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Abstract—Using a new full-vectorial finite-difference mode
solver utilizing a hexagonal Yee’s cell, we calculated the dis-
persion diagram of a slightly multimode (16 modes) air-core
photonic-bandgap fiber (PBF) and the electric-field profiles of all
of its core modes. Careful comparison shows striking similarities
between these properties and those of the hybrid modes of a con-
ventional step-index fiber, in terms of the modes’ field profiles, the
modes’ degeneracy, the order in which the modes mode cut off in
the wavelength space, and the maximum number of modes. Based
on these similarities, we propose for the first time a systematic
nomenclature for the modes of a PBF, namely hybrid HE and EH
modes and of quasi-TE and quasi-TM modes. Other small but
relevant similarities and differences between the modes of these
two types of fibers are also discussed.

Index Terms—Finite difference methods, optical fibers, optical
fiber communication.

I. INTRODUCTION

A S A RESULT of their much weaker optical nonlinearities
[1], weaker sensitivity to temperature [2], [3], and higher

resistance to optical damage, hollow-core photonic-bandgap
fibers (PBF) are finding a wide range of potential applica-
tions, in particular for the delivery of high peak powers [4],
for the generation of high-power solitons [5], for picosecond
pulse compression [6], data transmission [7] and in fiber optic
gyroscopes [3], [8]. Of the extensive literature on PBFs, a
sizable fraction is devoted to elucidating and improving the
fiber modal properties, especially understanding the impact of
surface modes on their propagation loss and dispersion [9],
widening their bandgap [10], and suppressing surface modes
[11] and higher order modes [12]. However, it is surprising
that no comprehensive study of the guided modes of these
interesting fibers has been reported. To our knowledge, modal
studies are limited to one article reporting the calculated vector
fields of the second-order modes of a hollow-core fiber [12],
as a sideline to a larger study. In another study, the calculated
dispersion curves, confinement losses, and surface scattering
coefficients of two multimoded hollow-core fibers are presented
[13]. Yet many of the finer aspects of PBF modes that have not
yet been investigated are critical to understand these intriguing
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fibers and to properly implement them in each of their many
applications. Another consequence is that there is still no
consensus for the names of the modes of these fibers. Different
authors use different names to designate the same modes,
which leads to confusion and possible misinterpretations. For
example, the fundamental mode is indiscriminately referred to
as [12], -like [14], [15], or even (for
mixed polarization) in the particular subset of Bragg fibers [16].
The situation is even more confusing with higher order modes,
which are identified by what we believe is their proper names
(e.g., or ) only in one [12]. There is clearly a
need to standardize this situation and provide a nomenclature
for these modes.

The main purpose of this paper is to fill these gaps by pro-
viding a basic numerical description of the mode profiles and
of a multimoded PBF and following through with a proposed
nomenclature. Three years ago, we made headway in this di-
rection by pointing out, via geometrical optics arguments, the
strong analogies between the modal behavior of a PBF and that
of a conventional index-guiding fiber, although at the time no
attempt was made to investigate the symmetry and classify the
core modes [17]. We refined the concept of number for a PBF,
and showed that at a particular frequency, the number of core
modes supported by a PBF is essentially the same as that of
an equivalent conventional (step-index) fiber with the same
number. In the present publication, we take this former study
one step further and report the electric field and intensity profiles
of all the core modes of a slightly multimoded PBF, calculated
numerically using the latest generation of our photonic-bandgap
mode simulator [18]. PBF modes are found to fall in two cate-
gories: hybrid modes, further subdivided in HE and EH modes,
and quasi-transverse modes, further subdivided in quasi-TE and
quasi-TM modes. As expected from symmetry considerations,
the profiles of these modes are very similar to the profiles of the
higher order modes of the equivalent conventional fiber. At a
given frequency, the relative positions of the propagation con-
stants of groups of modes in the dispersion diagram are found
to be the same as for the equivalent conventional fiber. Based
on these similarities, we propose to extend the analogy between
a conventional fiber and a PBF developed in [17] and name
all higher order modes the same way as in conventional fibers,
as is already done for the second-order modes of hollow-core
fibers [12], and for the core modes of solid-core microstructured
fibers [19].

