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1. INTRODUCTION
The subject of topological photonics has attracted substantial
attention recently [1–8]. This interest was sparked by the
highly influential papers of Haldane and Raghu [9,10] in which
the existence of the direct photonic analog of topological
chiral Hall edge states was established. A necessary condition
for the existence of such photonic topological states is the
breaking of time reversal symmetry [11], which can be
achieved, for example, in gyrotropic media.

Such strong interest in the properties of photonic chiral
Hall edge states is based on two of their intrinsic
properties—immunity to both disorder and backscattering.
Both of these properties can be utilized to construct highly
efficient nanoscale nonreciprocal devices, such as one-way
waveguides [1], optical isolators, and buffers.

The topological chiral Hall edge states exist at the interface
of two photonic crystals that have bands with different topo-
logical Chern numbers [1–3,8–10]. The Chern number of
bands can take only integer values and is nonzero only when
the time-reversal invariance is broken. The immunity to disor-
der of chiral Hall edge states originates from the fact that mod-
erate disorder cannot change the value of an integer Chern
number, leading to the preservation of waveguide guiding
properties. Note that the quantized Hall conductance is
proportional to this Chern number [12].

Backscattering in such structures is forbidden given that
there is no backward mode associated to the forward
propagating mode due to time-reversal breaking. Although
embedded waveguides in photonic crystals are tolerant
toward mild disorder [13,14], the waveguides embedded in
topological photonic crystals are far more robust to disorder
due to their topological protection.

Initial research has been focused on the design of photonic
structures that can support topological states [1–10]. The ex-
citation of such states may require the presence of internal
sources. Therefore, knowledge of the radiation properties
of sources embedded in such structures is also important.
These radiation properties are determined by the optical local
density of states (LDOS), which can be deduced from the
imaginary part of the trace of the electromagnetic Green’s
tensor [15,16].

In a recent paper [17], the Green’s tensor was constructed
for two-dimensional gyrotropic clusters composed of cylin-
ders with circular cross sections based on the multipole
method. The LDOS of gyrotropic clusters that support the
topological chiral Hall edge states were characterized also.
However, details of the Green’s tensor construction have
not yet been given. Therefore, a principal purpose of this
paper is to provide details of the construction of the Green’s
tensor for a cluster composed of gyrotropic two-dimensional
cylinders and to show the efficiency and accuracy of this
method.

The developed method has been applied to investigate chi-
ral Hall edge state properties and their excitations for both
gyroelectric and ferrite clusters. For ferrite clusters, we con-
sider the tolerance of chiral Hall edge states toward cluster
separation, in which we split the initial cluster into two ap-
proximately equal parts and displace them. We also investi-
gate the transformation properties of the chiral Hall edge
states as the cluster separation changes. For a gyroelectric
cluster, we present the results of the chiral Hall edge state ex-
citation for different source orientations. The calculation of
the spatial profiles of chiral Hall edge states, their quality
factors, and their energy flow maps are also presented.
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In Section 2 we provide details of the Green’s tensor con-
struction of gyrotropic photonic clusters based on the multi-
pole approach. The calculation of modal profiles of such
clusters is also provided. In Section 3 we present details of
convergence studies and numerical verification of results.
In Section 4 we investigate the tolerance and the transforma-
tion properties of chiral Hall edge states as a function of the
cluster separation. The excitations of chiral Hall edge states
for different source orientations is also presented.

2. THEORETICAL TREATMENT
In this section we provide details of the Green’s tensor con-
struction based on the multipole method for two-dimensional
ferrite and gyroelectric photonic clusters composed of cylin-
ders with circular cross sections. The method can also be ap-
plied to calculate the chiral Hall edge mode profiles, their
quality factors, and their energy flow maps. The multipole
method has been proven to be an efficient and accurate
method for the Green’s tensor calculation for the case of
scalar material equations [18–20]. Here we show that the
multipole method is effective also for anisotropic materials.

The problem’s geometry is depicted in Fig. 1. The cluster
consists of Nc nonoverlapping cylinders with infinite length
oriented along the z axis with radii al, centered at positions
cl in the x–y plane. For this two-dimensional geometry,
the polarizations are decoupled and the field for ferrite clus-
ters is determined by a single component Ez for TM polariza-
tion, and it is specified by the Hz component for TE
polarization and gyroelectric cylinders. The solution for TE
polarization for ferrite cylinders and the TM polarization
for gyroelectric cylinders can be reduced to the known scalar
cases presented in [18]. Thus, for ferrite clusters, we consider
only TM polarization, and for the gyroelectric cylinders we
consider only TE polarization.

The time dependence we choose in the form e−iωt, and we
scale the magnetic field by the free-space impedance Z0,
Z0H → H. The external static magnetic field H0 is applied
along the z axis and provides the material with gyrotropic
properties.

