Thoughts on Emerging Energy
Technology Systems

Michael L Knotek
Former Deputy Under Secretary of Energy for Science and Energy

Distinguished Associate, Energy Futures Inifiative
Rapid System Transitions Towards Low GHG Futures Workshop,
Snhowmass, Colorado
July 22-25, 2019




Figure ES.1 Sankey Diagram of the U.S. Energy System Depicting Major Areas of Coverage by the Technical QTR Chapters 3-8

Estimated U.S. Energy Use in 2014: ~98.3 Quads

Hectricity
Generation

S Residential

/ F~ ‘

— Transportation’

a

@
\ Petroleum

Rejected Energy

Energy Services




Energy Sectors and Systems

Key issues:

Three layers of increasing integration and complexity:
» Number, variability, and communication of devices connected to the electric grid
» Cross-talk between sectors of the energy system (e.g., fuels/electricity, electricity/buildings)
» Coupling of energy systems to non-energy systems (e.g., Internet, water)

= Information and communications technologies are driving the
interconnection of energy systems.

» |ntegration can improve system cost and efficiency by optimizing
the utilization of assets and resources.

» |ntegration can also increase vulnerabilities and the risks of
uninfended consequences and cascading failure. (Who knows our
Grid BEST2272)



Global Energy Growth Patterns
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Figure 3.3 Evolution of the Electric Power Grid

Credit: ® OECD/IEA 201 Technology Roadmap: Smart Grids, IEA Publishing. License: http:/www.iea.org/t&c/termsandconditions/
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Figure 3.21 Scales of Power Systems Operations and Planning

Credit: Alexandra von Meier, “Challenges to the Integration of Renewable Resources at High System Penetration,” California Institute for Energy and
Environment (2014). http://uc-ciee.org/all-documents/a/441/113/nested
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Figure 3.11 Grid Architecture Structure Types ﬂEﬁﬁ-ﬁ EHI,%RE
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Figure 5.17 Future grid systems and smart building controls can communicate in ways that improve overall system efficiency and reliability.

Credit: National Institute of Standards and Technology
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Sankey Diagram of the Clean Energy Technology Supply Chain 4
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The clean energy technology supply chain Is vast and complex, but also Includes numerous Interconnections between raw
materials and technologies.

Source McCall, 2017 Clean Energy Manufactunng Anolysis Center




Figure 3.9 (alifornia ISO Projected Electricity Supply

Credit: California Independent System Operator Corporation
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} Seasonal Variation in Solar & Wind,
T Impacts of Drought on Hydro Generation
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{’} R asonal Variation in Solar & Wind, Impacts of Drought
ENERGY FUTURES on Hydro Generation
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 ...between 2007-2009, a period of significant drought, hydro generation fell fo
about 13 percent of California’s total generation, down from a peak of 18
percent, with monthly hydro production falling from 5,000 MWh/month to less
than 1,000. In the most recent and more severe drought, hydro generation was

o under seven percent of total generation. J

Source: Pacifiginstifute, 2017




} Challenges with Integrating Intermittent Renewables

ENERGY FUTURES
— INITIATIVE —,

Over the course of a year large-scale dependence on both wind and solar will

result in significant periods requiring very large-scale back-up options

Source: CAISO data, EFI Hourly trends in solar and wind capacity factors in CA for 20.17 aligned to normalized variation in hourly load
analysis relative to peak daily load



Manufacturing: Difficult to
DeCarbonize

A Cadlifornia example
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There is a large technical
potential for GHG emissions
reductions across a range of
mitigation options that can

help decarbonize the Industry
sector. Given the complexity

and heterogeneous nature of
many industrial processes,

however, an effective

decarbonization strategy will

necessitate tailored solutions
that account for the unique

challenges and opportunities

in each subsector.

Industry: Multiple Subsectors, Combustion and Non-

Combustion Emissions Require a Range of Pathways

ENERGY FUTURES
INITIATIVE

Total Greenhouse Gas Emissions
(100.4 MMTCO,¢)

Non-combustion Emissions
(33.9 MMTCO.e)

Fuel Combustion Emissions
(66.5 MMTCO.€)

| -
ﬁ Lang

[ . ;
a Petroleum Refining and Hydrogen Production (7.0 MMTCO,
f & Oil & Gas Production and Processing (15.7 MMTCO.e) [V] g ydrog ( 2€)

i‘i Petroleum Re gadction (22.6 MMT(_DOQe)

5.2 MMTCO.
a- Industrial Combined Heat and Power (8.0 MMTCO.,e) 799 Cement ( 2€)

Iz ﬁ Transmission and Distribution (4.1 MMTCO.e)
‘I Chemicals and Allied Products (6.2 MMTCO.e)

(& Oil & Gas Production and Processing (2.3 MMTCO.e)

‘ Food Products (3.3 MMTCO.e)
Industrial Combined Heat and Power (<0.1 MMTCO.¢)

gﬂo Cement (2.4 MMTCO,¢)
6 Food Products (<0.1 MMTCO.e)

ﬁ Transmission and Distribution (1.0 MMTCO.e) .li Chemicals and Allied Products (<0.1 MMTCO. )

Other (7.3 MMTCO,e) Other (7.0 MMTCO.¢)



Carbon Dioxide Removal

Unfunded Liability

Michael L Knotek, PhD
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— INITIATIVE —

Multiple CDR Pathways
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Things That Must Change

Climate must transcend politics/
borders

Humanity must manage
“nuclear” power

Humanity must manage
Hydrogen at scale

“A better vs a draconian world
future”

Proponents must acknowledge
shortcomings and issues of
technologies — whole truth

Efficiencies can obviate power
requirements — value

Liability? Justice?
egeellll



Thank You

Michael L Knotek, PhD 7/22/2019