II. SYMMETRY CONSIDERATIONS

The core modes of conventional index-guiding fibers with
cylindrical symmetry have well-known properties [20]. They
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consist of doubly degenerate hybrid modes labeled and
, where is the azimuthal number and is the

radial number, and non-degenerate transverse modes labeled
and . The latter are characterized by a null lon-

gitudinal field component, either (TE modes) or (TM
modes), where is the direction of propagation. Hybrid modes
have all non-zero field components and exhibit either a larger
(HE modes) or a larger (EH modes) component. There are
two near-degeneracies in the modes’ effective indices, namely
for and , and for and .

When the refractive index difference between the fiber core
and cladding is small enough (typically of % or less), or
equivalently when the numerical aperture (NA) of the fiber is
small, the modes are weakly guided, and under the well-known
weakly guiding approximation the near-degeneracies men-
tioned above are approximated to be exact degeneracies. The
modes can then be represented approximately (yet accurately)
by so-called linearly polarized (LP) modes, which are a linear
combination of the degenerate exact modes, chosen to be lin-
early polarized and nearly transverse [21]. The modes
are composed of the following exact modes:

1) the doubly degenerate are formed by both
modes;

2) the four-fold degenerate are formed by
and both modes;

3) the four-fold degenerate are formed by
and modes.

Two fundamental differences between conventional and
hollow-core fibers make the applicability of this hybrid-mode
nomenclature to air-core fibers not a priori obvious. First, in
a conventional fiber the core modes are true guided modes
confined by total internal reflection, whereas in an air-core
PBF they are leaky modes confined by photonic band gap
effects. Second, the guiding region of a conventional fiber has
a cylindrical symmetry , whereas a perfect PBF has a
hexagonal symmetry . This lower symmetry has impor-
tant consequences on the modal characteristics of a PBF, since
it would appear that its core modes cannot simply be described
using a mode type (HE, EH, TE or TM) and two quantum
numbers. For example, in a conventional fiber the field
of the mode depends on azimuthal angle as exactly

, but this dependency is not strictly correct in a PBF,
since a PBF structure does not have exact rotational symmetry.

According to group theory, the modes of a waveguide with
symmetry can be classified into six different irreducible

representations, which specify four non-degenerate and two
doubly degenerate mode classes [22], [23]. The non-degenerate
modes reflect the full symmetry of the structure. The doubly
degenerate modes do not exhibit the full symmetry of the
structure. Rather, for any linear combination of a pair of doubly
degenerate modes, any symmetry operation in transforms
it into another linear combination of the same pair of doubly
degenerate modes. It should be noted, however, that the mode
degeneracies of a waveguide predicted by the irreducible rep-
resentations of the waveguide symmetry occur at any arbitrary
wavelength. The dispersion curves of two different modes of a
waveguide, in general, may cross at some discrete points, thus
creating some “accidental” degeneracy [23]. Such degeneracies

cannot be predicted using the aforementioned mode classifica-
tion based on the irreducible representations of the waveguide
symmetry. In principle, the modes of a photonic-crystal fiber
structure must be classified according to such irreducible
representations.

One could, however, make connection between such classi-
fication based upon group theory, and the classifications de-
rived from an analogy with conventional cylindrical fiber. For
example, the and modes of a conventional cylin-
drical fiber belong to the and irreducible representation
of the group, respectively, both of which are one-dimen-
sional. In particular, irreducible representation is invariant
under all the symmetry operations in group, while irre-
ducible representation is rotationally invariant but anti-sym-
metrical under the mirror operations of group [22]. Con-
versely, therefore, the lowest order modes of an air-core fiber
that belong to these two irreducible representations can be la-
beled and modes, respectively. Similarly, one can
show that the modes of a conventional cylindrical fiber
belong to the irreducible representation of the group,
which is two-dimensional. And hence we can label the lowest
order doubly degenerate modes in this irreducible represen-
tation as modes.