A. Green’s Function for Ferrite Clusters
The ferrite cylinders have a scalar dielectric permittivity εl
and a dispersive tensorial magnetic permeability μ̂l�ω� given
by [21]

μ̂l�ω� �
0
@ μ⊥;l iμxy;l 0
−iμxy;l μ⊥;l 0

0 0 μ∥;l

1
A: (1)

The cylinders are located in a ferrite background medium
with a dielectric permittivity εb and a magnetic permeability
tensor μ̂b�ω�, which has a similar form to that in Eq. (1).

From Maxwell’s equations it can be shown that, for this
two-dimensional geometry, Green’s tensor Ge for TM polari-
zation reduces to a form involving only a single scalar Ez,
which satisfies the following equation:

∇2Ez�r; cs� � k2n2�r�Ez�r; cs� � −δ�r − cs�; (2)

where n2�r� � ε�μ2⊥ − μ2xy�∕μ⊥ takes the role of either the re-
fractive index of the lth cylinder nl�r� or the refractive index
of the background nb.

The corresponding magnetic field components can be
found from the Maxwell equation H � μ̂−1∇ × E∕ik. Equa-
tion (2) needs to be solved subject to the boundary conditions
requiring the continuity of the tangential fields Ez and Hθ at
the boundary of all cylinders. The calculation of the spatial
profiles of chiral Hall edge states is also constructed from
the solution of Eq. (2), but without the right-hand-side source
term.

Finding the solution of this problem is quite similar to the
scalar case [18] and the only difference is associated with
the boundary conditions. We represent the exterior field in
the background medium at the vicinity of the lth cylinder with
local coordinates rl � �rl; θl� � r − cl in the form

Ez �
X∞

m�−∞
�Al

mJm�knbrl� � Bl
mH

�1�
m �knbrl��eimθl : (3)

This local expansion is valid in the annular region centered at
the center of cylinder l and spans between the surface of
cylinder l to the nearest cylinder or source. The multipole co-
efficients Al � �Al

m� represent the local field in the vicinity of
the lth cylinder originating from all other cylinders or external
sources and Bl � �Bl

m� represents the outgoing field of the lth
cylinder. The field expansion, which is valid at every exterior
point, can be expressed in the form

Ez�r; cs� �
1
4i

H�1�
0 �knbjr − csj�

�
XNc

l�1

X∞
m�−∞

Bl
mH

�1�
m �knbjrlj�eim arg�rl�; (4)

where rl � r − cl. The first term in Eq. (4) is absent if the
source is located inside of one of the cylinders. For the der-
ivation of this global expansion, see [18].

We apply Graf’s addition theorem for Bessel functions [22]
to Eq. (4), and express the global expansion in the local co-
ordinate system of the lth cylinder. Then we equate the
obtained relation to the local expansion of Eq. (3) and deduce
the field identity

Al
m � Kl

m �
XNc

q�1;q≠l

X∞
p�−∞

Slq
mpB

q
p; (5)

c

cr

l

q

o

s

cs

Fig. 1. x–y cross section of a gyrotropic cluster.
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where

Kl
m � 1

4i
H�1�

m �knbcls�e−imθls ; (6)

Slq
mp � H�1�

m−p�knbclq�ei�p−m�θlq : (7)

Here, �clq; θlq� are the local polar coordinates of clq � cq − cl,
the position of cylinder q relative to cylinder l, and, corre-
spondingly, �cls; θls� are the local polar coordinates of
cls � cs − cl, the position of the source s relative to cylinder
l. The obtained field identity of Eq. (5) can be expressed in
matrix form:

A � SB�K; (8)

where the vectors A � �Al�, B � �Bl�, K � �Kl� are partitioned
vectors of the multipole coefficients associated with the lth
cylinder and matrix S is S � �Slq�, where �Slq� � Slq

mp.
The interior field expansion for the lth cylinder can be

expressed as

Ez�r; cs� �
1
4i

H�1�
0 �knljr − csj� �

X∞
m�−∞

Cl
mJm�knljrlj�eim arg�rl�;

(9)

where the first term is the source term. After application of
Graf’s addition theorem to the first term in Eq. (9), we deduce

Ez�r; cs� �
X∞

m�−∞
Ql

mH
�1�
m �knlrl�eimθl

�
X∞

m�−∞
Cl

mJm�knlrl�eimθl ; (10)

where

Ql
m � 1

4i
Jm�knlcls�e−imθls (11)

denotes the multipole coefficients of an interior source s in the
local coordinates of cylinder l and �cls; θls� � cls � cs − cl, If
the source is located in the background then the source term
is absent in Eq. (9).

