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Understanding the dispersion of coaxial plasmonic structures through
a connection with the planar metal-insulator-metal geometry
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We elucidate the dispersion behavior of deep-subwavelength propagating modes in coaxial
plasmonic structures by making an explicit connection with the planar metal-insulator-metal
geometry. We provide an intuitive picture that allows for a qualitative understanding and a
quantitative prediction of the entire dispersion behavior, which includes the number of modes
at every frequency, the modal propagation constants, the propagation losses, and the cutoff
frequencies of propagating modes supported by these technologically important structures. We
validate our analytical approach by comparing its predictions to first-principles finite-difference
frequency-domain simulations. © 2009 American Institute of Physics. [DOL: 10.1063/1.3148692]

The optical properties of nanoscale apertures in optically
thick metallic films have been intensely researched in the
past years due to their fundamental importance in near-field
optics and nanophotonics, as well as their practical
significance for photonic devices and applications, e.g., fil-
ters, near-field probes, optical data storage, and
nanolithography. 1.2

To understand the optical properties of nanoscale aper-
tures, it is crucial to understand their modal dispersion be-
havior. It is well known that the transmission characteristics
of apertures critically depend on whether they allow or pro-
hibit propagating modes.** Among the different subwave-
length apertures that have been analyzed, apertures with a
concentric geometry are of particular interest. It was recently
shown that arrays of holes with coaxial cross-section can
transmit up to 90% of the incident visible light despite sub-
wavelength size and Ohmic losses in the metal.’ Moreover,
these structures are promising candidates for deep-
subwavelength low-loss propagation of modes at optical fre-
quencies as well.

In this letter, we point out that the entire dispersion be-
havior of plasmonic structures with a coaxial cross-section
(Fig. 1 inset), i.e., formed by a dielectric ring in between a
metallic core with radius r; and a metallic cladding with
radius r,, can be understood quantitatively by starting from a
planar metal-insulator-metal (MIM) geometry with thickness
d=r,—r,. In the regime of deep-subwavelength propagating
modes where d<<r;,r,, we derive an approximate dispersion
equation that establishes an explicit connection between a
structure with a coaxial cross-section, which has a concentric
geometry, and a MIM structure, which has a simpler planar
geometry. This approach provides important insights into the
behavior of plasmonic coaxial structures. While we discuss
the coaxial waveguide structure as an example, the proposed
method has much broader applicability and can be extended
to provide insights into more complicated concentric wave-
guide structures as well.

Consider a MIM structure formed using the same metal
and dielectric materials as the coaxial structure and with di-
electric thickness d=r,—r;. When d is much smaller than the
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surface plasmon wavelength, the MIM structure supports a

single transverse magnetic mode with its dispersion
(Bym» @) described by
d k
tanh(kd—> = =mtd (1)
2 kdsm

where k2= Byv—kse, and kj= ,812\41M—k(2)sd.7 In this expres-
sion, g,,, represent the relative permittivities of the metal
and the dielectric, and ky=w/c is the free-space wave vector.
For the coaxial structure, we assume that the propagating
mode has its fotal wave vector determined by the MIM dis-
persion relation, i.e.,

B + k= By )

where [ is the component of the wave vector along the
propagation axis (perpendicular to the cross-sectional plane)
and kg, is the transverse component in the cross-sectional
plane (there is no component in the radial direction). Further
observing that structures with cylindrical geometry close on
themselves, and hence

k2ar=21v, (3)

where v is an integer. Combining Egs. (1)—(3), we obtain the
dispersion relation for the coaxial structure, which relates the
propagation constant 3 of each mode to its angular frequency
w’

e NGB+ (vir)? - k(z)sm
smv/ﬂ2 +(vir)? - k%sd‘
4)

In this expression, r=(r;+r,)/2 and v is an integer represent-
ing angular momentum. Equation (4) establishes an explicit
connection between the dispersion behavior of the coaxial
structure and the planar MIM structure. It allows us to esti-
mate all features of the dispersion behavior of deep-
subwavelength modes supported by a coaxial structure for
which d<<r,r,. We note that related to our effort here, there
has been recent work in establishing a relationship between
the dispersion of plasmonic modes propagating on a nano-
wire geometry and those propagating on a single planar
interface.

5 —d
tanh( B+ (vir)? - k%sdg) =-
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FIG. 1. Propagating modes supported by a structure with coaxial cross-
section for a plasmonic metal without loss. (a) Dispersion diagram (8, w),
where S is the real propagation vector along the longitudinal axis of the
waveguide and o is the radial frequency. (b) Cutoff frequency of the modes
vs angular momentum v. The curves are obtained from the analytical ex-
pression (solid lines) and from a numerical FDFD method (filled circles).
Inset shows the geometry and identifies the average radius (r=0.345\,) and
the width (d=0.036\,,) of the dielectric ring, where \,, is the plasma wave-
length of the metal.