By analogy with cylindrical fiber, one might expect that hy-
brid modes like should also be doubly degenerate. How-
ever, we also know that when is a multiple of three, hybrid
modes like and exhibit symmetry. There-
fore, in an air-core fiber these modes should not be degenerate.
As we will show, these modes belong to the and irre-
ducible representations of group, which are one-dimen-
sional. This prediction is indeed supported by a study of the
modes of a solid-core microstructured fiber with a hexagonal
symmetry [19]. This same reference also demonstrated, as ex-
pected from similar symmetry arguments, that when the hole
lattice in the cladding of this solid-core fiber is changed from
hexagonal to square ( symmetry), instead of the mode,
it is the doubly degenerate mode that splits into two non-
degenerate modes labeled and [19]. As we show
in Section IV, in an air-core fiber with a symmetry the

modes split similarly into two non-degenerate modes.
As a point of comparison, it is useful to consider the spe-

cial case of Bragg fibers [24], which also utilize a bandgap ef-
fect for guidance but have a higher symmetry than PBFs. In
their ideal conceptual geometry, the core of a PBF consists of
a cylinder of low-index material (possibly air) surrounded by
concentric cylindrical layers of alternately high and low index
[24]–[26]. Guidance in the core region relies on properly phased
Bragg reflections off these multiple layers of high index con-
trast. Unlike a PBF, an ideal Bragg fiber has perfect cylindrical
symmetry , and its guided modes are cylindrically sym-
metric. However, because of fabrication constraints practical
Bragg fibers are not quite cylindrically symmetric, and conse-
quently neither are their modes. In spite of this limitation, their
symmetry class is still much closer to than hollow-core
PBFs. The modes of practical Bragg fibers, albeit leaky as they
are, are therefore still well described by the same hybrid modes
(quasi- , quasi- , and ) as conven-
tional fibers [25], [26].
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TABLE I
THE IRREDUCIBLE REPRESENTATIONS OF THE MODES OF A PBF

AND A CONVENTIONAL FIBER

Based on these considerations, one expects that because a
PBF is only slightly less symmetric than an ideal Bragg or
conventional fiber, it should also share the same nomenclature.
To rigorously justify the proposed nomenclature, it is worth
discussing briefly the main similarities and differences of the
modes of these different fibers. A cylindrical fiber with
symmetry has two one-dimensional irreducible representations
denoted and , plus an infinite number of two-dimen-
sional irreducible representations denoted , where is a
positive integer. It can be shown simply that the and

modes belong to and , and the and
modes belong to the irreducible representations. The
symmetry group, on the other hand, has four one-dimensional
irreducible representations denoted , and , and
two two-dimensional irreducible representations and .
The and modes belong to and , the
and modes belong to when is odd and not a
multiple of three, and they belong to when is even and
again not a multiple of three. As mentioned earlier, when is a
multiple of three, these hybrid modes split into two non-degen-
erate modes that belong to either or . For clarity, we have
summarized in Table I the irreducible representations to which
the modes of a PBF and of a conventional fiber belong.

Although similar notations are utilized for and , it
should be noted that the irreducible representations that share
the same name do not necessarily have exactly the same charac-
teristics. For example, as mentioned earlier, the modes of
a PBF with symmetry belong to . This irreducible repre-
sentation does not change if transformed by the symmetry
operation (rotation by ). In contrast, the irreducible rep-
resentation of is unchanged by a rotation of any arbitrary
angle. As will be shown, this difference becomes more evident
for the and modes with . For example, the

mode of a PBF ( irreducible representation of ) ev-
idently looks different from the corresponding mode of a con-
ventional fiber ( irreducible representation of ). A mode
that belongs to the irreducible representation of does
not change if transformed by , whereas a mode that belongs
to the irreducible representation of does not change if
transformed by .

Fig. 1. Refractive index distribution of the modeled PBF. Gray areas represent
air (refractive index 1), black areas represent silica (refractive index 1.45). The
photonic crystal period is �; the cladding air hole radius is � � �����, and the
core radius is � � ����.

To confirm the nature of these modes predicted by these
group-theory arguments, in the following we compare the
dispersion curves and field profiles of the modes of a slightly
multimoded PBF with those of a conventional fiber. In spite of
the aforementioned differences between these sets of modes,
we show that there is a good qualitative agreement between
their dispersion and profiles.

