Propagating modes in subwavelength cylindrical holes
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We analyze subwavelength cylindrical holes in an optically thick metallic film with the metal
described by a plasmonic model. We emphasize that such holes always support propagating modes
near the surface plasmon frequency, regardless of how small the holes are. Based on this analysis,
we design both single holes and hole arrays in which propagating modes play a dominant role in the
transport properties of incident light. These structures exhibit a region of operation that to the best
of our knowledge has not been probed yet experimentally, while featuring a high packing density
and diffraction-less behavior. © 2005 American Vacuum Society. [DOI: 10.1116/1.2130344]

The optical properties of nanoapertures in an optically
thick metallic film have been intensely researched in the past
several years due to their fundamental importance in near-
field optics and their practical significance to photonic de-
vices and applications, including filters, near-field probes,
and optical data storage.1 It is well-known that the transmis-
sion characteristics are strongly influenced by the presence or
absence of propagating modes inside the apertures.z’3 In me-
tallic nanoslits, enhanced transmission has been attributed to
propagating transverse magnetic (TM) modes inside the
slits.>*® For cylindrical holes, such as those used in the
Ebbesen et al. original experiments,9 the spectral features
have been shown to be largely independent of the material
used for the vertical walls of the hole.'®!! Therefore, the
prevailing wisdom is that cylindrical holes do not support
propagating modes when the hole diameter is smaller than
~N/2nq, where \ is the wavelength of incident light and n,
is the refractive index of the material inside the hole.'>"
Instead, enhanced transmission is commonly associated with
an excitation of surface wave resonances on the front and
back surfaces of the metallic film and an evanescent tunnel-
ing process, through the holes, between these
resonances.”! 13716

The absence of propagating modes for small holes, how-
ever, is only true when one assumes a perfect electric con-
ductor (PEC) model for metal. At optical wavelengths, met-
als do not behave as a PEC and a more realistic material
model is required to capture their optical properties.”’18 For
a cylindrical hole, it has been shown that the dispersion re-
lation is qualitatively different from a PEC waveguide when
a more realistic plasmonic model is assumed.'® To the best of
our knowledge, however, the importance of such dispersion
relation for transport of incident light through cylindrical
holes has never been recognized.

In this article, we present an analysis of the dispersion
relation for subwavelength cylindrical holes in an optically
thick metallic film when a plasmonic model is used to de-
scribe the metal. We emphasize that such holes always sup-
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port propagating modes near the surface plasmon frequency,
regardless of how small the holes are. When material losses
are included as part of the plasmonic model, these modes
still propagate over several microns, even when the radii of
the holes are much smaller than =~\/2n,. Based on this
analysis, we use three-dimensional (3D) finite-difference
time-domain (FDTD) simulations to design both single holes
and hole array structures in which propagating modes play a
dominant role in the transport properties of incident light.
These structures feature a high packing density, diffraction-
less behavior, and they exhibit a region of operation that
to the best of our knowledge has not been probed yet
experimentally.

To calculate the propagating modes inside a cylindrical
hole, we consider a z-invariant waveguide with a cylindrical
cross section of radius r, in the transverse xy plane (Fig. 1
inset). For the dielectric inside the hole, we use a real,
frequency-independent dielectric function €;. For the sur-
rounding metal, we define a complex, frequency-dependent
dielectric function €,. The waveguide mode (m,n) is found
by solving Maxwell’s equations in cylindrical coordinates for
electric and magnetic fields of the form (r,¢,z,1)
=i, (rexp(jme)explj(wt—k.z)], where m is an integer de-
noting angular momentum, n is related to the number of
nodes in the radial direction, while w and k, are the fre-
quency and wave number of a mode in the hole, respectively.
By matching boundary conditions, a transcendental equation
is obtained for the dispersion relation®
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where J,,(kz r) and Hfrf)(kmr) represent mth-order Bessel
and Hankel functions of the first kind, and
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The prime above these cylindrical functions denotes differ-
entiation with respect to their argument. The speed of light in
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Fic. 1. (a) Dispersion relation of the lowest-order waveguide mode of a
cylindrical hole in metal. The dashed blue line corresponds to the TE;; mode
in a perfect electric conductor (PEC). The solid red line corresponds to the
HE;; mode in a Drude plasmonic metal. The radius of the hole is 0.36\,,
where X, is the plasmonic wavelength in the Drude model. (b) Cutoff fre-
quency of the lowest-order waveguide mode vs hole radius r, for PEC
(TE,;, dashed line) and plasmonic (HE,;, solid line) model.

