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Abstract—A full-vectorial finite-difference scheme utilizing the
hexagonal Yee’s cell is used in this paper to analyze the modes of
photonic-bandgap fibers with Cg,, symmetry. Because it respects
the fiber’s native symmetry, this method is free from any numerical
birefringence. We also incorporate in it techniques for reducing
the memory requirement (up to 3 to 4 times) and computational
time, in particular by exploiting some of the symmetry proper-
ties of these fibers. Using sub-pixel averaging, we demonstrate
quadratic convergence for the fundamental mode’s effective index
dependence on spatial resolution. We show that this method can be
used to calculate the beat length of PBFs in which a birefringence
is introduced by applying a small unidirectional stretch to the
fiber cross section along one of its axes. Abrupt variations of the
modeled fiber geometries with spatial resolution lead to oscillatory
beat length convergence behavior. We can obtain a better estimate
for beat length by averaging these oscillations. We apply a strong
perturbation analysis to the fiber’s unperturbed mode, calculated
by our finite-difference method, to perform this averaging in a
rigorous way. By fitting a polynomial to the predicted beat lengths
as a function of grid spacing, we obtain an accurate estimate of
the beat length at zero grid spacing. Reasonable convergence for
the beat length is observed using a single processor with 8 GB of
memory.

Index Terms—Birefringence, elliptical waveguides, finite differ-
ence methods, optical fibers, waveguide theory.

1. INTRODUCTION

INCE photonic-bandgap fibers (PBFs) were first experi-

mentally demonstrated in 1996 [1], they have attracted a
great deal of interest both in theoretical and experimental work.
A distinctive structural feature of many photonic-bandgap
fibers, including some of the most widely used geometries, is
their Cg,, symmetry, i.e., six-fold rotational and reflection sym-
metry (at least in the idealized case). This symmetry results in
an exact double degeneracy of the fundamental modes [2], [3].
Small perturbations that break this Cg,, symmetry, for example
a slight ellipticity of the core region, lift this degeneracy and
introduce birefringence. This kind of perturbation may be the
origin of the fairly large birefringence reported in a variety of
air-core fibers, for example the difference of 10~° between
effective indexes of the two fundamental modes reported in [4].
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Since birefringence has a significant impact on many applica-
tions involving fiber, being able to predict this birefringence
for a given perturbation is of great importance for the design of
photonic-bandgap fibers.

In general, since the birefringence is small compared with
the effective index of the modes, it is significantly more chal-
lenging to determine the birefringence accurately than the
modal effective index. As a starting point, one should use a
numerical method that has no numerical birefringence, namely,
for a fiber without physical birefringence, the method should
predict that the doubly-degenerate fundamental modes have
essentially the same effective index. Several numerical methods
have been utilized to study the modal dispersion of solid-core
photonic-crystal fibers (PCFs) and photonic-bandgap fibers.
These include the plane-wave expansion (PWE) [5]-[7], the
finite-element method (FEM) [4], [8]-[10], the beam-propa-
gation method (BPM) [11], the finite-difference time-domain
method (FDTD) [12], the multipole method [13]-[15], and the
finite-difference frequency-domain method (FDFD) [16]-[18].
Although the majority of these methods have been demon-
strated for PCFs only, they are applicable for realistic PBFs
as well. The only exception is the multipole method, which is
limited to PBFs with circular holes that are relatively small and
hence the structures have thick core rings [19]. Most of these
methods involve discretizing space on a numerical grid and
describing the permittivity profile of the fiber transverse cross
section on this grid [4]-[18]. This grid can be square [5], [12],
[16]-[18], or hexagonal [7], or it can consist of curvilinear
hybrid edge/nodal elements [10], [11] or triangular elements
[4], [8], [9]. In order to most accurately describe the modal
properties of a photonic-bandgap fiber, the grid should have
the same symmetry as the fiber. It has been shown [4], [6],
[10], [16], [20] that for a fiber with Cg,, symmetry, failing to
use a grid with this symmetry leads to substantial numerical
birefringence.

Only a few of these methods predict zero numerical bire-
fringence for a photonic-bandgap fiber with Cg,, symmetry [4],
[7], including the multipole method [19]. In the PWE method
proposed in [7], the permittivity profile of the fiber was dis-
cretized using a hexagonal non-uniform grid that preserves the
fiber symmetry. In [4], a holey optical fiber was studied with a
finite-element method that respects the hexagonal symmetry of
the fiber. However, there have been very few investigations of
the birefringence of photonic-bandgap fibers [21], [22]. Both of
these studies are based on the finite-element method. The refrac-
tive index profile of the fiber was discretized on a non-uniform
grid that has its highest density on the dielectric interfaces. This
method is particularly well suited for fiber structures with sharp
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corners or very thin membranes. However, neither the conver-
gence of the birefringence predicted with these methods nor the
computational time has been reported.

FDFD is another well-known method for modeling photonic-
bandgap fibers [16]-[18]. The advantages of FDFD are that
implementation and parallelization is straightforward, and that
it has a high modeling efficiency [16], [18]. Since a rectan-
gular grid has been conventionally used in FDFD methods for
modeling PBFs, all of the previously published FDFD methods
suffer from a very high numerical birefringence. The main pur-
pose of this paper is to implement this method with a hexagonal
grid and show, for the first time, that it can accurately model
the birefringence of photonic-bandgap fibers. Our aim is not to
establish that this method is superior to previously published
methods. Other, and perhaps all, methods have their place in
the numerical analysis of these fibers and constitute a useful
tool to model certain geometries with a specific set of features.
The main objective of this manuscript is first to describe in
some detail the principle of this method, and second to doc-
ument, through numerical studies of photonic-bandgap fibers,
the basic features of this method, including convergence, ac-
curacy, coding requirements, and computation time on specific
computer systems. This archival work can later be used as a ref-
erence to compare these features with those of other methods.