III. SIMULATION METHODOLOGY

To this end, we simulated the modal characteristics of a PBF
with a core large enough to support a few higher order core
modes, including the modes. The fiber we chose to model
(Fig. 1) has the general characteristics of most of the hollow-
core fibers studied to date, including commercial fibers. The
cladding comprises a photonic crystal made of a two-dimen-
sional periodic lattice of circular holes arranged in a triangular
pattern of period . This lattice is embedded in a matrix of ho-
mogeneous refractive index higher than the index of the holes.
The core consists in a larger circular hole of radius cut into the
center of the photonic crystal and made of the same low-index
material as the holes. Without loss of generality, we simulated
the common case of holes filled with air and
of a matrix made of silica at a wavelength of
1.55 m). The radius of cladding holes is . The core
radius was selected to be The reason for this choice
is that this value falls in a range where the fiber does not support
surface modes [11]. When surface modes are present, the core
modes are generally perturbed, especially at wavelengths where
a core-mode dispersion curve crosses a surface-mode dispersion
curve [9], which might obscure some of the results of this anal-
ysis. Note that other than this special attention to suppressing
unwanted surface modes, there is nothing particular about this
set of parameters; any other selection would have yielded iden-
tical qualitative conclusions.
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Fig. 2. Dispersion curve for all the core modes of the PBF shown in Fig. 1.

The modes of this PBF were modeled using the SPBF code
[18], a full-vectorial finite-difference mode solver utilizing a
hexagonal Yee’s cell, which has the same symmetry as the
modeled fiber. As shown in [27], matching the cell symmetry
to that of the fiber is essential to most accurately describe the
modal properties and degeneracies of the fiber. To save compu-
tation memory, the PBF modes were computed over only in one
quarter of a rhombus-shaped supercell, and the full modes were
reconstructed over the entire supercell using their known indi-
vidual symmetry. The side length of the supercell was 10 , and
the spatial resolution was , the maximum value that could
be used with 3.2 gigabytes of available memory. This spatial
resolution was adequate to obtain very good convergence of the
calculated dispersion curves of the fiber over the entire bandgap.

IV. SIMULATION RESULTS: DISPERSION CURVES

The calculated dispersion curves for all the core modes of
this fiber are plotted in Fig. 2. The horizontal axis is the normal-
ized wavelength . The two dashed black curves represent
the cladding’s upper and lower bands, and the dotted curve is
the light line (it should be noted that frequency band edges are
used throughout the paper). The bandgap extends from a wave-
length of to 0.70 . Each dispersion curve is labeled
with the core mode corresponding to it, according to the nomen-
clature proposed and discussed in Section V.

Unlike in conventional fibers, the core modes exhibit both a
short-wavelength and a long-wavelength cutoff. As a result, un-
like in a conventional or solid-core microstructured fiber, the
dependence of the number of core modes on frequency is not
monotonic. This dependence, taken directly from Fig. 2, is made
more explicit in Fig. 3 (solid curve). As the wavelength is in-
creased from the short-wavelength cutoff of the lowest order
mode ( ), the number of modes increases from
zero, usually in increments of 2, and occasionally in increments
of 1 in the vicinity of some cutoff wavelengths. It eventually
reaches a maximum of 16 modes at , and remains at
this maximum up to , where is the wave-
length where the lower band edge intersects the light line. Above

Fig. 3. Calculated number of core modes as a function of normalized wave-
length for the PBF of Fig. 1 and for the equivalent step-index fiber.

, the number of modes decreases, in the same increments of
1 or 2, until it reaches zero at .

This behavior is well explained by the geometrical-optics in-
terpretation developed in [17]. Since this interpretation is crit-
ical for the rest of this paper, we briefly summarize its high-
lights in the rest of this section. To be a core mode, with ref-
erence to Fig. 2 as an example, a mode must have its effective
index below the light line, below the lower band edge, and above
the upper band edge. The modal properties of a PBF can there-
fore be assimilated to the properties of an equivalent conven-
tional fiber whose index profile is defined in such a way that
these three conditions are met. The first condition (no core mode
can propagate above the light line) imposes that the core index
of the equivalent fiber is simply , at all wavelengths.
The second condition (no core mode can propagate below the
upper band edge) imposes that the cladding must have an index

