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Subwavelength cylindrical holes in optically thick metallic films always support a propagating HE11
mode near the surface plasmon frequency, regardless of how small the holes are. For holes filled
with a uniform dielectric material, the bandwidth of the HE11 mode asymptotically approaches zero
as the hole size is reduced to deep-subwavelength scales. We show that it is possible to create
nanoscale propagating plasmonic modes with a very large bandwidth in holes that are concentrically
filled with two different dielectric materials, even when the hole radius goes to zero. © 2007
American Institute of Physics. #DOI: 10.1063/1.2803849$

The optical properties of nanoapertures in optically thick
metallic films have been intensely researched in the past sev-
eral years due to their fundamental importance in near-field
optics, and their practical significance for photonic devices
and applications, including near-field probes, optical data
storage, and nanolithography.1,2 It is well known that the
transmission characteristics are strongly influenced by the
presence or absence of propagating modes inside the
apertures.3,4 Cylindrical holes with a circular cross section in
a perfect metal do not support propagating modes when the
hole diameter is smaller than ! /2n0, where ! is the vacuum
wavelength of incident light and n0 is the refractive index of
the dielectric inside the hole.5 Subwavelength holes in a plas-
monic metal, on the other hand, always support a propagat-
ing plasmonic HE11 mode near the surface plasmon fre-
quency, regardless of how small the holes are.6,7 The
bandwidth of this propagating mode, however, asymptoti-
cally approaches zero as the hole size is reduced to zero.
Thus, such a mode may not play a prominent role as the hole
size becomes far smaller than the wavelength of the incident
light.

In this letter, we present a method for enlarging the
bandwidth of propagating plasmonic modes in deep-
subwavelength cylindrical holes by concentrically filling the
holes with two different dielectric materials. We confirm the
approach by dispersion analysis and three-dimensional !3D"
finite-difference time-domain !FDTD" simulations. Finally,
we show that by applying this method, it is possible to create
nanoscale propagating modes with a very large bandwidth,
even when the hole radius goes to zero.

The starting point for our analysis is a cylindrical hole
having a circular cross-section with a radius rm inside a metal
#see inset !i" in Fig. 1$. In the hole, we define two concentric
regions: a central disk with radius r1 and dielectric constant
"1 and a concentric ring of width rm−r1 and dielectric con-
stant "2. Both "1 and "2 are real valued and frequency inde-
pendent. For the surrounding metal, we use a complex
frequency-dependent plasmonic model

"m!#" = 1 −
#p

2

#!# − i#$"
, !1"

where #p is the plasma frequency and #$ is the collision
frequency. This model takes into account the contribution of
free electrons only. Despite its apparent simplicity, the plas-
monic model has been the source of valuable insights into
the behavior of real metals. We obtain the dispersion relation
!% ,#" for propagating modes inside a cylindrical hole, where
% is the real part of the complex propagation vector along the
z axis of the waveguide and # is the radial frequency,6,7 by
using a transfer matrix method.8,9 In what follows, we as-
sume that "m!#" takes on the form of Eq. !1" with parameter
values #p=1.37&1016 rad/s and #$=7.29&1013 rad/s.7

These values are representative for noble metals !in particu-
lar, silver" in the visible and near-infrared wavelength range.
In addition and without the loss of generality, we set "1=7
!e.g., SiC" and "2=2.13 !e.g., SiO2". The dispersion relation
for such a hole is shown as the solid red line in Fig. 1 for
rm=0.36!p !!p=2'c /#p". Specifically, the hole supports a
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FIG. 1. !Color" Propagating plasmonic modes inside a subwavelength cy-
lindrical hole in a metal with plasma wavelength !p. Dispersion relation for
the case of a concentric high-low-dielectric core !solid red line: r1=0.32!p,
"1=7, rm=0.36!p, and "2=2.13", a uniform low-dielectric core !dashed
green line: rm=0.36!p and "0=2.13", and a uniform high-dielectric core
!dashed blue line: rm=0.36!p and "0=7". Insets show the geometry.
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lowest order HE11 mode extending from 0.21#p to 0.57#p, in
spite of its subwavelength size !as well as a higher order
EH11 mode". Hence, subwavelength holes using this design
can, in fact, support propagating modes with a very large
bandwidth.

