

Trade-Offs in Managing Global Climate Damages

Steven Rose Energy and Environmental Analysis Research Group

Rapid System Transitions Towards Low GHG Futures Workshop, Snowmass, CO July 23, 2019

in f
 www.epri.com
 © 2019 Electric Power Research Institute, Inc. All rights reserved.

Given What We Know about the Cost of Containing Temperature...

\$ Trillions per

- The cost of containing temperature rises rapidly with greater ambition
- Pragmatic to consider the value and trade-offs (and inform beyond extreme costs, implied infinite benefits, and model infeasibilities)
- While uncertainties make this a difficult question to resolve, it is a question society cannot ignore

Regional Costs for Increasingly Ambitious Emissions Reduction Goals (Reductions in Discounted Average Per Capita Consumption through 2100)

	US	EU	Other G20	China	India	Other Countries	Max °C	
S1							6.9 (3.8-9.6)	
S2	0.2%	0.3%	0.3%	1.4%	0.1%	-0.2%	6.0 (3.4-8.3)	Regional
S3	0.3%	0.4%	0.6%	2.3%	0.0%	-0.5%	5.4 (3.0-7.4)	costs
S4	0.5%	0.7%	1.1%	4.8%	-0.1%	-0.7%	5.0 (2.8-7.0)	increase at
S5	0.5%	0.7%	1.0%	4.8%	0.8%	-0.6%	3.8 (2.2-5.3)	an
S6	0.5%	0.7%	1.0%	4.9%	2.0%	0.2%	2.7 (1.6-3.8)	increasing
S7	0.5%	0.8%	1.0%	5.1%	4.3%	2.1%	2.3 (1.4-3.1)	rate
S8	2.1%	2.2%	5.2%	12.3%	14.1%	6.5%	2.0 (1.3-2.6)	\downarrow

Source: Blanford et al. (2014)

Source: Rose et al (2017b)

Modeling Approach

Application of EPRI's MERGE model

- Global intertemporally optimizing coupled energy-economic and climate model with detailed energy technologies
- Extended to consider characterizations of potential global climate damages and a range of uncertainties as alternative sets of assumptions
- Consider sets of assumptions for fundamental uncertainties across the causal chain from projected socioeconomics to climate to damages

Compute an "optimal" emissions path for each assumption set

 In each case, endogenously balance marginal mitigation costs and avoided climate damages, producing an "economically optimal" or "economically efficient" emissions path <u>for each set of assumptions</u>

Intentionally not probabilistic

- Because of the many uncertainties, difficulties with identifying probability distributions, uncertainty about the resolution of uncertainty, and optimization computational challenges
- Instead, characterizing the trade-off decision space, the role of uncertainties (and combinations), and raising questions about the state-of-knowledge and probabilities

Evaluating Uncertainties

Example of a set of assumptions

Socioeconomic future	Mitigation technologies available	Climate system dynamics	Global climate damages*	
Model default	All default options	Equilibrium Climate Sensitivity (ECS) = 3.0°C	USG-DICE central perspective	
Pessimistic economic growth	CCS unavailable (fossil & biomass energy)	ECS = 1.5°C	USG-FUND central perspective	
Low energy intensity of economic growth	Pessimistic (CCS & new nuclear unavailable, renewables slower cost improvements)	ECS = 4.5°C	USG-PAGE central perspective	
		$ECS = 6.0^{\circ}C$	USG-FUND extreme risk	

Evaluating every combination of assumptions.

Types of uncertainties and specifications based on the scientific literature

* Based on damage component assessment results from Rose et al (2017) of the US Government versions of DICE, FUND, and PAGE

Evaluating Uncertainties

Another set of assumptions

Socioeconomic future	Mitigation technologies available	Climate system dynamics	Global climate damages*	
Model default	All default options	Equilibrium Climate Sensitivity (ECS) = 3.0°C	USG-DICE central perspective	
Pessimistic economic growth	essimistic economic growth CCS unavailable (fossil & biomass energy)		USG-FUND central perspective	
Low energy intensity of economic growth	Pessimistic (CCS & new nuclear unavailable, renewables slower cost improvements)	ECS = 4.5°C	USG-PAGE central perspective	
		$ECS = 6.0^{\circ}C$	USG-FUND extreme risk	

Evaluating every combination of assumptions.

Types of uncertainties and specifications based on the scientific literature

* Based on damage component assessment results from Rose et al (2017) of the US Government versions of DICE, FUND, and PAGE

Evaluating Uncertainties

Ŭ		Another set of assumptions			
			Λ		
Socioeconomic future	Mitigation technologies available	Climate system dynamics	Global climate damages*		
Model default	All default options	Equilibrium Climate Sensitivity (ECS) = 3.0 [°] C	USG-DICE central perspective		
Pessimistic economic growth	CCS unavailable (fossil & biomass energy)	ECS = 1.5°C	USG-FUND central perspective		
Low energy intensity of economic growth	Low energy intensity of economic growth energy intensity of improvements) Pessimistic (CCS & new nuclear unavailable, nuclear unavailable, improvements)		USG-PAGE central perspective		
		ECS = 6.0°C	USG-FUND extreme risk		

Evaluating every combination of assumptions.