Using the exterior [Eq. (3)] and the interior [Eq. (10)] field
expansions and the field tangential components Ez and Hθ

continuity conditions, we deduce

Bl
m � Rl

mAl
m � Tl

mQl
m; (12)

Cl
m � R0l

mAl
m � T 0l

mQl
m; (13)

where the exterior field fAl
mg and the interior fQl

mg fields can
be regarded as “incoming” fields to the boundary of cylinder l,
generating the exterior fBl

mg and interior fCl
mg fields. The

explicit expressions of the cylinder interface transmission
and reflection coefficients are given in Appendix A [see
Eqs (A1)–(A4) and (A6)–(A9)]. In matrix form, Eqs. (12)
and (13) become

B � RA� TQ; (14)

C � T0A� R0Q; (15)

where R � diagRl is a diagonal matrix of diagonal matrices
Rl � diagRl

m, and with similar definitions applying for the
other reflection and transmission matrices. Now the substitu-
tion of A from Eq. (8) into Eq. (14) leads to the infinite linear
system of equations

�I − RS�B � RK� TQ: (16)

For any exterior source, the Kq are nontrivial for all q, while
for a source within cylinder l, the Qq for q ≠ l are trivial and
only Ql is nonzero. Only the exterior source K or interior
source Q are taken to be present at the one time in Eq. (16).

Equation (16) is an infinite-dimensional linear system and
needs to be truncated in its numerical implementation. The
truncation parameter is given by the number of retained multi-
pole coefficients per cylinder,Np � 2M � 1, whereM denotes
the largest retained multipole order. The accuracy of the
solution is determined by Np representing the number of
multipole coefficients. After finding the external multipole co-
efficients B from Eq. (16), the internal coefficients C can be
found from the boundary condition of Eq. (15).

Note that the nonreciprocal behavior of the considered
clusters originates from the boundary conditions. The pres-
ence of the δm terms in Eqs. (A1)–(A4) from Appendix A
breaks the rotational symmetries of the cylinder’s reflection
and transmission coefficients Rl

−m ≠ Rl
m, Tl

−m ≠ Tl
m. Under

certain conditions, this symmetry breaking can be unidirec-
tional for all cylinders in the cluster, leading to chiral behav-
ior. The external Ez field can be reconstructed from the global
expansion [Eq. (4)], while the internal field of the lth cylinder
can be calculated using the local expansion [Eq. (9)]. The mag-
netic field components then can be calculated using Maxwell’s
equations.

B. Green’s Tensor for Gyroelectric Clusters
In this section we provide details of the Green’s tensor con-
struction for gyroelectric clusters. The cluster is composed of
gyroelectric cylinders with material parameters ε̂l�ω� and
μl�ω�, where the dielectric permittivity ε̂l�ω� is a tensor, while
the magnetic permeability μl�ω� is a scalar. The cylinders are
located in a gyroelectric background medium with material
parameters ε̂b�ω� and μb�ω�. The dielectric permittivity tensor
of a gyroelectric material has the form

ε̂ �
0
@ ε⊥ iεxy 0
−iεxy ε⊥ 0
0 0 ε∥

1
A; (17)

where we have assumed that the external static magnetic field
is aligned along the z axis. The positions of the cylinders, their
radii, and their material characteristics can be arbitrary.

For TE polarization, the electromagnetic field is character-
ized by only the Hz component, which is given by the solution
of the equation

�∇2 � k2n2�r��Hz�r� � iẑ · �∇ × �ε̂−1uδ�r − cs���∕k; (18)

where n2�r� � μ�ε2⊥ − ε2xy�∕ε⊥ and ε̂−1 is the inverse of the di-
electric tensor [Eq. (17)]. To find all the components of the
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electric Green’s tensor Ge, it is necessary to solve Eq. (18) for
two source orientations u � x; y and find the corresponding
electric field components from the Maxwell equation
E � −ε̂−1∇ ×H∕ik. The electric Green’s tensor reduces to a
2 × 2 tensor:

Ge �
0
@Gxx Gxy 0
Gyx Gyy 0
0 0 0

1
A: (19)

The magnetic field Hz in the background can be expressed
in the form

Hz � H0u
z �

XNc

l�1

X∞
m�−∞

Bl
mH

�1�
m �knbjr − clj�eim arg�r−cl�; (20)

where the first term is the magnetic field of a dipole source in
a homogeneous gyroelectric medium with source orientations
u � x̂; ŷ. The explicit forms of these are given by

H0x
z � nb

4

�
sin θ −

iεxy;b
ε⊥;b

cos θ

�
H�1�

1 �knbjrsj�; (21)

H0y
z � −

nb

4

�
cos θ� iεxy;b

ε⊥;b
sin θ

�
H�1�

1 �knbjrsj�; (22)

where jrsj � jr − csj and θ � arg�r − cs�. The corresponding
interior expansion is

Hz � H0u
z �

X∞
m�−∞

Cl
mJm�knljr − clj�eim arg�r−cl�; (23)

whereH0u
z has the same form as Eqs. (21) and (22), but nb, ε⊥;b

and εxy;b are replaced with the corresponding values for the lth
cylinder.