The design principles for the concentric structure can be
illustrated by considering the dispersion relation of subwave-
length holes in a plasmonic metal !rm=0.36!p" filled with a
single dielectric material "0 #see inset !ii" in Fig. 1$. The
dashed blue and green curves in Fig. 1 depict the dispersion
relation for propagating modes in subwavelength holes filled
with a uniform dielectric, assuming "0=7 and "0=2.13, re-
spectively. In general, a subwavelength hole in a plasmonic
metal always supports a fundamental propagating plasmonic
HE11 mode. The upper frequency limit of the mode asymp-
totically approaches the surface plasmon frequency #sp

=#p /%"0+1 of the metal-dielectric interface inside the hole
when %→(. With our choice of dielectrics, the surface plas-
mon frequencies are located at 0.35#p and 0.57#p, respec-
tively. The lower frequency limit occurs for %=0 and repre-
sents the cutoff frequency #c of the HE11 mode. The cutoff
frequency #c depends on the hole radius rm, the dielectric
constant of the metal surrounding the hole "m, and the dielec-
tric constant of the dielectric inside the hole "0. For the pa-
rameter values used here, the cutoff frequencies are 0.18#p
and 0.32#p. We note that the limiting frequencies #sp and #c
are intrinsically coupled for holes filled with a uniform di-
electric. Thus, a change in the dielectric constant inside the
hole leads to a shift in the frequency of the HE11 band with-
out significantly affecting the bandwidth !Fig. 1, dashed
green and blue curves". Moreover, the cutoff frequency #c
asymptotically approaches #sp and the bandwidth of the
mode, #sp−#c, asymptotically goes to zero when the hole
size is reduced to zero. While subwavelength cylindrical
holes with a uniform dielectric core always support a propa-
gating mode near the surface plasmon frequency, regardless
of how small the holes are, the bandwidth of the HE11 mode
is severely reduced as the hole size shrinks to deep-
subwavelength scales.

The two frequency limits #sp and #c, however, depend
on the dielectric distribution inside the hole in a different
fashion. For %→(, the mode is tightly confined to the metal-
dielectric interface. Hence, #sp depends on the dielectric
properties in the immediate vicinity of the interface only. At
%=0, the mode is distributed over the entire hole and #c
depends on the average dielectric properties across the entire
hole. The use of a concentric structure, with a high-dielectric
core surrounded by a low-dielectric ring, therefore, allows
one to change the average dielectric constant inside the hole
without affecting the dielectric properties in the vicinity of
the interface. This insight provides a mechanism for greatly
enlarging the bandwidth of a subwavelength hole. As a vali-
dation of this argument, we note that the concentric structure
!solid red curve in Fig. 1" has a lower cutoff frequency of
0.21#p, which is identical to the cutoff frequency of a hole
with a uniform dielectric constant "av=5.58, as determined
by an appropriate dielectric average for the mode profile. The
upper frequency limit of the mode asymptotically goes to
0.57#p and joins the large-% frequency of the hole filled with
a uniform dielectric "2=2.13.

Figure 2 shows a vector plot of the electric displacement
field for the fundamental HE11 mode in a subwavelength
hole filled with two concentric dielectric regions. The field

orientation provides evidence that the propagating mode in-
deed has the proper symmetry for efficient coupling to exter-
nally incident plane waves. We have examined the fields of
the next-higher-order EH11 mode !not shown" and confirmed
that it couples to normally incident light as well.

The presence of a nonzero collision frequency leads to
losses in the metal. We calculate the decay length, Ld
=1/2), using the complex wave vector of the mode *=%
+ i). For subwavelength holes in a plasmonic metal !rm
=0.36!p" filled with a single dielectric material with "0=7
and "0=2.13, the decay lengths are 1–2 and 2–3 +m over
the respective bandwidths. In the case of a concentric struc-
ture, with a high-dielectric core surrounded by a low-
dielectric ring, the decay length is approximately 1–3 +m
for the extended bandwidth. Over such extended bandwidth
%,) !by more than an order of magnitude", the modes are
clearly underdamped and hence propagating. Subwavelength
holes using this design can, therefore, support propagating
modes with very large bandwidth without sacrificing decay
length.