In order to model the birefringence of photonic-bandgap
fibers with slightly elliptical cross section using FDFD, we
apply four major modifications to this method. First, we utilize
a hexagonal Yee’s grid to model the effective indexes of the
modes of unperturbed photonic-bandgap fibers with perfect
Ce, symmetry. Second, we introduce sub-pixel averaging [23]
to improve the convergence behavior. We show that with this
choice of grid, the numerical birefringence normally present
when using other grid geometries (e.g., square) is completely
removed, as expected from [20]. Moreover, this method in-
volves finding the eigenvalues of large sparse matrices. With the
use of available software packages such as ARPACK, modeling
of realistic fiber geometries can be done on a single-processor
computer with a relatively high speed. To the best of our
knowledge, it is the first report that the hexagonal Yee’s grid
removes the numerical birefringence in the FDFD analysis of
the fundamental mode of photonic-bandgap fibers.

The method we used for modeling birefringence is to apply
a unidirectional stretch to the fiber cross section and model this
perturbed fiber with our FDFD method. The beat length pre-
dicted by this approach has an oscillatory convergence behavior.
This is possibly due to the large variations in the discretized per-
mittivity profile of a fiber with slight ellipticity as the spatial res-
olution changes. However, we show that this method provides
reasonable beat length prediction at high enough spatial reso-
lutions. To obtain a smooth beat length convergence behavior,
we introduced a third major modification to our FDTD method,
which consisted in applying a strong perturbation method [24]
to the modes of the unperturbed fiber predicted by the FDFD
method. We establish that this new method predicts the modal
birefringence with a reasonable accuracy for small ellipticities.
As the fourth improvement, we fit the predicted beat lengths at
different grid spacings to a polynomial to obtain an estimate of
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Fig. 1. The hexagonal Yee’s grid along with a dielectric interface between two
regions with permittivities .1 (gray) and ..o (white). Dual cells are shown
with dotted lines. n (red arrow) is the unit-normal vector perpendicular to the
interface at the grid point where E5(i — 1, j) and Ho(7 — 1, j) are defined.

the beat length at zero grid spacing, and, hence, the error in our
predicted results.

II. THE FINITE-DIFFERENCE FORMULATION USING THE
HEXAGONAL YEE’S CELL WITH NO AVERAGING

Fig. 1 shows the hexagonal Yee’s grid used in this paper.
The z axis is the longitudinal direction of the fiber. In the same
manner as when using a square Yee’s grid, the different field
components are labeled with two indexes ¢ and j. The first index
1 sweeps the fields along the horizontal direction, while the
second index j sweeps the fields at 60° to the horizontal axis.
The longitudinal electric fields, e.g., E.(¢,7) in Fig. 1, are de-
fined on a triangular lattice of grid points with a lattice constant
As. The transverse electric and magnetic field components are
defined at the edges of the triangles, e.g., F2(7, 7) and Ha (i, j).

Since this grid has three non-equivalent sites on its edges
(i.e., sites that are not related by the grid’s translational sym-
metry), there are three transverse electric and three transverse
magnetic fields per unit cell, namely transverse electric fields
Eq(i,j — 1), Fx(i,7), and F3(7,7) and transverse magnetic
fields Hy(i,7—1), Ha(%, j), and H3(i, j) (see Fig. 1). The longi-
tudinal magnetic fields are defined at the centers of the triangles.
Since there are two non-equivalent center sites in each unit cell
of the triangular lattice, there are also two longitudinal magnetic
components, e.g., v (,7) and P (i—1, ) (see Fig. 1). This
is in contrast with a conventional square Yee’s grid, in which
there are only two transverse electric and magnetic fields and
one longitudinal £, and H, fields per unit cell.

In the FDFD method utilizing Yee’s grid, one needs to formu-
late a discretized version of Maxwell’s equations into an eigen-
value equation in terms of either transverse magnetic or trans-
verse electric fields. Since there are three independent transverse
fields in a hexagonal Yee’s grid, the final eigenvalue equation
will be expressed in terms of three transverse fields, i.e., the
fields £, >, and F3 or H1, Hs, and Hs shown in Fig. 1.
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TABLE 1
PERMUTATION TABLE FOR THE DISCRETIZED FIELD COMPONENTS
Ojaglglal E,(i,}) H,G,j) EGj-1) HGj-1)  E(G.)) HG.J)  H®Gj-1)  H"G,))
Pem;uted E,(i,)) H,(i.)) E,(i.)) H,G.j) -EG-Lj) -HG-Lj)) H"Gj) HG-1,j)
value : :

The translational symmetry of the fiber along the = direction
requires the fields to have an e/(“*=52) dependence, where w is
the optical frequency and [ is the propagation constant along z.
Two independent Maxwell’s curl equations, V x H = jwe, e, E
and V X E = —jwu,H, are sufficient for the characterization
of the propagating modes of an optical fiber. We assume that
the optical fiber is made from an isotropic dielectric. Either the
differential form or the integral form of these equations can be
used for finding discretized FDFD equations. We used the in-
tegral form because it is easier to implement with a hexagonal
grid.