vacuum is denoted by c. This dispersion equation differs
qualitatively from that of a cylindrical PEC waveguide with
radius ry, for which J; (k7,ry)=0 for transverse electric (TE)
and J,, (k7 7o) =0 for TM modes.”!

In modeling apertures (slits and holes), it is quite common
to use a PEC model to describe the surrounding metal >+*%%
At optical wavelengths, however, the optical properties of
the metal differ significantly from the PEC model. Here, we
use a Drude plasmonic model

2
ew)=1-—b (3)
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where o, is the plasma frequency and w, is the collision

frequency. This model takes into account the contribution of
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free electrons to the dielectric constant of metals. Despite its
apparent simplicity, the plasmonic model proves to be a good
approximation for noble metals (e.g., silver, gold, copper)
and aluminum in the infrared regime. Moreover, by allowing
for additional Lorentzian resonance terms its use can be eas-
ily extended to the visible wavelength range where interband
transitions often contribute to the dielectric function.'®'?

The propagating modes inside the cylindrical hole are ob-
tained by solving for the roots of the dispersion equation Eq.
(1). We numerically scan the normalized (w,k,) space for
pairs that satisfy the dispersion equation. Figure 1(a) com-
pares the dispersion behavior of the fundamental TE;; mode
in a PEC waveguide with the HE;; mode in a lossless plas-
monic waveguide. Both modes couple to incident plane
waves, while next higher-order modes do not. We use as hole
radius r0=0.36)\p, where )\p:27rc/w,, is the plasma wave-
length. The collision frequency w, is set to zero. In the PEC
case (dashed blue line), the fundamental TE;; mode cuts off
at @ 1=0.2927c/ry=0.81w,(\[*11=3.41r;=1.24\ ). Be-
low this cutoff frequency, no propagating modes exist for a
PEC waveguide.”' The solid red line in Fig. 1(a) represents
the dispersion of the fundamental HE;; mode in the plas-
monic waveguide, which has a normalized cutoff frequency
©.=0.46w,(\,=2.17\,). The cutoff wavelength of the HE,,
mode in the plasmonic waveguide is almost twice as long as
the cutoff wavelength of the TE;; mode in the PEC wave-
guide. Hence, the plasmonic waveguide can sustain a propa-
gating mode at a significantly longer cutoff wavelength than
is to be expected from a PEC waveguide model. Moreover,
the qualitative difference in dispersion becomes particularly
prominent for small holes. Figure 1(b) describes the evolu-
tion of the cutoff frequency (main panel) and wavelength
(inset) for the fundamental mode as a function of hole radius
for the PEC (dashed lines) and the plasmonic (solid lines)
waveguide, respectively. For the PEC waveguide, the cutoff
wavelength is proportional to the hole radius ry and ap-
proaches zero for small holes. For the plasmonic waveguide,
two different regimes of operation can be seen. In the “large”
hole regime, the behavior is quite similar to the PEC wave-
guide and differs only by a “fixed” offset in wavelength,
which is approximately equal to \,. In the *“small” hole re-
gion, however, the behavior of the plasmonic waveguide de-
viates significantly from the PEC result and the cutoff wave-
length tends toward the surface plasmon wavelength (\«‘E)\p)
when the hole radius goes to zero. This suggests that cylin-
drical holes in a plasmonic material can support propagating
modes near the surface plasmon frequency, regardless of
how small are the holes. [Note that for holes that are suffi-
ciently small, one needs to take into account the nonlocal
nature or spatial dispersion of the complex dielectric func-
tion &(w,k), i.e., the plasmonic model is no longer valid.**
However, for holes larger than 100 nm, we still expect the
local dielectric function to be valid.l9]