Next, we consider the transmission properties of a sub-
wavelength hole array in a metallic film of finite thickness.
Figure 3 shows the spectral transmittance at normal inci-
dence for the three cases discussed in the dispersion analysis
above. The spectra are calculated using a 3D FDTD
method10 in which the metal is modeled as a lossy plasmonic
material.7 The periodicity of the array is 180 nm, the radius
of the holes is rm=0.36!p=50 nm !!p=138 nm", and the
film thickness is h=250 nm. The locations of the cutoff and
limiting wavelengths agree very well with the dispersion re-
lation of the single hole for all three cases !Fig. 1". The
dashed blue and green curves depict the transmission spec-
trum for holes filled with a uniform dielectric material with
"0=7 and "0=2.13, respectively. Both the location of the
HE11 pass band and the stop band between the HE11 and
EH11 modes !dashed blue curve between 0.35!p and 0.48!p"
are in excellent agreement with the dispersion analysis of a
single hole. For the solid red curve, which describes the
transmission behavior of the concentric structure, the entire

FIG. 2. !Color" Vector plots for the electric displacement field of the lowest
order HE11 mode inside a subwavelength cylindrical hole with concentric
high-low-dielectric core !r1=0.32!p, "1=7, rm=0.36!p, and "2=2.13" at #
=0.35#p and %=0.85kp.
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range of transmission agrees well with the location of the
HE11 and EH11 pass bands !Fig. 1, red curve", and their over-
lap results in an even larger transmission bandwidth. The dip
in transmission around 0.45!p is due to the band edge of the
HE11 mode, where the mode becomes very lossy, and trans-
mission resumes at the onset of EH11 mode starting at 0.5!p.
The bandwidth for each case can easily be determined from
#sp−#c, which for the uniformly filled holes yields 0.17#p
and 0.25#p, respectively. For a subwavelength hole filled
with two concentric dielectric regions, on the other hand, the
bandwidth is increased to 0.36#p. This confirms that by en-
gineering the dispersion of a single hole according to our
method, it is possible to significantly extend the transmission
bandwidth for metallic systems based on subwavelength
holes.

While the ability to independently design the lower and
upper frequency limits of propagating modes is useful in
extending the bandwidth for any size subwavelength hole,
this general idea for enhancing the pass band is particularly
powerful for systems based on nanoscale geometries. As an
illustration, Fig. 4 shows the dispersion curves for propagat-
ing modes in the extreme case of nanoscale holes with rm
=0.036!p=5 nm. The dashed blue and green curves depict
the dispersion curves for "1=7 and "2=2.13, respectively. In
comparison with the 50 nm holes !bandwidths 0.17#p and
0.25#p", the bandwidth of plasmonic modes is severely re-
duced !by an order of magnitude" as the hole size shrinks to
deep-subwavelength scales. For the solid red curve, on the
other hand, the bandwidth remains large. Despite the ten
times reduction in hole size, the bandwidth is only decreased
by half. While it is known that a local material model no
longer reflects the metal properties at such extreme small
length scales, this example nevertheless illustrates the gen-
eral applicability of our approach.

The ability to decouple the frequency limits of the plas-
monic HE11 mode band, through multiple concentric dielec-
tric regions, enables the design of deep-subwavelength holes
that support nanoscale plasmonic modes with a very large
bandwidth. As an additional benefit of this method, the spec-
tral location of the propagating mode is no longer in the
vicinity of the surface plasmon frequency; rather its cutoff
frequency can be engineered to lie anywhere below the sur-
face plasmon frequency, which allows the utilization of fre-
quency regions where metals have lower loss. Finally, we
have verified that the conclusions of this paper remain valid
for more complex material models !e.g., the Lorentz-Drude
model".
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FIG. 3. !Color" Transmission at normal incidence for a square lattice of
subwavelength holes in a metal film. The hole parameters are as in Fig. 1.
The lattice constant is 180 nm, the radius of the holes is rm=0.36!p
=50 nm, and the film thickness is h=250 nm.

FIG. 4. !Color" Propagating HE11 modes inside a nanoscale cylindrical hole
in a metal with plasma wavelength !p. Dispersion relation for the case of a
concentric high-low-dielectric core !solid red line: r1=0.032!p, "1=7, rm
=0.036!p, and "2=2.13", a uniform low-dielectric core !dashed green line:
rm=0.036!p and "0=2.13", and a uniform high-dielectric core !dashed blue
line: rm=0.036!p and "0=7".
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