We first evaluate the equation [ jwe.e,E - dS = § H - dl,
at the locations where F. (7, ) and F2(i,j) are defined, using
a surface region S that is normal to the electric field and cen-
tered at the electric field location. This leads to (1)—(2), shown
at the bottom of the page, in which e,.. (7, j) and &,.2(4, j) are the
permittivity of the structure at the point where F, and E5 are
defined, respectively. Note that in (2) the propagation constant
[ appears when the integration surface is normal to the trans-
verse plane due to differentiation along the longitudinal direc-
tion. Two equations similar to (2) can be obtained by direct eval-
uation of this integral equation at the locations where F1 (4, j)
and F5(4, j) are defined. Instead, for simplicity, we chose to use
the symmetry of hexagonal Yee’s grid to arrive at these same
equations. Table I shows the permutation of all discretized fields
required for obtaining these equations. The fields in the second
row are the ones in the first row rotated counter-clockwise by
60° about the point where E. (%, j) is defined. Using this table,
one can obtain the equation equivalent to (2) written for E5(3, j)
by substituting the fields in (2) by their corresponding values
shown in the second row of the table. In addition, substitution
of the fields in (2) with their corresponding values shown in the
first row yields the relation written for F4 (4, 7). For concise-
ness, we henceforth discuss the discretized equations just for
two transverse fields, i.e., F; and Hs, and one longitudinal mag-
netic field, i.e., H ,51). The relations for other field components
can be easily obtained using Table I as just described.

Similarly, for — [ jwu,H - dS = § E - dl one obtains:

Ez(L + 17J) B Ez(Lm])
As

_jw/J'oHZ(ivj) = _jﬂEZ(LvJ) -
(3)

EQ(L7J> - EI(L/J) B E3(L7J>
V3As .

Eliminating E, from (3) using (1), we obtain the following
relation:

BBai.) = wpo{ Ha(i. )

+

—jwnoH " (i, j) =4 @

2 . .
3k2As%,. (i + 1,7) LAGREESY
— Hy(i,5) + Ha(i + 1,5)

— Hy(i,7) + Hs(i + 1,)

~ Hy(i+1,§ - 1)]

— Hy(i.j - 1) } ®)
where k, = w/c. Similarly, the elimination of H 2(1) and H. 2(2)
from (2) using (4) and the corresponding equation for H. 2(2) leads
to

(B f) + Falinj - 1))

/BHQ(L,J): As2

Who

o 8 ..
+ <k361»2(lyj) - A—82> E5(i, 5)

+ L (B4, -1)

N . (6)

As detailed in Section III, (5) and (6) and the equivalent ex-
pressions for the other field components, for all grid points in
a particular computational window, can be written in a matrix
form. The eigenvalues and eigenvectors of this matrix yield the
modes’ effective indexes and their field profiles.

III. FINITE-DIFFERENCE FORMULATION
WITH SUB-PIXEL AVERAGING

For most structures, the interfaces between two isotropic di-
electrics do not coincide with a grid plane. Accurate description

Hl(LJ - 1) - HI(L - 17.j) +H2(Zv.7) - HQ(L - 1>j) +H3(LJ) — H3(ZJ - 1)

jweogTz(i>j)EZ(i7j) = 2

3As M

Jweoera(i, §)Ea(i, j) = jBHx (i, )

W) @), .

H; 1) —H2 (1,9 —1

o g0 - B - 1)
As

@
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of such structures therefore requires assigning an index of re-
fraction to grid points located near such interfaces, using for ex-
ample an index-averaging scheme. In [23], Farjadpour et al. pro-
posed to calculate the effective refractive index of such a point
by using sub-pixel averaging, which they applied to a finite-dif-
ference scheme with the square Yee’s cell. They showed that
sub-pixel averaging improves the convergence rate more effec-
tively than other averaging schemes [23]. In this section, we re-
formulate the finite-difference formulation discussed in the last
section to implement sub-pixel averaging to the hexagonal Yee’s
cell.

Sub-pixel averaging is an anisotropic smoothing scheme: at a
given point on the grid, it assigns a different refractive index to
different field components. To do so, an averaged permittivity
tensor (rather than a single value of an average index) is as-
sociated to grid points in close proximity to the interface be-
tween two isotropic dielectrics. The off-diagonal elements of
this tensor are in general non-zero only for the transverse com-
ponents of the discretized electric fields [23].

Consider the interface between two isotropic dielectrics with
permittivities €1 and €, shown in Fig. 1. The averaged per-
mittivity tensor, obviously, relates the discretized components
of the displacement vector to the discretized components of the
electric field vector. The discretized component of the displace-
ment vector D2 (i, j) can be expressed in terms of the discretized
transverse electric fields Fo (4, j) according to

Ds(i, §) = €0 (eray (i, 5) B2 (i, §) + ero (i, §) B2 (i,5)) ()

where €, (7, j) and €21 (i, j) are elements of the permittivity
tensor, and Eso (7, j) is the electric field component in the di-
rection perpendicular to Fy and discretized at the point where
Es(i, j) is defined. The unit-normal vector perpendicular to the
interface at this point is denoted by 1 in this figure. Let’s define
ng and noy as the magnitude of the projection of this vector
onto the unit vector in the direction parallel and perpendicular
to F», respectively. According to [23], e5 and €21 are given by

®)
©))

2 2
Er2|| =M EN T N2 EP

€ral =nn2L(eN —€p)

where €, = fie;1 + foere, 1/en = fi/er1 + fo/ere, and fi
and fo = 1 — f; are the permittivity filling ratios of regions 1
and 2, respectively, in the dotted dual cell centered on the point
where F is defined.