Based upon the modal analysis above, we now consider
the transport properties of a single hole and a hole array. In
both cases, we assume a metal film with finite thickness /.
We use a 3D total-field/scattered-field FDTD implementation
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FI1G. 2. Solid red line corresponds to the transmission spectrum of a single
cylindrical hole (r9=50 nm=0.36),) in a 250 nm thick metal film as shown
in the inset. The metal is modeled as a plasmonic material with \,
=138 nm (w,=1.37X10'"° rad/s) and w,=7.29X 10" rad/s. The dashed
blue line is the transmission spectrum for the same geometry, except that the
metal is modeled as a PEC. The inset shows the transmission spectrum from
100 to 300 nm.

in which uniaxial phase-matched layer (UPmL) absorbing
boundaries truncate the simulation domain. For the single
hole simulation, we apply a normally incident pulsed
Gaussian-beam excitation centered at 550 nm to obtain the
response in the ultraviolet and visible wavelength range
within a single simulation. The Gaussian beam has a trans-
verse spatial full width half maximum of 1 wm. The inci-
dence plane is chosen a few 100 nm above the metallic film
and the field data for determining the spectral transport prop-
erties of the waveguide, through direct integration of the
Poynting vector, are collected in an observation plane placed
in the middle of the metallic film. Such calculation measures
the total amount of power that can pass through the hole. The
transmittance is defined as the ratio of the power through the
waveguide in the metallic film to the incident power.

Figure 2 shows the spectral transmittance of a cylindrical
hole (7y=50 nm=0.36\,) in a 250 nm thick metal film, mod-
eled as a PEC (dashed blue line) and a plasmonic material
(solid red line), respectively. For the plasmonic material, we
assume a plasma wavelength \,=138 nm [w,=1.37
X 10" rad/s (Ref. 17] and ,=7.29X 10" rad/s."® The
presence of a nonzero collision frequency leads to losses and
we can calculate the decay length L,=1/2k, using the com-
plex wave number of the mode k,=k_ +ik!. The decay length
is approximately 2—3 um for most of the wavelength range
covered by the HE;; mode. Hence, the HE;; mode can
propagate over a distance that is relevant for transport
through metallic films, which are a few hundred nanometers
thick. (The same conclusion holds when using tabulated data
for the dielectric function of silver.25)

In the PEC case, the spectral transmittance is approxi-
mately constant and then falls off at the cutoff wavelength
)\IE“ =3.41r5=170 nm, which is determined by the radius of
the hole only. In the plasmonic case, using the Drude free-
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electron model in Eq. (4) including losses, the transmittance
depends on a combination of hole geometry and material
properties. It features a region of high transmission below
the bulk plasma wavelength (\,=138 nm), where the metal
itself is transparent. This region is followed by a very fast
dropoff leading to a stop band ranging from 150 to 200 nm.
Past the stop band, a pass band with a cutoff located at
AME1 =300 nm is visible. Both the stop band and the cutoff
wavelength compares well with the values obtained from the
dispersion calculation. In comparison with the PEC case the
pass band lies entirely beyond the PEC cutoff. The peak
amplitude of the transmittance is twice as large as the peak
amplitude in the PEC case. Its cutoff wavelength N\"11 is
almost twice as large as )\LT,E“ and features a decaying tail.
Simulations without loss component in the plasmonic model
revealed that the transmission spectrum is quasi-independent
of material losses (mean difference <10%). This is consis-
tent with long decay lengths, which are on the order of mi-
crons for the plasmonic model, compared to the 250 nm
thickness of the film.