, where is the of the upper band
edge and is the wave-number at . is therefore
a function of wavelength [17]. So at the short-wavelength edge
of the bandgap , where the light line intersects the upper
band edge (see Fig. 2), , hence and the fiber
supports no core modes, as can be seen in Fig. 3. Above ,
the NA increases monotonically, reaching its maximum at the
long-wavelength edge of the bandgap , where the upper and
lower band edges cross. The third condition (no mode can prop-
agate above the lower band edge) implies that for wavelengths
above (see Fig. 2), of the core modes supported by the equiv-
alent fiber (defined by a core index and a cladding index

), the only modes allowed are the ones with an effective
index lower than , where is the of the
lower band edge [17]. This condition can be easily expressed
by introducing a second cladding index (or equivalently a
second numerical aperture) above which all modes are cutoff
[17]. It means that as the wavelength is increased above , the
first numerical aperture remains the same but the second one in-
creases, i.e., the effective NA of the fiber decreases. The lower
order modes are gradually cut off, until all modes are cut off at
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Fig. 4. Calculated transverse electric field of selected modes of the PBF of
Fig. 1 (left column) and of the equivalent step-index fiber (right column) at � �

�����.

, in agreement with Fig. 3. If, furthermore, the equivalent fiber
is defined as having a core radius equal to the core radius of the
PBF, it was shown in [17] that the core modes of the PBF exhibit
similar qualitative behavior as the modes of this equiv-
alent step-index fiber. We refer the reader to [17] for a more
detailed description of this analogy.

To illustrate this equivalence, we also plotted in Fig. 3 (dashed
curve) the evolution of the number of modes as a function of
normalized wavelength for the equivalent step-index fiber. This
curve was generated by: 1) calculating from the bandgap dia-
gram, at each wavelength, the two NAs of the equivalent fiber,
2) calculating the modes of this conventional fiber, and 3) plot-
ting the number of modes versus wavelength. The dependence
of the total number of modes on wavelength in a PBF clearly
follows the same pattern as that of a conventional fiber. With
the exception of certain groups of modes, discussed below, the
number of modes jumps up or down in unison, the modes have
similar cutoff wavelengths, and the maximum number of modes
is the same.

Given the striking analogies between a PBF and a step-index
fiber, it was interesting to investigate whether the LP-mode ap-
proximation and nomenclature are applicable for PBFs at fre-

Fig. 4. (continued) Calculated transverse electric field of selected modes of the
PBF of Fig. 1 (left column) and of the equivalent step-index fiber (right column)
at � � �����.

quencies where the PBF’s equivalent NA is low. Reference to
the dispersion diagram (Fig. 2) shows that even at ,
where the equivalent NA is 0.157, the spread in the effective
indices of the first four high order modes ( , and

) is farily large, and quite a bit larger than it is in the
equivalent conventional fiber ( versus ).
Consequently, even at this small NA, the actual modes are not
degenerate enough to be accurately represented by the four de-
generate modes. Therefore, the LP approximation is not
adequate to represent the modes of a PBF.

V. MODE ELECTRIC-FIELD PROFILES AND NOMENCLATURE

The transverse electric field profiles of 10 of the PBF’s core
modes, calculated at a wavelength of where the PBF
supports its maximum number of modes, are plotted in Fig. 4.
These ten modes were chosen such that each of the groups of
degenerate or non-degenerate modes is represented. For identi-
fication and comparison purposes, these profiles are shown side
by side with the profiles of the modes of the equivalent fiber, de-
fined according to the criteria outlined in the previous section.
This equivalent fiber therefore has a core radius equal to that of
the PBF ( ), a core index , and, at this wave-
length, a cladding index . We also
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Fig. 4. (continued) Calculated transverse electric field of selected modes of the
PBF of Fig. 1 (left column) and of the equivalent step-index fiber (right column)
at � � �����.

Fig. 4. (continued) Calculated transverse electric field of selected modes of the
PBF of Fig. 1 (left column) and of the equivalent step-index fiber (right column)
at � � �����.

show in Fig. 5 the intensity profiles (Poynting vector distribu-
tions) of these same modes.