We now verify the results of Eq. (4) against a direct
solution of dispersion relation (8, w) of a coaxial structure
using an exact one-dimensional finite-difference frequency-
domain (FDFD) method in cylindrical coordinates (r, 0,7).°
We solve the dispersion equation first, when the material
properties of metals at optical frequencies are described by a
lossless plasmonic model with plasma frequency w,,

2
en(0)=1-2. (5)

w
Such a plasmonic model has been the source of valuable
insights since it provides a description of the general behav-
ior of real metals in the optical frequency range. Without loss
of generality, we fix the relative permittivity of the dielectric

material of the waveguides to be £,=2.13.

Figure 1 shows the dispersion diagram (panel a) and the
cutoff frequency (panel b) of the propagating modes that are
supported by a waveguide structure with coaxial cross-
section for the case of a lossless plasmonic metal. The first
six modes with angular momentum v=0,...,5 are graphed
for a coaxial waveguide with average radius r=0.345\, and
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FIG. 2. (Color) Electric field amplitudes of the first six lowest-order modes
(v=0,...,5) supported by a coaxial structure at their cutoff frequencies
(0:p=0, ©,=0.090,, ©,=0.1730,, ©0;=0.2300w, ©4=0275w,, and

J 24
w,5=0.311w,). The parameter values for the coaxial structure and the ma-
terial model are the same as those in Fig. 1.

dielectric width d=0.036\,,. The analytical theory of Eq. (4)
(solid lines) and the numerical FDFD results (closed circles)
show excellent agreement.

The use of the analytical theory of Eq. (4) provides im-
portant insights about the modes of the structure. One impor-
tant consequence of Eq. (4) is that the fundamental (»=0)
mode of a coaxial waveguide has identical dispersion to that
of a MIM structure. In both cases, the fundamental mode has
no cutoff frequency (w,,=0), covers the spectral range from
dc to surface plasmon frequency (wy,=w),/ Vl+eg,), and is
located entirely below the light line. This explicit quantita-
tive agreement has not been pointed out before.

The theory also indicates the existence of higher-order
modes [Fig. 1(a)] and provides a quantitative prediction of
their dispersion curves including cutoff [Fig. 1(b)]. For
modes with angular momentum v>0, there always exists a
cutoff frequency below which such modes become evanes-
cent and no longer propagate. For this structure, the analyti-
cal theory predicts the cutoff frequencies for the first five
higher-order modes (v=1,...,5) as @®,=0.097w, @,
=0.175w,, ®3=0.2330,, ®,4=0.276w,, and @.5=0.312w,.
These values are in excellent agreement with the cutoff
frequencies w,;=0.096w,, ®,,=0.1730,, ©;3=0.230w,, w4
=0.275w,, and w.s=0.311w, obtained from numerical FDFD
calculations (<1% difference). Above the cutoff frequency,
higher-order modes exhibit discrete spectral bands that end at
the surface plasmon frequency for asymptotically large val-
ues of the propagation constant 8 [Fig. 1(a)]. The cutoff
frequency of these modes also grows with angular momen-
tum and approaches the surface plasmon frequency for very
large v [Fig. 1(b)]. The spectral bands, therefore, become
increasingly flat and group velocity (dw/JdpB) decreases, lead-
ing to “slow” modes.

Figure 2 shows the electric fields for the fundamental
mode near dc (w=0) and for five higher-order modes
(v=1,...,5) at cutoff (w=w,,). The field patterns display
increasing numbers of nodes corresponding to the angular
momentum of the mode. While the fundamental mode with
zero angular momentum (»=0) does not have a cutoff fre-
quency, it does not couple to incident planes waves due to a
mismatch in field symmetry. The next-higher-order (v=1)
mode with a cutoff, on the other hand, does exhibit proper
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FIG. 3. Dispersion diagram (8, ) and (a,w) of the lowest-order modes
supported by a coaxial structure for tabulated properties of silver that in-
clude material losses. 8 and « are the real and imaginary parts of the com-
plex propagation vector along the longitudinal axis of the waveguide, and
is the radial frequency. The curves are obtained from the analytical expres-
sion (black lines) and from a numerical FDFD method (filled circles). The
average radius r=47.5 nm and the width d=5 nm.

dipole symmetry and provides an efficient channel for light
transport. Since the effective index of the MIM mode goes
up as the thickness of the dielectric decreases, the cutoff
frequency of this mode also decreases as the thickness is
reduced, even when the average radius of the coaxial struc-
ture is kept the same. This behavior was observed, but not
explained, and it is distinctively different from that of the
perfectly conducting coaxial waveguide.6

We note that Eq. (4) is not restricted to the plasmonic
free-electron model, but rather is valid for measured metal
properties as well. Figure 3 shows the dispersion diagram for
a coaxial waveguide structure made of silver and dielectric
(e4=2.13) with an average radius of 47.5 nm and a dielectric
ring width of 5 nm. We used tabulated values for the com-
plex dielectric constant of silver when solving the analytical
dispersion [Eq. (4)]."° We plot the real (B) and imaginary ()
parts of the complex propagation constant B+ia as a func-
tion of frequency w in panels (a) and (b). We find that the
agreement between the analytical and numerical calculations
is excellent for both the real and imaginary parts of the
propagation constant. This confirms the validity of the ana-
lytical expression in the most general case of tabulated ma-
terial data that include Ohmic material losses.