To construct the components of the Green’s tensor, it is
necessary to solve two scattering problems associated with
the dipole sources given by Eqs. (21) and (22). The derivation
of the linear system is similar to that for the Ez polarization.
The coefficient matrix I − RS, on the left-hand side of Eq. (16),
has precisely the same form, with the exception that the re-
flection matrix R is replaced by its Hz polarization form,
which is given in Appendix A. The main difference occurs
in the exterior and interior source vectors K and Q, which
now contain coefficients for the cylindrical harmonic expan-
sions of the dipole source term H0u

z . For the dipole source
term H0x

z , the K and Q are given by

Kl
m � −

nb

8i

��
1� εxy;b

ε⊥;b

�
Hm−1�knbrls�e−i�m−1�θls

�
�
1 −

εxy;b
ε⊥;b

�
Hm�1�knbrls�e−i�m�1�θls

�
; (24)

Ql
m � nl

8i

��
1� εxy;l

ε⊥;l

�
Jm−1�knlrls�e−i�m−1�θls

−

�
1 −

εxy;l
ε⊥;l

�
Jm�1�knlrls�e−i�m�1�θls

�
; (25)

while, for the dipole source term H0y
z , the expressions for K

and Q are given by

Kl
m � −

nb

8

��
1� εxy;b

ε⊥;b

�
Hm−1�knbrls�e−i�m−1�θls

�
�
1 −

εxy;b
ε⊥;b

�
Hm�1�knbrls�e−i�m�1�θls

�
; (26)

Ql
m � nl

8

��
1� εxy;l

ε⊥;l

�
Jm−1�knlrls�e−i�m−1�θls

−

�
1 −

εxy;l
ε⊥;l

�
Jm�1�knlrls�e−i�m�1�θls

�
: (27)

Once the linear system has been solved for each of the two
source orientations, the magnetic field Hz is reconstructed
using global field expansions [Eqs. (20) and (23)]. The com-
ponents of the electric tensor are calculated using Maxwell’s
equations.

C. Modes of Gyrotropic Clusters
To find the modes of such clusters, it is necessary to find the
null solutions of the homogeneous system in Eq. (16) (without
sources):

�I − RH�B � 0: (28)

This requires the vanishing of the determinant of the linear
system, i.e.,

det�I − RH� � 0. (29)

Hence, this is the equivalent of finding the zeroes of the de-
terminant in the complex frequency ω plane or, equivalently,
in the complex wavelength plane λp � λ0p � iλ00p. The zeroes
are located in the lower half of the complex frequency plane
or, equivalently, in the upper half of the complex wavelength
plane, because of the causality condition.

The finite cluster is open, and, therefore, all modes are
leaky, with their quality factors given by Q � λ0p∕2λ00p, where
λ0p is the real part of the wavelength and λ00p is its imaginary
part. The real part λ0p defines the modal wavelength, while
the imaginary part λ00p gives its quality factor Q. The modal field
can be calculated by the application of singular value decom-
position to Eq. (28), which will determine the vector of the
multipole coefficients B for all cylinders. The modal field
can then be reconstructed using Eqs. (4) and (9) for TM polari-
zation and Eqs. (20) and (23) for TE polarization, but without
the source terms. Other field components are found analyti-
cally using Maxwell’s equations.

3. METHOD’S CONVERGENCE AND ITS
NUMERICAL VERIFICATION
In this section we first provide details of the electromagnetic
field convergence studies and verification of the numerical
results. The presented multipole method for Green’s tensor
construction for gyrotropic materials turns out to be as highly
efficient and accurate as for the isotropic material case in
which ε and μ are scalars [18].

In Table 1, we present the field convergence study for a fer-
rite cluster composed of Nc � 25 of yttrium–iron–garnet
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cylinders located in air and forming a square lattice with 5 × 5
sides. The source cs is located inside of the central cylinder
and has coordinates �0; 0.001d�, while the field point position
r has coordinates �1.5d; 1.5d� and is placed in air. The radii of
the cylinders are a � 0.2d, and d � 10 mm is the lattice con-
stant, while the wavelength of the radiation is λ � 3.5d. The
magnetic permeability tensor components [Eq. (1)] have
the following forms [21]:

μ⊥ � 1� ω0ωm

ω2
0 − ω2 ; μxy � ωωm

ω2
0 − ω2 ; (30)

where ωm � 4πγMs and ω0 � γH0. Here H0 is the applied ex-
ternal static magnetic field, 4πMs is the saturation magnetiza-
tion, and γ is the gyromagnetic ratio. As in [3], we have used
the following values for these parameters: 4πMs � 1750G,
H0 � 500Oe, and dielectric permittivity ε � 15, which are
typical parameters for yttrium–iron–garnet ferrites [21].