In almost all cases, we observe extremely similar features in
the conventional fiber mode and the corresponding PBF mode,

Fig. 5. Comparison of the intensity profile of selected core modes of the PBF
of Fig. 1, calculated at � � �����.

both in terms of radial and azimuthal distributions and symme-
tries. Most of the differences between fiber and PBF modes are
small and confined to the PBF core-cladding boundary region.
They are caused by the scalloped shape of the PBF core and the
presence in this vicinity of high-index membranes, as opposed
to the smooth circular shape of the conventional fiber core. As is
well known, these high-index regions act as local field concen-
trators and result in weak local out-of-phase side lobes where
the mode is locally guided by these regions.

The only PBF modes that clearly deviate from the ones of the
equivalent conventional fiber are the highest order modes
and . These differences were expected from our group
theory arguments of Section II. Specifically, the mode be-
longs to the irreducible representation of for the con-
ventional fiber, and the for the PBF. However, as pointed
out earlier these two representations have different charac-
teristics. For example, the symmetry operation transforms
the irreducible representation of to the minus of this
representation. However, the operation (i.e., a 90-degree
rotation) does not belong to the group. Hence, the
mode in the air-core fiber differs in its modal profile substan-
tially from the mode in the conventional fiber. The same
argument can also be applied to mode. The difference is
slight, and not readily apparent in Fig. 4. However, close inspec-
tion of the intensity profile of this mode (Fig. 5) reveals that the

operation does not transform it to minus itself. Specifi-
cally, this mode has a profile that is elongated in the horizontal
direction. Using similar arguments, we expect that in general the
deviation in modal profile between a PBF mode and its equiv-
alent conventional fiber mode will become more evident as the
order of the mode increases. Specifically, such deviation should
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TABLE II
COMPARISON OF THE MODE ORDER IN THE PBF UNDER STUDY AND EQUIVALENT CONVENTIONAL FIBER

TABLE III
DEGENERACY OF THE CORE MODES OF THE PBF UNDER STUDY

occur for conventional modes that do not have symmetry,
as demonstrated by the mode, for example, in the fore-
going analysis. On the other hand, it should not occur for the
higher order modes with symmetry, as demonstrated by the

modes, for example. These predictions are supported by
all the higher order modes of the PBF we investigated. We also
found that it applied to all the modes of an even more multi-
moded fiber (a fiber with a core radius ), not shown
here for conciseness.

Applying this comparison process to all the other modes of
the PBF at this wavelength enabled us to identify all of them
and label them as shown in Fig. 2. All modes are observed to be
either hybrid (comparable to conventional HE/EH fiber modes)
or quasi-transverse (comparable to conventional TE/TM fiber
modes). The quasi-transverse nature of the latter group of modes
is due to the fiber’s weaker symmetry , as opposed to the

symmetry of a conventional fiber, which ensures complete
transversality of some of its modes. Furthermore, all of the PBF
core modes exhibit radial and azimuthal nodes consistent with
the traditional use of the radial and azimuthal mode numbers in
conventional fibers.

Based on the foregoing, we suggest the adoption of the same
hybrid-mode classification to label the modes of a PBF as used
in conventional fibers, namely , quasi- , or
quasi- . This result is non-obvious considering the nature
of the respective waveguide symmetries and the major physical
differences in their guiding mechanisms. The only exception
to this hybrid mode nomenclature compared to a conventional
fiber is the and modes, where is an integer.
These modes, which are degenerate in a waveguide with cylin-
drical symmetry , split into two non-degenerate modes
each in a waveguide with a symmetry. This is well illus-
trated for the two modes in the dispersion diagram of the
fiber under study (Fig. 2), which are non-degenerate across all of
the bandgap, except for the wavelength where their dispersion
curves cross ( ). To differentiate these now distinct
hybrid modes from each other, we have labeled them and

. This difference is entirely analogous to the splitting of
the modes pointed out in [19] in the case of a microstruc-
tured fiber with a symmetry.

VI. CUTOFF WAVELENGTHS AND DEGENERACIES

In the light of this nomenclature and analogy with conven-
tional fibers, the modes dispersion curves (Fig. 2) yield further
useful analogy, as well as subtle differences, between the hybrid
modes of the two types of fiber. First, the relative position of the
groups of modes in the effective index space is exactly the same
as for an index-guided fiber. Specifically, the modes with the
highest effective index are the two degenerate modes, fol-
lowed by the , quasi- , quasi- group of modes
(which would be modes in a weakly guiding fiber), the

group ( mode), the mode, and fi-
nally the group ( mode). In other words, the
groups of modes cut off (in the traditional sense of long-wave-
length cutoff) in the same order as the groups of modes of a
conventional fiber.