As seen from Fig. 3(b), the mode with the lowest loss is
the fundamental mode (v=0), which has no cutoff. In the
presence loss, the definition of cutoff for higher-order modes
(v>0) is no longer exact.'’ As the frequency is increased,
each of these modes goes through a transition from being
primarily evanescent (i.e., |a|>|g]) to primarily propagating,
(i.e., || <|B|). The frequency at which such transition occurs
can be used as a practical definition of cutoff. In general, the
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agreement between the theory of Eq. (4) and numerical
simulation is excellent in the frequency range above, near
and just below the cutoff frequency. At frequencies much
below cutoff, the modes are highly evanescent, and it be-
comes numerically difficult to isolate the modes of interest
from all the other complex modes of the systems. The
higher-order modes exhibit increasingly higher propagation
losses, although this becomes only significant at frequencies
far above the cutoff frequency. At or near the cutoff fre-
quency, the higher order modes have propagation losses that
are comparable to that of the low-loss fundamental mode.

As a final note, we comment on the regime of validity
for the approximation involved in our approach. The disper-
sion equation Eq. (4) is a good approximation for d<<r;,r,.
When d is an order of magnitude smaller than r,r,, for
example, the difference in dispersion diagrams between the
approximate dispersion equation and the exact results is only
a few percent. This regime of validity is also the regime of
most interest, i.e., the regime where these structures support
deep-subwavelength propagating modes. Moreover, good
agreement for the fundamental (v=0) mode requires that the
metallic core radius r; is not too small, to prevent the fields
from going to zero due to penetration in the metal. For
higher-order (»>0) modes this is not a requirement, as the
fields in cylindrical geometry go to zero as r; goes to zero,
and the agreement remains very good even for very small
metallic cores.

In summary, we elucidated the dispersion behavior of
deep-subwavelength propagating modes in coaxial plas-
monic structures by making an explicit connection with the
planar MIM geometry. Our approach provides an intuitive
picture of the dispersion behavior of deep-subwavelength
modes in these technologically important structures. More-
over, it also has broader applicability and can be easily ex-
tended to provide insights into more complicated concentric
structures as well.

This work was supported by the Stanford Global Climate
and Energy Project, the NSF-NIRT Program (Contract No.
ECS-0507301), the DOE (Contract No. DE-FG 07ER46426).
The computation was performed with support from the NSF-
LRAC program.

'For an overview, see the focus issue on “Extraordinary light transmission
through sub-wavelength structured surfaces,” Opt. Express 12 (2004).
T W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature
(London) 391, 667 (1998).

3F. 1. Baida and D. Van Labeke, Phys. Rev. B 67, 155314 (2003).

“J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845
(1999).

%Y. Poujet, J. Salvi, and F. I. Baida, Opt. Lett. 32, 2942 (2007).

°F. 1. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, Phys. Rev. B 74,
205419 (2006).

"H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on
Gratings (Springer, Berlin, 1988).

8M. A. Schmidt and P. S. J. Russell, Opt. Express 16, 13617 (2008).

°F. Wu, S. P. Guo, K. Ikram, S. Albin, H. Tai, and R. S. Rogowski, Opt.
Commun. 249, 165 (2005).

"°E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Aca-
demic, Orlando, 1985).

'"L. Novotny and C. Hafner, Phys. Rev. E 50, 4094 (1994).

Downloaded 12 Jun 2009 to 171.67.216.21. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp


http://dx.doi.org/10.1364/OPEX.12.003618
http://dx.doi.org/10.1038/35570
http://dx.doi.org/10.1038/35570
http://dx.doi.org/10.1103/PhysRevB.67.155314
http://dx.doi.org/10.1103/PhysRevLett.83.2845
http://dx.doi.org/10.1364/OL.32.002942
http://dx.doi.org/10.1103/PhysRevB.74.205419
http://dx.doi.org/10.1364/OE.16.013617
http://dx.doi.org/10.1016/j.optcom.2005.01.008
http://dx.doi.org/10.1016/j.optcom.2005.01.008
http://dx.doi.org/10.1103/PhysRevE.50.4094