As Table 1 demonstrates, the field values rapidly converge
as the number of retained multipole coefficients Np � 2M � 1
increases (see the first column of the table). For the value of
M � 4, the field values converge to seven significant figures,
which is sufficient for almost all applications, while forM � 6,
the field value converges to 10 significant figures.

In Table 2 we present a convergence study for a gyroelec-
tric material and the current j orientation along the x axis. The
case of the y orientation of the source is similar and we do not
provide this data. The components of the dielectric tensor for
gyroelectric background material are ε⊥ � 16 and εxy � 1,
with μ � 1 throughout, while the void cylinders have refrac-
tive index n � 1. The rest of the parameters are the same as
for the convergence study for ferrite cylinders above. The con-
vergence pattern for the gyroelectric cluster is similar to the
ferrite cluster. By retaining M � 4 multipoles, the field values
have at least six converged significant digits, while by keeping
M � 6, multipoles the field values converge to 10 significant
figures.

The boundary conditions on each cylinder are satisfied ex-
actly, facilitating convergence. Such highly accurate results

are harder to achieve by using pure numerical methods like
finite-difference time-domain (FDTD) [23] or approaches
based on the finite element method (FEM) [24]. Although
highly accurate results are not necessary for most applica-
tions, it is nevertheless important to have a method that
can provide such results. There may be some cases where
high accuracy is needed and, more generally, our accurate re-
sults can be used also for the verification of purely numerical
methods.

The generalized Lorentz reciprocity condition [25]
Ge

α;β�r; cs;H0� � Ge
β;α�cs; r;−H0� holds with an accuracy of

∼10−9–10−10 in the numerical examples. Here H0 is the exter-
nal static magnetic field. This is a strict test for the numerical
verification of the results, given that the calculations have to
be performed with independent routines, e.g., if the source cs
is located in the background and the field point r is inside a
cylinder, then the reciprocity condition requires us to com-
pare the field value at this point to the field value outside
the cylinder r when the source is located inside the
cylinder cs.

In general, the number of retainedmultipole coefficients for
a given accuracy depends on the wavelength, the radii of the
cylinders, and the contrast of the refractive index of cylinders
and the background. By simply increasing the number of re-
tained multipole coefficients, any required accuracy can be
achieved (within the limits set by a computer and standard
function accuracy).

4. CHIRAL HALL EDGE STATE PROPERTIES
In this section we present some important and interesting
properties of chiral Hall edge states and their excitations in
gyrotropic clusters. First, in Section 4.A we investigate the tol-
erance of the chiral Hall edge modes of a ferrite cluster toward
a cluster split with gap h. Then we report on the evolution of
chiral Hall edge states as a function of the split distance h. We
also present results of chiral Hall edge mode excitation by a
source and their energy flow. Next, in Section 4.B, we con-
sider a gyroelectric cluster and present results of the chiral
Hall edge mode excitations for different source orientations.

Table 1. Field Convergence Data as a Function of the Retained Multipole Coefficients Np for TM Polarization

(Ferrite Cluster)

Np � 2M � 1 Ez Hx Hy

3 −0.0033568320�i0.0013388036 −0.0006632724−i0.0060792630 −0.0009175906�i0.0061410684
5 −0.0032723380�i0.0013442870 −0.0007338791−i0.0060234433 0.0060679854−i0.0009883445
7 −0.0032779380�i0.0013440207 −0.0007261071−i0.0060265626 −0.0009804147�i0.0060428333
9 −0.0032779073�i0.0013440324 −0.0007269206−i0.0060264830 −0.0009812651�i0.0060428056
11 −0.0032779094�i0.0013440326 −0.0007268787−i0.0060264984 −0.0009812215�i0.0060428194
13 −0.0032779095�i0.0013440326 −0.0007268787−i0.0060264985 −0.0009812216�i0.0060428197

Table 2. Field Convergence Data as a Function of the Retained Multipole Coefficients Np for TE Polarization

(Gyroelectric Cluster)