Second, within each of the two groups of modes that are not
made purely of two-fold degenerate modes, namely the ,
quasi- , quasi- and groups, the high
and the low cutoff wavelengths do not occur in the same order.
The reason is that some of the dispersion curves cross, whereas
they do not in the equivalent index-guided fiber. For example,
Fig. 2 shows that in the first of the aforementioned groups,
the mode appears first, followed by the quasi- and
quasi- modes (which appear simultaneously), but at long
wavelength the modes cut off in a different order, namely,
quasi- , and quasi- . Note that for the third
group ( ), the high and the low cutoff wave-
lengths do occur in the same order, but this order is reversed
from what it is in the equivalent step-index fiber.

Table II summarizes these parallels and differences by listing
the order in which the modes of the PBF under study are cut
off (both the short and long cutoff wavelengths), as well as the
order in which the modes of the equivalent index-guided fiber
are cut off (again in the traditional, long-wavelength sense). For
reference, the table also shows the order of appearance of the
LP modes of a step-index fiber. This comparison shows clearly
that the order of the long-wavelength cutoffs are the same for all
modes except for the and modes, which occur in re-
verse order. The order of the long-wavelength cutoffs is also the
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same for the first four modes ( , quasi- , and
quasi- ) and the modes, but the order of the
and modes are reversed, and so it is for the and

modes. This reversal is particularly pronounced for these
last two modes, and the gap between them is much larger than
in the equivalent step-index fiber. As mentioned in the last sec-
tion, since the and modes of the PBF do not have
exactly the same characteristics as the corresponding modes of
its equivalent step-index fiber, one should not expect similar dis-
persion characteristics for these modes. It should, however, be
noted that the order of the mode cut-offs presented in Table II
is particular to the studied PBF. The location of the crossing
points between the modes of a given group, and therefore the
order of mode cut-offs, in general, depends on the geometry of
the PBF. Note also that the degeneracy of all the core modes of
the PBF, listed in Table III, are identical to the mode degeneracy
in a conventional fiber, with the above noted exception that the

modes are split in a PBF.
As mentioned in Section III, the core radius of the PBF

studied in this paper was selected to avoid surface modes.
When the fiber supports surface modes, the core modes are
generally perturbed by these modes. The perturbation is very
strong where the surface modes cross the dispersion curves of
the core modes of the fiber. This may affect some of our results,
for example, the short- and long-wavelength cutoffs. However,
we expect that our arguments about the similarities and the
differences in the modes of a PBF and those of its equivalent
conventional fiber are valid, at least, where the modes are not
strongly perturbed by surface modes.

In addition, note that symmetry alone does not guarantee
that the modes will have modal profiles similar to those of a
conventional fiber. Thus, in principle, one needs to examine the
structures on a case-by-case basis in order to see how well the
analogy to conventional fiber holds. However, we expect that
our results apply to a large number of photonic bandgap fibers.
Since most of the lower order modes in a photonic-bandgap fiber
have smooth enough field variation, these modes can be approx-
imated by conventional fiber modes.

VII. CONCLUSION

By studying the dispersion curves, field profiles, and cutoff
wavelengths of a slightly multimoded (16 modes) air-core
photonic-bandgap fiber, we have established that despite their
major differences in symmetry and guiding mechanism, PBFs
and conventional fibers exhibit strikingly similar modal be-
havior, down to fine details. Specifically, except for the
and modes, the groups of higher order modes of a
PBF appear in the same order as the groups of hybrid modes
of a conventional index-guiding fiber, and they exhibit the
same degeneracies. Furthermore, their intensity profiles exhibit
strong similarities, except for the , and
modes. These deviations are generally expected from group
theory arguments for the and modes when is
larger than one. These similarities suggest that the hybrid mode
classification used in conventional fibers is applicable to PBFs,
provided the transverse modes be labeled quasi-transverse to
account for their small but finite longitudinal field component.
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