Note that Eo (7, j) in (7) has not been originally defined in
the hexagonal Yee’s grid, but it can be approximated from the
neighboring discretized field components as follows:

Fau (i) = % (Eg,(i,j) (41,5 — 1)

_El(L,J) - El(Lm/ - 1)) - (10)

The equations for D, and D3 can be obtained by changing the
subscripts in (7) from 2 to 1 and 3, respectively. The expressions

for Erl|»> Er1Ls Er3 and €,3 are also identical to (8) and (9),
provided subscript 2 is substituted by 1 and 3, respectively. One
just needs to compute the filling ratios in the dual cells centered
at the point where E; and E3 are defined, and calculate the
projection of n onto the unit vectors in the direction parallel
and perpendicular to 7 and Ej3, respectively.

As can be seen, sub-pixel averaging requires finding the
normal to the dielectric interfaces. In our applications, we
calculated this normal vector analytically, which is straight-
forward when modeling a fiber with circular holes. For more
complicated hole shapes, this normal can be evaluated by
calculating numerically the integral ¢ re(r) over the perimeter
of a small circle centered at the grid point, where r is the vector
from the center of the circle [25].

To implement sub-pixel averaging scheme, we need to
modify (5), (6), and the corresponding equations for other
transverse fields, so that they account for an anisotropic dielec-
tric with such a permittivity tensor. Note that (3) and (4), which
are derived from the discretization of V X E = —jwu,H
(independent of refractive index), remain unchanged. On the
other hand, the other Maxwell’s curl equation is modified as
V x H = jwD, where D = ¢,ZE is the displacement vector.
Consequently, discretized displacement vector components
should be used in (1) and (2). However, since the off-diagonal
elements of the permittivity tensor used in the sub-pixel aver-
aging are zero for the longitudinal component of the electric
field, D, = e¢,e,.F., and hence, (1) still holds. Therefore,
(5), which is derived from (1) and (3), remains unchanged.
In contrast, (6), obtained from (2), (4), and the corresponding
equation for H 2(2), becomes:

.. 1 4 . ..
ﬁHZ(ILmy) = Wlko A—SQ(EI(ILmy) + EI(Z7.] - 1))
kg .. 8 ..
+ gD2(Z7J) - A—32E2(Z’J)

4 .. . .
+E(E3(L7J)+E3(Z+LJ _1)) . (11)

Note that two other equations similar to (11) hold for other dis-
cretized transverse field components. These relations can be ob-
tained using Table I, and noting that the permutation rules for
Dy(i, j) are the same as the ones for (i, j) shown in Table I.
Hence, these rules are obtained by substituting D5 by Fs. More-
over, since F (i.7) is parallel to Hs (%, j), the permutations of
the former is obtained by substituting H,,, by E,,,1 (m = 1,2,3)
in Table I.

Substituting (7) and (10) into (11), one obtains the following
relation as the final reformulated version of (6):

N 1 4 ]”MEETQ (Z/J)
e =g\ (5 - =55
-(Ei(i, ) + Er(i, 7 = 1))

. 8 ..
+ <k36r2|(27.]) - A—32> Es (i, 5)

k25r2J_(Z'7j) 4
+( 2v/3 +A—s2>

(Bsliv ) + Byi+1,j — 1))}. (12)

Authorized licensed use limited to: Stanford University. Downloaded on March 10,2010 at 00:52:45 EST from IEEE Xplore. Restrictions apply.



924

When no averaging is used, the off-diagonal elements of
the permittivity tensor are zero (.1, (4,7) = €p21(4,7) =
er31(i,7) = 0), and (12) reduces to the equation derived for
isotropic media (6), as expected.

Either the set of (5), (6), and their equivalents for other
transverse fields (isotropic case, no averaging) or the set of (5),
(12) and their equivalents (pixel-averaged expressions), can be
written in a general matrix form:

E; H,

Bl Ex | =M; | Hy (13)
Es H,
H; E;

B Ha | =Mz | E» (14)
H;3 E3

in which Eq, Es, E3 and H;, Ho, Hj3 are arrays consisting of
all the transverse electric and transverse magnetic fields at all
grid points, respectively. Combining (13) and (14), we arrive at
the eigenvalue equations whose solutions yield either transverse
electric or transverse magnetic fields:

H, H,

B | Hy | =MoM, | H (15)
H; H;
E,; E,;

B2l Ey | =M M, | E, (16)
E; E;

The eigenvalues of these matrices give the propagation con-
stants, and hence the effective indexes negt = (3/k,, of all the
modes of the structure. The eigenvectors of these matrices give
the field profile of the propagating modes.