Np � 2M � 1 Hz Ex Ey

3 −0.1296345389−i0.0426618457 0.0235906111�i0.0053348044 −0.0223966957−i0.0105906933
5 −0.1342563355−i0.0435310832 0.0241285949�i0.0056508534 −0.0023157907−i0.0108383670
7 −0.1339561230−i0.0433692220 0.0240700719�i0.0056030484 −0.0231278238−i0.0108021538
9 −0.1339531835−i0.0433672910 0.0240716603�i0.0056048730 −0.0231257418−i0.0108009142
11 −0.1339533817−i0.0433674547 0.0240716710�i0.0056048832 −0.0231257666−i0.0108009245
13 −0.1339533834−i0.0433674497 0.0240716694�i0.0056048836 −0.0231257688−i0.0108009248
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A. Tolerance and Evolution of Chiral Hall Edge Modes
in Ferrite Clusters toward Split Degree
Here, we study the tolerance and the transformation of chiral
Hall edge modes with respect to a linear split h of a ferrite
cluster (see Fig. 2). In this study, we use the cluster parame-
ters and geometry reported in [3], where it was shown that the
one-way Hall edge states exist at the edge of a semi-infinite
honeycomb ferrite photonic crystal and free space. The
parameters of this semi-infinite photonic crystal are the same
as for the example used in the convergence test study re-
ported in Table 1, except that the cylinders have formed a
honeycomb lattice. It has been shown in [17] that, in such clus-
ters with Nc � 854 cylinders, there exists a chiral Hall edge
state with wavelength λ∕d � 3.928� i0.0177 (for details,
see Fig. 11 in [17]). Here, we investigate the tolerance and
the evolution of these chiral Hall edge states as we introduce
a linear separation h in the middle of the cluster (see Fig. 2).
Introduction of this cluster separation h splits the initial clus-
ter with Nc � 854 cylinders into two clusters with Nc � 434
cylinders (left cluster) and Nc � 420 (right cluster), creating
a waveguide between the clusters. In Fig. 2, we plot the log-
arithm of the electric field intensity for a chiral Hall edge state
with wavelength λ∕d � 3.937� i0.0174 and with cluster sep-
aration h � 0.25d. The quality factor of this mode is Q � 113.
The splitting of the cluster and its separation shifts the chiral
Hall edge state wavelength to a slightly higher value. The plot
in Fig. 2 demonstrates the remarkable property of the chiral
Hall edge mode to withstand a strong separation. The field
intensity distribution is still concentrated at the edges of
the cluster with little disturbance compared to the cluster
without separation. The overall property of the chiral nature
of the mode is still retained. This is clearly seen in the plot of
the energy flux map in Fig. 3. The Poynting vector flux is
largely undisturbed by the cluster separation and reveals
the chiral character of the edge mode. Such strong tolerance
to separation is based on the topological protection property
of chiral Hall edge states.

In Fig. 4 we plot the electric field intensity jEzj2 for a point
source located at �−7.5d;−6d� for the wavelength λ∕d � 3.937,
which coincides with the real part of the wavelength of the
chiral Hall edge state plotted in Fig. 2. The electromagnetic
field excites the chiral Hall edge state and its intensity is con-
fined mainly at the edges of the cluster. Note that the energy

flux along the waveguide created by the gap between the
clusters is negligible.

As we increase the gap between the clusters to h � 0.5d, we
observe that the chiral Hall edge state now has more compli-
cated behavior. The modal field is still concentrated at the
outside edges of the whole cluster and circulates anticlock-
wise, as in Fig. 2, but some energy starts to circulate anticlock-
wise around the smaller (right) cluster only, while the flux at
the right edge of the left cluster is negligible (the plot is not
provided).

As we increase the displacement h further, the energy flux
at the right-hand edge of the left cluster increases, and at sep-
aration h � 1.96d the energy flux of the chiral Hall edge state
of the whole cluster is transformed into the chiral Hall edge
state of two smaller clusters. At such separations, the energy
flux of a chiral Hall edge state circulates anticlockwise
around both clusters, and the energy circulation at the gap
between the clusters takes place in opposite directions
(see Fig. 5).

The intensity distribution of the electric field of this chiral
Hall edge mode, which has a quality factor Q � 151, is plotted
in Fig. 6. The intensity of the field is distributed mainly around
the edges of the cluster and within the gap between the
clusters. A point source radiating with wavelength λ∕d �
3.92 and located either in the gap between the clusters or
close to the edge of one of the clusters will excite this chiral
Hall edge state. In contrast to conventional waveguides, the
energy flux between the clusters will be directed in opposite
directions along the sides of the waveguide walls.
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Fig. 2. Logarithm of electric field intensity jEzj2 of a chiral Hall edge
state for a ferrite cluster with a linear split at the center with separa-
tion h � 0.25d.
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Fig. 3. Poynting vector map for the mode plotted in Fig. 2 showing
the energy flow across the separation near x∕d � 0, y∕d � −6.
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Fig. 4. Intensity of the electric field jEzj2 with a logarithmic scale
excited by a point source indicated by a black dot.
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We also reversed the direction of the external static mag-
netic field of the right cluster and observed that the energy
flux of the chiral Hall edge mode was now directed clockwise
for the right cluster and anticlockwise for the left cluster.
These unique properties of ferrite clusters can be utilized
to construct complex and compact waveguide circuits. The
ability to change the direction of the energy flow by changing
the direction of the external static magnetic field provides
additional means to manipulate the radiation flow.

