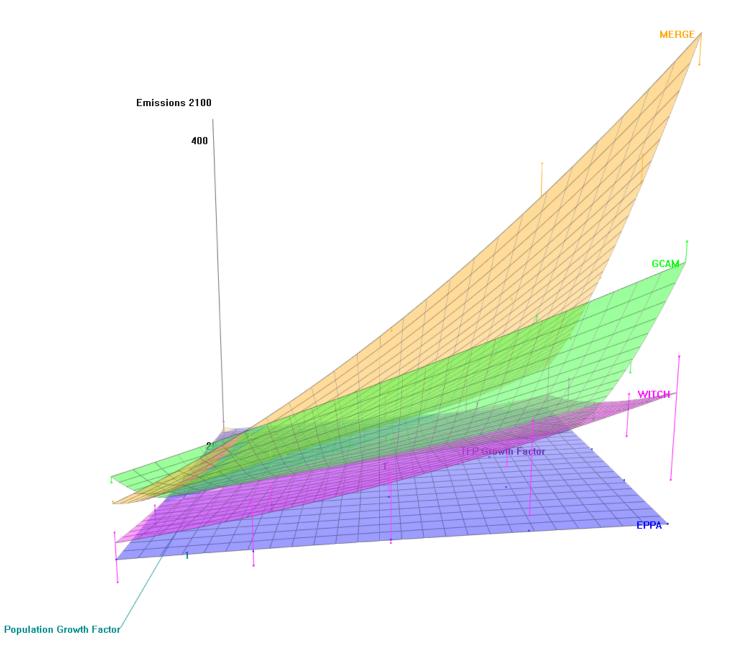
This is an important discussion...

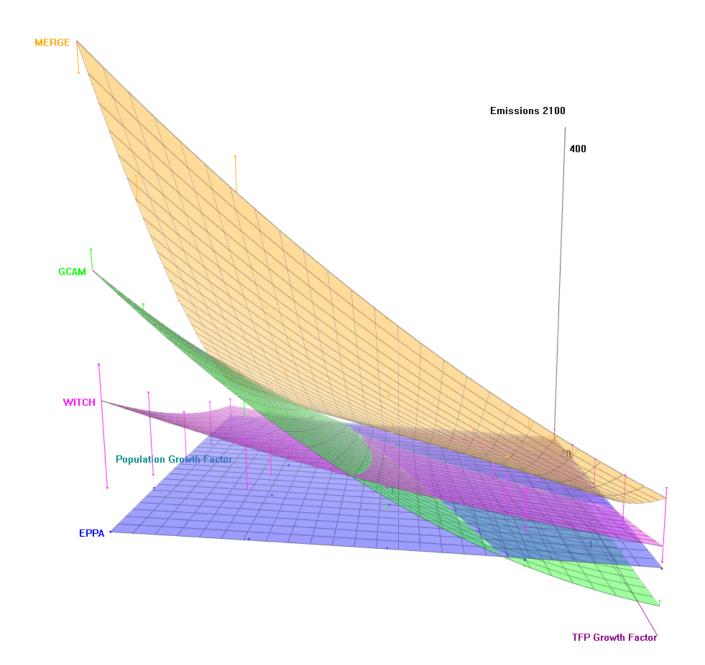
how far out to sample in the tails of $f(\alpha)$?

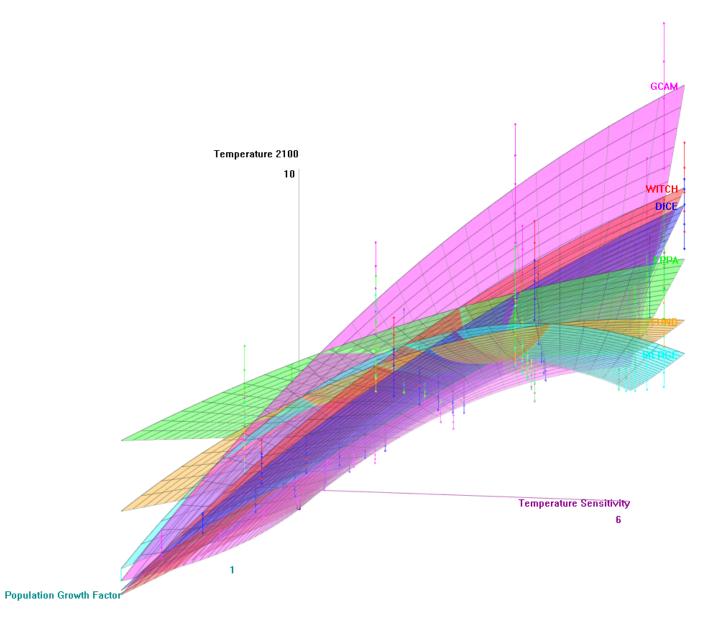
Second Round: Snowmass 2013 Protocol

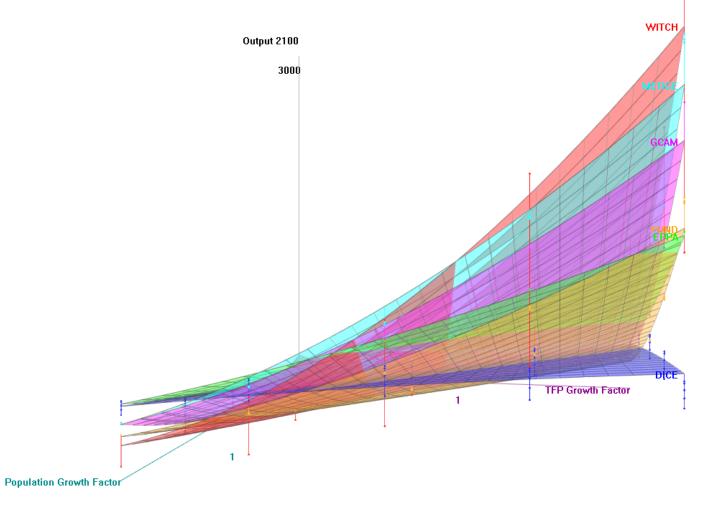
6 models participated in filling out the grid (125 x 2 = 250 runs)

- Perform a set of runs to fill in the 3-dimensional grid:
 - Add to baseline TSC: +3°C, +1.5°C, 0°C, -1.5°C, -3°C (equilibrium °C per CO2 doubling)
 - Add to the baseline TFP growth: +1%, +0.5%, 0%, -0.5%, -1% (annually until 2100, no change in growth rate afterwards)
 - Add to the baseline population growth: +1%, +0.5%, 0%, -0.5%, -1%
 (annually until 2100, no change in growth rate afterwards)
- Grid was filled in for both the modeler's baseline and a carbon tax policy
 - CO₂ tax from \$13 in 2010 to \$427 in 2100 (from AMPERE AM3ND1)


Things We Realized


- -3°C is not very useful when the baseline TSC is 3°C!
- Interestingly, in several models, the carbon tax policy hardly changed the estimate of air surface temperature, particularly in some of the high cases
 - One question is exactly what is covered under the tax
 - AMPERE covers all greenhouse gases
 - Do we want to cover sectors where taxation is largely infeasible?


Visualizing the Results


- One way to visualize the results is to plot at the surface
 - Since we can't see in 4D, we are limited to 3D graphs
 - Consider the y-axis the output variable and the two x-axes as two of the uncertain input variables
 - Can also show the range from the third input variable with additional lines

 Note some of these results just came in, so we are still going through them

One Take-away

- One initial take-away:
 - Models are very consistent in terms of 2100 output, but much less consistent in terms of temperature and CO₂ emissions