IV. USING SYMMETRIES TO REDUCE
THE COMPUTATIONAL WINDOW

We illustrate the performance of this computational scheme
by applying it to calculate the modes of the photonic-bandgap
fiber of Fig. 2(a). It consists of a core surrounded by a pho-
tonic-crystal cladding consisting of a periodic array of identical
air holes with a period A. We applied the supercell method,
by which the structure is replicated periodically in space
(Fig. 2(b)). The computational window then consists of a single
unit cell of the structure, with periodic boundary conditions
applied at the edges of the window (Fig. 2(c)). The supercell
method gives an accurate description of a single fiber when
the size of the window is chosen to be large enough that mode
coupling between adjacent cells is negligible. The choice of
computational window is not unique. For example, instead
of the hexagonal window of Fig. 2(c), one could choose a
rhombus-shaped window (Fig. 2(d)). These two windows are
equivalent because they define exactly the same periodic struc-
ture. Note that the areas of these two windows are identical.

To reduce the computational cost, it is beneficial to make use
of the symmetries of the structure to reduce the size of the com-
putational window as much as possible. For this purpose, it is
important to make a distinction between the symmetry of the
structure and the symmetry of its modes. For this fiber struc-
ture, which has Cg, symmetry, the hexagon-shaped window of
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Fig. 2(c) is conventionally used. The modes of an arbitrary fiber
can be classified according to the irreducible representations of
the symmetry group of the fiber geometry [2]. According to
these representations, the modes of a fiber with Cg,, symmetry
can be classified into four classes of singly degenerate modes
and two classes of doubly degenerate modes [2]. The singly
degenerate modes have the full symmetry of the lattice. Con-
sequently, only 1/12 of the computational window is needed to
compute these modes. On the other hand, modes that are doubly
degenerate do not have the full symmetry of the lattice, and for
these modes one needs to use 1/6 of the computational window
[20].

We are also interested in structures with Cs,, symmetry, for
example a twin-core PBF. To model such structures, it is natural
to use the rhombus-shaped computational window (Fig. 2(d))
instead, then to invoke the mirror symmetries to limit calcula-
tions to the right-angle triangular region (black dashed region
in Fig. 2(d)). Since this region occupies only 1/4 of the full
window, the computational time and the required memory are
reduced. Although by using 1/6 of the computational window
shown in Fig. 2(c) the computational time and the required
memory would be even further reduced, we chose to use 1/4
of the computational window to be able to analyze with the
same code structures with either Cg,, or Cy,, symmetry. Using
only 1/4 of the computational window reduces the memory
requirement by a factor of 3 to 4.

The Cs, group has four irreducible representations, cor-
responding to the modes that satisfy either perfect electric
conductor (PEC) or perfect magnetic conductor (PMC) on the
two mirror planes of the structures. To describe each class of
modes, we need to apply the appropriate boundary condition
to each of the mirror planes. Therefore, to calculate all the
modes of the fiber one would need to repeat the calculations
four times, each one with different boundary conditions, on
the same computational window. However, it is known that the
fundamental modes satisfy the PEC boundary condition on one
of the mirror planes and the PMC condition on the other. To
study these modes, one only needs to do the calculation twice,
once with PEC on one mirror plane and PMC on the other one,
and a second time with the boundary conditions in the reverse
order.

To construct the system matrix in the right-triangle-shaped
computational window of Fig. 2(d), we must use only the
fields inside the computational window. When applying the
discretized equations derived above to construct this matrix,
whenever the value of a field component that lies outside the
computational window is needed, we must determine this value
through the use of either the mirror symmetry, the periodic
boundary conditions, or a combination of them. When applying
the PEC boundary condition, the signs of the parallel electric
field and perpendicular magnetic field are flipped, while the
signs of the perpendicular electric fields and parallel magnetic
fields are preserved. The opposite holds when applying the
PMC boundary conditions.

Our implementation, consequently, is organized as follows:
we first consider the entire rhombus-shaped region. For each
grid point (7, j), we determine whether the transverse fields at
this point are inside the triangular computational window. If the
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field is inside, we construct a one-dimensional index of its lo-
cation. We do so for all transverse fields and for all four combi-
nations of PEC and PMC boundary conditions. In this process,
one must exclude the transverse fields that are zero right at
the boundaries. (Consequently, this construction depends on the
boundary conditions.) This one-dimensional index is then used
to construct the matrices M; and M. In general, a matrix ele-
ment of either M[; or M5, relates two different field components.
If the field is outside the triangular window, we first determine
the appropriate corresponding field component that lies inside
as related by the boundary conditions, then use the one-dimen-
sional index constructed above to determine the appropriate ma-
trix elements. The matrices M ;, M thus constructed, and their
products, are all sparse matrices. The eigenvalues and eigen-
vectors of such sparse matrix are calculated efficiently with the
implicitly restarted Arnoldi method using the ARPACK Fortran
library.

V. BIREFRINGENCE ANALYSIS OF PBFS BY DIRECT
APPLICATION OF THE PROPOSED FDFD METHOD

The above-mentioned FDFD method with sub-pixel av-
eraging was implemented in C++ and run on a variety of
computers. The results in this paper were obtained using Stan-
ford’s Sun Fire X4100 Unix cluster with 8 GB of memory.
With this amount of memory, we could study fibers with up to
1360 grid points along the side of computational window. On
a 32-bit single processor with 4 GB of memory, fibers could
be modeled with up to 800 grid points. We have also run our
code on the 2.6-GHz dual-core AMD cluster of Cray XT3 MPP
parallel processors at Pittsburgh supercomputing center.