B. Chiral Hall Edge Mode Excitation in Gyroelectric
Clusters
In this subsection, we consider the excitation of chiral Hall
edge states for different source orientations in a gyroelectric
cluster. As a gyroelectric photonic cluster that exhibits chiral
Hall edge states, we use the geometry and parameter set re-
ported in [8]. The geometry of the cluster is plotted in Fig. 7.

The photonic cluster has a hexagonal lattice of period d with
air cylinders. The cylinders have a radius a � 0.35d and are
located in a uniform dielectric with dielectric permittivity
ε � 16. In the structure shown in Fig. 7, the top five rows con-
sist of such a photonic cluster. The bottom cluster with 26
rows of cylinders is the same as the top, except that there
are gyroelectric cylinders embedded in the hexagonal lattice,
which form a honeycomb lattice with period d0 � 6d and radii
a � 0.48d. These are the cylinders with larger radii in Fig. 7.
The components of the dielectric tensor for gyroelectric res-
onators are ε⊥ � 16 and εxy � 1, while μ � 1 throughout. For
more detail, see [8,17]. It has been shown in [17] that there is a
chiral Hall edge mode in this cluster with wavelength λ∕d �
4.436� i0.015 and Q � 148. In Fig. 7 we plot the magnetic
field distribution for a source oriented in the x direction
and located at �2.5d; 11.65d� with λ∕d � 4.436. The source ex-
cites the chiral Hall edge mode sandwiched at the interfaces
between the upper photonic cluster, which acts as a mirror,
and the lower gyroelectric cluster, which breaks time-reversal
symmetry and supports one-way radiation along the x direc-
tion. This chiral character of the radiation is evident in the
field intensity distribution in Fig. 7, where the field is mainly
concentrated at the top layer of the gyroelectric cylinders at
y ≈ 11d and the energy flux is mainly directed to the right
from the source.

In Fig. 8, we study the same configuration as in Fig. 7, but
for the y orientation of the source. For this orientation of the
source, the excited field is concentrated mainly around the
six gyroelectric cylinders that form a honeycomb lattice.
The energy flux of this field is clockwise. There also exists
another pole with λ∕d � 4.441� i0.016 and Q � 139 and
the y-oriented source excites this mode of the cluster. This
mode is reminiscent of the chiral Hall edge mode for a ferrite
hexagonal flake cluster reported in [17] (see Fig. 16 in [17]).
Therefore, the mode excitations of the cluster can depend on
the source orientation. This is influenced by the proximity of
poles to the radiation wavelength and their relatively high
quality factorsQ. The position of the source can also influence
the modal excitation. If the source is located at the nodal point
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Fig. 5. Poynting vector map of a chiral Hall edge mode with λ∕d �
3.92� i0.013 for the displacement value h � 1.96d showing the oppo-
site energy flow in the waveguide created by the separation of the
clusters.
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Fig. 6. Logarithm of the electric field intensity jEzj2 of a chiral Hall
edge state with cluster separation h � 1.96d.
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Fig. 7. Intensity of the magnetic field jHzj2 in the logarithm scale for
a source with x-axis orientation. The coordinates of the source are
(2.5,11.65), and it is depicted as a black dot.
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of the corresponding mode, then the mode will be hard to ex-
cite. The utilization of the unique properties of chiral Hall edge
modes requires their excitation, and, therefore, an under-
standing of their modal excitation is important for practical
applications.

5. CONCLUSIONS
The electromagnetic field Green’s tensor has been con-
structed for two-dimensional clusters of gyrotropic cylinders
with a circular cross section using the multipole method. The
method has been shown to be very accurate and effective.
This approach not only calculates the electromagnetic
Green’s tensor but also finds the electromagnetic modes of
such structures and characterizes their energy flow direc-
tions. Both ferrites and gyroelectric photonic clusters have
been treated. Convergence data has been provided for typical
examples to demonstrate the effectiveness of the method.

This data can be used as a reference check for purely numeri-
cal methods, such as FDTD or FEM.

As an application demonstrating the effectiveness of the
method, we have investigated the tolerance and the transfor-
mation properties of the chiral Hall edge states in ferrite clus-
ters with respect to the degree of a cluster split with
separations h. It is shown that the chiral Hall edge states
can withstand substantial cluster separation and preserve
their topological structure. Even a large separation value of
h � 0.25d does not distort the one-way nature of the chiral
Hall edge state. This can be attributed to their topologically
protected nature.

The transformation properties of the chiral Hall edge
states as a function of the degree of separation h has been
investigated, as well. It was established that as the separation
h increases, the chiral Hall edge state acquires more compli-
cated behavior. At separation value h � 0.5d, the energy flow
of the one-way edge state circulates not only around the out-
side edges of the cluster but acquires additional circulation
around one of the smaller clusters. At higher values of h, such
as h � 1.96d, the chiral Hall edge state energy circulates
around the edges of each of the smaller clusters (see Fig. 5).
Thus the chiral state behaves as if it is split into two edge
states of the separated clusters. Although we did not consider
the effects of both separation and rotation of a cluster in re-
spect to another or a linear dislocation of a cluster along a
straight line, preliminary calculations indicate that the chiral
Hall states can also withstand such kinds of substantial
defects.