The importance of propagating modes on the transmission
properties of subwavelength cylindrical holes is also evident
for appropriately designed hole array structures. Previously,
transmission enhancement for such structures has been
largely associated with the resonant excitation of surface
waves and evanescent tunneling through the holes.”!!13-16
Here, instead, we explore a different regime in which the
propagating waveguide mode provides the dominant trans-
port mechanism. For simplicity, we consider only plane
waves incident along the normal direction. The signature of a
propagating waveguide mode in the transmission will be
most noticeable when the HE,; band covers a wavelength
range where no other competing mechanisms are present.
Hence, the wavelengths of a surface wave resonance at nor-
mal incidence, due to the folding of the dispersion curve of
the top and bottom surfaces,9 should be below the smallest
wavelength of the HE; band, which corresponds to the sur-
face plasmon wavelength inside the hole. For this to occur,
the array needs to have a periodicity that is substantially
smaller than what has been featured in recent experiments.
Furthermore (while this is not strictly necessary), to expand
the propagating mode band to longer wavelengths, we fill the
holes with a dielectric to achieve a large index contrast be-
tween the material inside the holes and the material sur-
rounding metallic film. Figure 3 shows the transmittance
spectrum 7 for an array of cylindrical holes, which has been
designed according to aforementioned principles. It features
50 nm radius cylindrical holes in a 250 nm thick metal film.
The holes are filled with a dielectric with refractive index
€,=4 (e.g., SizN,), while the periodicity of the array is
180 nm. For the PEC model, this array has a transmission
spectrum with a cutoff wavelength of 370 nm, which is close
to the cutoff wavelength for a single dielectric-filled hole.
Below that wavelength, the transmission band features a se-
ries of high-finesse Fabry-Pérot resonances. In contrast, the
spectrum of the plasmonic model shows a clear pass band
ranging from 350 to 600 nm that lies entirely beyond the
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FiG. 3. Solid red line corresponds to the transmission spectrum 7" of a 50 nm
radius cylindrical hole array with 180 nm period (in x and y) in a 250 nm
thick metal film. The holes have been filled with a dielectric (;=4). The
substrate and superstrate are air (g,=1). Insets show E, field profile inside
the hole for the two major peaks at wavelengths 442 nm (7'=0.72, left panel)
and 520 nm (7'=0.79, right panel), respectively, with light incident from the
top (The simulation domain used in 3D FDTD is 180 180X 1000 nm).
The field pattern clearly shows the existence of propagating modes. The
dashed blue line is the transmission spectrum for the same geometry, except
the metal is modeled as a PEC.

PEC cutoff wavelength. This range, as well as the stop band
between 220 and 320 nm, once more agrees well with the
dispersion relation of a single hole. The insets show the E,
field profile inside the aperture for the peaks at wavelengths
442 nm (T=0.72, left panel) and 520 nm (7=0.79, right
panel). The field pattern clearly demonstrates the existence
of propagating modes.

Making subwavelength apertures for use at optical wave-
lengths, as described in this work, requires features on the
order of 50 nm. Recent experiments have shown that this is
indeed possible.26 In addition, we note that the transmission
spectra reported here largely depend on material parameters
rather than the exact shape of the cylindrical hole. Specifi-
cally, the upper frequency edge of the HE;, pass band is
pinned at the surface plasma frequency of the metal-
dielectric interface inside the hole. Hence, its location de-
pends on material properties only. Therefore, the presence of
a transmission peak should be fairly robust against any dis-
orders introduced during fabrication.

To the best of our knowledge, this work identifies an op-
erating regime for cylindrical hole arrays. Our results show
the potential of using propagating modes to obtain high
transmission with subwavelength holes. In Fig. 3, the plas-
monic pass band features a peak transmission of 0.79, which
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is approximately an order of magnitude higher when com-
pared with previously published transmission in hole arrays.
The use of small periodicity (approximately 200 nm) means
that for all wavelengths of practical interest the array is
diffraction-free while allowing for a bigger packing density
of holes and potentially a smaller footprint.
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