To verify the accuracy of our method, we first used it to model
a simpler step-index fiber, for which exact solutions for the
modes’ effective indexes exist. We considered a step-index fiber
operating at A = 1.5 um, with a cylindrical silica core (refrac-
tive index 1.45) of radius ¢ = 3 pm and an air cladding. Simu-
lations were carried out with a rhombus-shaped computational
window with each side equal to 12 pum. For conciseness, we
have not plotted the convergence behavior of the effective index
of the fundamental mode. The convergence is very smooth, and
sub-pixel averaging restores the quadratic convergence rate for
the effective index. For 800 grid points, which corresponds to
a grid spacing As = A/100 = 15 nm, the effective index con-
verges to the seventh decimal.

As discussed earlier, our code can analyze structures with ei-
ther Cq, or Cg, symmetries. Hence, the most straightforward
approach to study birefringence in PBFs is to directly use our
FDFD code with the fiber geometry with broken Cg,, symmetry.
We tried this approach for studying the birefringence of the
aforementioned step-index fiber when its core is stretched 1%
along an arbitrary radial axis. The convergence of the predicted
beat length for this perturbed fiber is shown in Fig. 3. The bire-
fringence of this simple fiber, predicted exactly using Mathieu
elliptical functions [26], [27], is 11.22 cm (dashed line in Fig. 3).
As can be seen, the beat length predicted by the direct approach
generally oscillates around the theoretically predicted value. We
believe that these large oscillations are due to abrupt variations

of the fiber geometry caused when the grid size is varied. The
magnitude of the oscillations in this figure decreases as the spa-
tial resolution is increased. This magnitude is quite small for
spatial resolutions greater than 100 points per wavelength. For
example, the average error for grid spacings between A /100 and
A/170 is only 2.1%. One can therefore average these oscilla-
tions to obtain a better estimate of the beat length. Doing so
for spatial resolutions greater than 100 yields a beat length of
11.19 cm, or an error of only 0.3%. This shows that the FDFD
method provides an accurate estimate of the beat length when
applied to a conventional fiber.

Using our code, we also studied the air-core fiber shown in
Fig. 2. The fiber has a hole radius of p = 0.47A, and an air core
is surrounded by a smooth ring with a minimum thickness equal
to 0.06A. The dispersion curves calculated for all the modes of
this fiber are plotted in Fig. 4. The two dashed curves represent
the cladding’s high and low limits, and the dotted line is the light
line. The dispersion curves were calculated at 20 wavelengths
within the bandgap for the fundamental mode, for the combina-
tion of all four boundary conditions, and at a spatial resolution of
A/170. At each wavelength, and for each set of boundary con-
ditions, we calculated 15 modes, which took around 40 minutes
on Stanford’s Sun Fire X4100 Unix cluster with two 2.7 GHz
quad-core AMD Opteron processors. The total time for com-
puting all the dispersion curves was 53 hours on a single core.
The numerical birefringence error of our method is typically
less than 1071 for all spatial resolutions. This fiber supports
a single doubly degenerate mode from A\; = 0.59A to \s =
0.69A, as well as a number of surface modes that cross the
fundamental-mode dispersion curve at wavelengths close to As.
Consequently, we studied the convergence behavior of the pre-
dicted beat length at wavelengths close to and far from sur-
face modes. This unperturbed fiber was analyzed in a quarter of
the rhombus-shaped computational window shown in Fig. 2(d)
with a side length of 8A. Using 8 GB of memory, we could
model the fiber up to a maximum spatial resolution of A/170.
To study the birefringence of this fiber, we stretched the whole
fiber geometry 1% along the y axis (see Fig. 1). The conver-
gence of the predicted beat length of the fundamental mode at
A = 0.62A (A = 3.8 pum) is plotted in Fig. 5. At this wave-
length, the mode is far from the surface modes, and, hence, is
only weakly or not affected by them. Here also, the convergence
behavior is oscillatory. These oscillations occur for all wave-
lengths inside the bandgap, including where the mode is affected
by the surface modes. However, the magnitude of these oscilla-
tions is again quite low for high spatial resolutions. We can again
obtain a better estimate of the beat length by averaging these os-
cillations. Instead of averaging, we used a perturbation method,
described in Section VI, which is in essence a rigorous way to
perform this averaging.

VI. STRONG PERTURBATION FOR THE BIREFRINGENCE
ANALYSIS OF PBFs

The standard (weak) perturbation method fails to accurately
predict birefringence when applied for the study of shifts in the
dielectric interfaces between two dielectrics with a high index
contrast [24], as is the case of a PBF made of air holes and silica.
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(d)

Fig. 2. (a) An air-core fiber with a scalloped ring around the core and hole radius of p = 0.47A. (b) The fiber of (a) periodically replicated on a hexagonal lattice.
(c) Hexagonal unit cell of the periodic structure shown in (b). With the periodic boundary condition on its edges, this unit cell forms a hexagonal computational
window. 1/12 of the computational window is shown with dashed lines. (d) A rhombus-shaped unit-cell as a computational window. 1/4 of the computational
window is shown with dashed lines. Periodic boundary conditions are depicted with dotted lines.

12.00

11.75

11.50

11.25

Beat length (cm)

10.75

10.50

60 70 80 90 100 110 120 130 140 150 160 170

Number of grid points in each period (A/As)
Fig. 3. Convergence of the predicted beat length for an elliptical step-index

fiber with silica core and air cladding at A = 1.5 gm. The beat length calculated
exactly by other means is shown as the dashed line.