For both ferrites and gyroelectric clusters, we have stud-
ied the excitation of the chiral Hall edge state by a source.
For the gyroelectric cluster, we have shown that the exci-
tation of the chiral state can depend on the orientation of
the source.

These studies of the properties of chiral Hall edge states are
important for their potential applications in future photonic
networks. These properties of chiral Hall states can be useful
also for electronic systems as photonic edge states are the di-
rect analog of electronic chiral Hall states.

APPENDIX A: INTERFACE REFLECTION AND TRANSMISSION COEFFICIENTS
The interface reflection and transmission coefficients for TM polarization are given by

Rl
m � −

J 0
m�knlal�Jm�knbal�∕Zl − Jm�knlal�J 0

m�knbal�∕Zb � δmJm�knlal�Jm�knbal�
J 0
m�knlal�H�1�

m �knbal�∕Zl − Jm�knlal�H�1�0
m �knbal�∕Zb � δmJm�knlal�H�1�

m �knbal�
; (A1)

Rl 0
m � −

H�1�0
m �knlal�H�1�

m �knbal�∕Zi −H�1�
m �knlal�H�1�0

m �knbal�∕Zb � δmH
�1�
m �knlal�H�1�

m �knbal�
J 0
m�knlal�H�1�

m �knbal�∕Zl − Jm�knlal�H�1�0
m �knbal�∕Zb � δmJm�knlal�H�1�

m �knbal�
; (A2)

Tl
m � 2μ⊥;l∕�μ2⊥;l − μ2xy;l�∕�πkal�

J 0
m�knlal�H�1�

m �knbal�∕Zl − Jm�knlal�H�1�0
m �knbal�∕Zb � δmJm�knlal�H�1�

m �knbal�
; (A3)

Tl 0
m � 2μ⊥;b∕�μ2⊥;b − μ2xy;b�∕�πkal�

J 0
m�knlal�H�1�

m �knbal�∕Zl − Jm�knlal�H�1�0
m �knbal�∕Zb � δmJm0 �knlal�H�1�

m �knbal�
; (A4)
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Fig. 8. Same relationship as in Fig. 7 but for a source with y-axis
orientation.
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where Zl and Zb are the impedances of the lth cylinder and the background medium, correspondingly given by

Zl �
����������������������
μ2⊥;l − μ2xy;l

εlμ⊥;l

s
; Zb �

�����������������������
μ2⊥;b − μ2xy;b

εbμ⊥;b

s
; δm � m

kal

�
μxy;l

μ2⊥;l − μ2xy;l
−

μxy;b
μ2⊥;b − μ2xy;b

�
: (A5)

The interface reflection and transmission coefficients for TE polarization are given by the relations

Rl
m � −

J 0
m�knlal�Jm�knbal�Zl − Jm�knlal�J 0

m�knbal�Zb � δmJm�knlal�Jm�knbal�
J 0
m�knlal�H�1�

m �knbal�Zl − Jm�knlal�H�1�0
m �knbal�Zb � δmJm�knlal�H�1�

m �knbal�
; (A6)

Rl0
m � −

H�1�0
m �knlal�H�1�

m �knbal�Zi −H�1�
m �knlal�H�1�0

m �knbal�Zb � δmH
�1�
m �knlal�H�1�

m �knbal�
J 0
m�knlal�H�1�

m �knbal�Zl − Jm�knlal�H�1�0
m �knbal�Zb � δmJm�knlal�H�1�

m �knbal�
; (A7)

Tl
m � 2ε⊥;l∕�ε2⊥;l − ε2xy;l�∕�πkal�

J 0
m�knlal�H�1�

m �knbal�Zl − Jm�knlal�H�1�0
m �knbal�Zb � δmJm�knlal�H�1�

m �knbal�
; (A8)

Tl0
m � 2ε⊥;b∕�ε2⊥;b − ε2xy;b�∕�πkal�

J 0
m�knlal�H�1�

m �knbal�Zl − Jm�knlal�H�1�0
m �knbal�Zb � δmJ 0

m�knlal�H�1�
m �knbal�

; (A9)

where

Zl �
���������������������
ε2⊥;l − ε2xy;l
μlε⊥;l

s
; Zb �

����������������������
ε2⊥;b − ε2xy;b
μbε⊥;b

s
; δm � m

kal

�
εxy;l

ε2⊥;l − ε2xy;l
−

εxy;b
ε2⊥;b − ε2xy;b

�
: (A10)
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