Types of uncertainties and specifications based on the scientific literature

* Based on damage component assessment results from Rose et al (2017) of the US Government versions of DICE, FUND, and PAGE

Alternative Perspectives on Potential Climate Damages

Estimated Climate Damage Functions (developed from Rose et al (2017) social cost of carbon modeling assessment)

Distributions of implied damage functions

Developed using Rose et al. (2017a) technical assessment of damage components in social cost of carbon modeling

"Optimal" Global CO₂ Emissions & Temperature Pathways Varying Only Damages

8

"Optimal" Global CO₂ Emissions & Temperature Pathways Varying Damages and Technology

9

"Optimal" Global CO₂ Emissions & Temperature Pathways Varying Damages and Climate Sensitivity

The Full Set of "Optimal" Global Emissions and Temperature Pathways (n=144)

The Full Set of "Optimal" Global Temperature Pathways

www.epri.com

Assumptions Consistent with Temperature Outcomes

Global average temperature max	# scenarios (out of 144)	Consistent set of assumptions
< 1.5°C	0	None
1.5 – 2.0°C	6	 Extreme damage risk, with Low climate sensitivity, with Full tech available and/or lower baseline emissions growth
2.0 – 2.5°C	12	 Extreme damage risk, with ECS=3 if full technology, or Limited tech if low climate sensitivity
2.5 – 3°C	24	 ECS=3 and limited tech if extreme damage risk ECS=4.5 if full technology and extreme damage risk PAGE-like damages without CCS if low climate sensitivity DICE-like damages if full tech and low climate sensitivity

Concluding Preliminary Remarks and Insights

Primary learnings...

- Broad range of decision-relevant emissions and temperature pathways
- There are trade-offs should we pursue a goal regardless of the costs?
- Uncertainties are not equal in their implications for trade-offs
- Only 6 combinations of assumptions (of 144) suggest a pathway < 2°C, and none < 1.5°C
 - Only with extreme damage risk AND favorable climate dynamics AND fuller mitigation options or lower baseline emissions (AND immediate global action and cooperation)
- Even pathways limiting warming to 2.5°C and 3°C require the "right" set of circumstances
- Higher climate sensitivity implies lower optimal emissions, but temperature may be impossible to contain to low levels
- Low-carbon R&D valuable but primary value may be managing post-2100 climate

Additional learnings...

- <u>Global action</u>: when delay global action to 2030, higher temperature pathways optimal
- <u>Mitigation options</u>: additional negative emissions options (even if inexpensive), result in more mitigation but optimal max temp above 2°C this century, but lower post-2100 temperatures (extreme risk, ECS=3)
- <u>Damage likelihood</u>: extreme risk damages being modeled with certainty probability < 1 implies higher "optimal" pathways than shown

Concluding Preliminary Remarks and Insights (Cont.)

Additional considerations not modeled (but informed by results thus far)...

- Affecting mitigation costs low carbon R&D, missing costs, policy details and coordination
- Affecting mitigation benefits adaptation policy, co-benefits, externalities of large deployments, damage feedbacks

From this exercise, we are able to...

- Define the global decision space and its characteristics
- Evaluate trade-offs and the role of different drivers and uncertainties
- Characterize assumptions consistent with outcomes
- Inform feasibility discussion only plausible futures possible (for a given set of assumptions)
- Inform evaluating what we know and don't and what it might mean if we knew more

Overall, this analysis raises questions about...

- What we know, likelihoods, expectations about the future and system dynamics
- R&D and research opportunities
- What is consistent with pursuing climate objectives

A community study replicating this work might be worthwhile

Thank you!

Steven Rose, Senior Research Economist Energy & Environmental Analysis Research Group <u>srose@epri.com</u>, (202) 257-7053

Resources

- Blanford, G, R Mendelsohn, S Rose, R Richels, 2014. The Price of a Degree: Marginal Mitigation Costs of Achieving Long-Term Temperature Targets. EPRI, Palo Alto, CA. 3002003937, <u>http://epri.co/3002003937</u>.
- Rose, SK, 2017. *Managing Climate Damages: Exploring Trade-offs*. Discussion Paper. EPRI, Palo Alto, CA. 3002009659.
- Rose, SK, DB Diaz, GJ Blanford, 2017a. Understanding the Social Cost of Carbon: A Model Diagnostic and Inter-Comparison Study, *Climate Change Economics* 8 (2).
- Rose, SK, R Richels, G Blanford, T Rutherford, 2017b. The Paris Agreement and Next Steps in Limiting Global Warming. Climatic Change 142(1), 255-270.

Model infeasibilities another indication of the challenge

e.g., Energy Modeling Forum 33rd Study on Feasibility of Large-Scale Global Bioenergy

models producing scenario / # models that tried

		Full default technology	100% higher advanced bioenergy tech	Advanced bioenergy technology not available until 2050	No biofuel from lingo-cellulosic biomass	Bioenergy w/ CCS technologies not available	No advanced bioenergy technologies	Modern biomass supply max. 100 EJ/yr
	High energy CO ₂ budget (1600 GtCO ₂)	11/11	10/10	10/10	11/11	10/11	10/11	9/9
< 2°C	Low energy CO ₂ budget (1000 GtCO ₂)	11/11	8/10	7/9	10/11	6/11	5/11	8/9
< 1.5°C	Very low energy CO ₂ budget (400 GtCO ₂)	6/10	6/10	5/10	5/10	0/10	0/10	2/10*

40% can't solve and absent from database. 50-100% when ■ technology constrained. * The two feasible scenarios had extremely high CO2 prices

Developed from Bauer et al. (2018)