Strong perturbation should be used instead. In the strong per-
turbation model, Maxwell’s equations for an unperturbed struc-
ture are reformulated into the generalized Hermitian eigenvalue
problem:

Alpg) = BB|yg) (17)

in which the following Dirac notation is used for transverse

fields:
|¢a>=:[£z]. (18)

1.02 . . .
Surface modes

Light line

1.01

1.00 -
0.99
0.98

097 b

0.96

Effective indices

0.95

0.94

0.93

092 L 1 L 1 L L L L L
0.59 060 0.61 062 0.63 0.64 0.65 0.66 0.67 0.68

Normalized wavelength (\MA)

Fig. 4. Dispersion curves for all modes of the fiber shown in Fig. 2.

A perturbation of the permittivity profile of a fiber, in gen-
eral, changes the operator Ainto A + AA, but leaves the oper-
ator B unchanged. The perturbed propagation constant (3 can be
obtained from the unperturbed fields and the unperturbed prop-
agation constant (3 using [24]:

(Yol AAlg)
(Vp|Blig)
In [24], the use of a strong perturbation method is proposed to

model waveguides with an isotropic permittivity profile. Since
we utilize sub-pixel averaging in our method, we need to extend

B=p+ (19)
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Fig. 5. The convergence of the beat length for the fiber shown in Fig. 2 with
1% ellipticity at A = 0.62A (far from surface modes).

this formulation to a medium with an anisotropic permittivity
tensor expressed in the form:

€ow Exy O
E=|eyr Eyy O |. (20)
0 0 e,

It should be noted that this tensor is expressed in Cartesian co-
ordinates. Hence, its elements are generally different from the
elements €, and 51 1. discussed in Section III, although it can
be shown simply that they are related to them. They are calcu-
lated using the method discussed in [23]. The operators A and
B can then simply be obtained by substituting this permittivity
tensor for € in (9) of [24], i.e.,

The scaling of the unperturbed fiber geometry in the trans-
verse plane, in general, can be expressed in the scaled coordi-
nates as

Tscaled :13(1 + 51)

Yscaled = y(l + (Sy) (23)

The transverse curl of the field F in the scaled coordinate and
in the unperturbed coordinate are related by [24]

Vt,scaled xF = Vt X F — O (24)
where
O=|mat myz 0 (25)
F, F, F.

and 7, = 6, /(1 +6.) and my = 6, /(1 + 6,) [24]. Substituting
(24) and (25) in (22), one obtains the operator A in the scaled
coordinates

Ascaled = /'io + A/'i (26)

where A, is the operator A of the unperturbed fiber, which has
the same form as (22), and AA is shown in (27) at the bottom
of the page.

Using these explicit forms of A and B, we can calculate
(13| AA1p3) and (1h3| B|1)), then use (19) to find the perturbed
value of the propagation constant. Since the operator B does not
depend on the permittivity tensor, (13 | By 3) is identical to (19)
in [24]. Therefore,

(olBlug) = [ dsi- (B x B+ BoxH) @9
where the integration is carried out over the right-angle tri-
angular computational window shown in Fig. 2(d). Using the
vector identity a - (V x b) = V- (b x a) + b - (V x a)
and Maxwell’s equations with the permittivity tensor of (20),

B _ 0 —ZX (2 1)
T Ax 0 and after some simplification, one arrives at (29), shown at the
. bottom of the page.
A:_ ) o Consequently, to study the birefringence in PBFs with an el-
[WE" — oo Vi X [2(2 - Vix)] 0 liptically stretched index profile, we follow the following gen-
0 who— =V x[2(F712-V,x)]]  eral procedure. We first find the modes of the unperturbed PBF
(22) using the finite-difference method presented in Section III. The
L1 [LVex (3(2-0) + LO(5(2 - V,x 0
Ad = L[ Vex (B2 0)) + 2O Vix)) o o )
w 0 Vix (2F712-0))+ O (2(F712-Vix))
BT 2 ( + ) 0 —B(ns +my)7 [ E
T ng?‘ny w E’:yqr’n”r Emy’r]y 777‘ 77y xT
n E1 w(€1 Tz + ExyTh ) 2(“}61 yMNz Ig(ﬁ«"E + Ue ) 0 E"
AA — [ ds y y yly Yy y y 29
WalAdiva) / , 0 B(ne + ny) 2w oy 0 H, @
HZ/ _ﬂ(nm + ny) 0 0 2WptoM Hy
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Fig. 6. Convergence of the effective index of the fundamental mode of the fiber
of Fig. 2 at A = 0.62A.

discretized values of E,, I, H,, and H,, are then obtained by
using £, Ey, E3, Hy, Ho, and H3 at the points where £ and
H, are defined. According to Fig. 1, £, = Fy and H, = H;.
E, and H, are calculated approximately from the neighboring
discretized fields according to

H,(i,j) = _%(Hz(LJ) + Hy(i,j+ 1)+ Hs(3,5)

+ H3(i+1,7)) 30)
By.) = 5 =(Balind) + Balisd + 1) + By )

+ Ea(i + 1, ). 3D

These discretized fields are then inserted in (19), (28), and (29).
Finally, the integrations in (28) and (29) are performed numer-
ically over the right-angle triangular computational domain to
find the effective indexes of the perturbed fiber modes. This
process was also implemented in C++ and run on the same ma-
chines to model the same PBF as discussed in Section V.

VII. NUMERICAL RESULTS

We started with modeling the fiber structure with Cg,, sym-
metry at several wavelengths within the bandgap. The calcu-
lated dependence of the effective index of the fundamental mode
on spatial resolution at A = 0.62A (far from surface modes) is
plotted in Fig. 6. The convergence behavior is very good: at the
spatial resolution of A/170, the relative error is less than 1%.
This fast convergence shows that sub-pixel averaging has re-
stored the quadratic convergence rate for the effective index of
the doubly degenerate mode of the fiber shown in Fig. 2. The
convergence behavior at wavelengths close to surface modes is
comparable. However, it should be noted that this convergence
is slower than for simpler fiber structures such as step-index
fibers or solid-core PCFs. This is due to the high air-filling ratio
and fine structure of PBFs. The existence of surface modes also
often degrades the convergence rate.

The convergence behavior of the beat length of this fiber with
1% ellipticity at A = 0.62A is plotted in Fig. 7 (note that the
horizontal axis is the grid spacing instead of the number of grid
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Beat length (cm)
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Normalized grid spacing (As/A)

Fig. 7. Convergence of the beat length for the fiber shown in Fig. 2 with 1%
ellipticity at A = 0.62A (circles). The solid curve shows the polynomial fit.
The dashed curve shows the value of the polynomial fit at As = 0. The dotted
curve depicts the beat length predicted by the FDFD scheme alone (reproduced
from Fig. 4).

points). For comparison, we have also shown the beat length
predicted by the FDFD method alone (dotted curve). The beat
length predicted by the strong-perturbation model converges
very smoothly. As expected, the convergence rate of the beat
length is slower than that of the effective index: the residual
error at spatial resolution of A/170 is e = 0.9% for the effec-
tive index (see Fig. 6), where it is 2.5% for the beat length (see
Fig. 7).

In general, the error in the predicted beat length has at least
three origins: the error in the finite-difference equations, the
error in the strong-perturbation model, and the error in the nu-
merical evaluation of the integrals in the strong perturbation.
The error in the solution of the finite-difference equations is
generally composed of a term in As and a term in As2[28].
In addition, the error produced by the numerical evaluation of
the integrals in the strong perturbation method is proportional to
As. As a consequence, we expect that the total error in the beat
length, to the lowest order, is a combination of As and As?.

A good estimate of the error in the predicted beat length
(Fig. 7) can be obtained by fitting a second-order polynomial
in As to this curve. The value of this polynomial when As — 0
then provides the expected value of the beat length [28]. This
polynomial fit is shown as the solid curve in Fig. 7. Its limit
at As = 0 yields an expected value of 0.832 cm for the beat
length (dashed line in Fig. 7). Consequently, the relative error
in the value predicted by the FDFD method at As = A/170 is
around 2.5%. This polynomial fit also predicts that a spatial res-
olution of As = A/364 would be required to reduce this error
to 1%. At wavelength close to a surface mode, the convergence
rate of the beat length is slightly slower, but the relative error in
the predicted beat length at As = A /170 is still less than 3%.

Fig. 7 clearly shows that the average of the beat lengths pre-
dicted by the direct use of our FDFD scheme at high spatial
resolutions yields a value very close to the expected value of
0.832 cm. Consequently, there is a very good agreement be-
tween the direct approach and the strong-perturbation approach.
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Our study shows that the magnitude of the oscillations in the
beat length predicted by the direct approach at low spatial res-
olutions decreases for ellipticities higher than 1%. This is ex-
pected since the discretized structures with higher ellipticies
vary less abruptly when the spatial resolution is changed. Also,
the error in the beat lengths predicted by strong perturbation
increases when the ellipticity, and hence the perturbation, is in-
creased. We observed that for the PBF discussed in this paper,
the values predicted by these two methods agree very well for el-
lipticities less than 2%. For ellipticities more than 2%, the values
predicted by these methods start to deviate from each other.

VIII. CONCLUSION

We have developed and validated the formalism for a new
full-vector finite-difference scheme, based on a hexagonal Yee’s
grid along with sub-pixel averaging, to solve for the modes
of unperturbed photonic-bandgap fibers with perfect Cg,, sym-
metry. The key advantage of this scheme is the complete ab-
sence of numerical birefringence. Moreover, this method is very
easy to implement and to parallelize. Sub-pixel averaging en-
ables fast convergence of the modes’ effective indices. The com-
putational cost can be significantly reduced by exploiting the
mirror symmetry of the system. This method can also be used
to analyze fibers with Co,, symmetry. We applied it to study the
birefringence of the fundamental mode of a PBF with original
C¢, symmetry in which an ellipticity is introduced by stretching
the fiber unidirectionally along one of its transverse axes. The
abrupt variations of the discretized structures with different spa-
tial resolutions lead to an oscillatory beat length convergence
behavior. However, these oscillations have small amplitudes,
and averaging yields a very accurate value of the beat length.
We also proposed a strong perturbation for studying the bire-
fringence in PBFs, which performs this averaging in a system-
atic way. The modes of the unperturbed fiber calculated by the
finite-difference method are used as inputs to the strong pertur-
bation. As expected, this method yielded fast convergence in
the effective index of the fundamental mode, at all wavelengths.
It also produced a very smooth beat length convergence for all
values of the fiber ellipticity. By fitting a second-order polyno-
mial to the obtained results as a function of grid spacing, we
found again accurate estimates of the beat length for elliptici-
ties up to 2%. The strong perturbation method is therefore quite
effective at reducing the intrinsic residual error of the FDFD
method. We believe that these two methods will be useful for
the accurate prediction of the birefringence in a large class of
PBFs with deformed cross sections.
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