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We use metamaterials with extreme anisotropy to solve the fundamental problem of light transport in
deep subwavelength apertures. By filling a simply connected aperture with an anisotropic medium, we
decouple the cutoff frequency and the group velocity of modes inside apertures. In the limit of extreme

anisotropy, all modes become purely transverse electromagnetic modes, free from geometrical dispersion,

propagate with a velocity controlled by the transverse permittivity and permeability, and have zero cutoff
frequency. We analyze physically realizable cases for a circular aperture and show a metamaterial design

using existing materials.

DOI: 10.1103/PhysRevLett.106.223902

Metamaterials with extreme properties have generated
significant basic physics interest in recent years. Notable
examples include epsilon-near-zero materials [1,2], ultra-
low refractive-index materials [3], and ultrahigh refractive-
index materials [4—6]. Many photonic structures, such as
waveguides, lenses, and photonic band gap materials,
benefit greatly from the very large index contrast provided
by these metamaterials [7,8]. Metamaterials with extreme
anisotropy offer another level of flexibility. This has al-
ready led to novel behaviors and control over material
properties, such as nonmagnetic left-handedness and pho-
tonic density-of-states engineering [9-12].

In this work, we point out that metamaterials with ex-
treme anisotropy can be used to solve a fundamental
problem that is of both great importance and practical
interest in nanophotonics: efficient light transport in deep
subwavelength apertures. We define a subwavelength ap-
erture here as simply connected and with both transverse
dimensions at the subwavelength scale. An example of
such an aperture would be a hole made in a metal or polar
material film with a cross section that is significantly
smaller than the operating wavelength [13-15]. While
traditional deep subwavelength apertures do not support
guided modes, our approach turns these apertures into
waveguides. Such an aperture waveguide enables efficient
light transport, which is of fundamental importance for
light manipulation light at deep subwavelength length
scales and of practical significance for many photonic
devices and applications [16,17].

In general, the optical behavior of a single aperture is
determined by the dispersion relation of the corresponding
waveguide structure with the same cross-sectional geome-
try as the aperture [13]. Subwavelength apertures typically
transmit light with an efficiency that is substantially below
unity, because the corresponding waveguide exhibits eva-
nescent decay of electromagnetic fields below the cutoff
frequency [16]. One simple approach for lowering the
cutoff frequency and potentially allowing efficient light
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transport in deep subwavelength holes is to fill them with
a high-index dielectric medium. If the medium is isotropic,
however, both the cutoff frequency and the group velocity
are lowered simultaneously. In particular, the maximum
group velocity is reduced, leading to slow light operation.
Such a trade-off is not always desirable: Reducing group
velocity can adversely impact signal transport and often
increases the impact of loss thereby lowering light
throughput.

Here, we demonstrate that, by filling the hole with an
anisotropic medium, it is possible to decouple the cutoff
frequency and the maximum group velocity. We consider a
uniaxial anisotropic medium described by its permittivity
and permeability tensors
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go and u( represent the vacuum permittivity and perme-
ability, respectively, while £, (u,) and &, (u,) are the
relative transverse and longitudinal permittivity (perme-
ability), respectively. In the limit of extreme anisotropy
(g, — 00, u, — ), we show that all modes in a hole
become purely transverse electromagnetic (TEM) modes
and that they all have a zero cutoff frequency, while
retaining a substantial group velocity. This is a rather novel
effect. In conventional simply connected apertures, by
contrast, modes possess a nonzero longitudinal electric or
magnetic field component and have a finite cutoff
frequency.

A hole with perfect electric conducting (PEC) sidewalls,
in general, supports either purely transverse electric (TE)
modes (E, =0,H, # 0) or transverse magnetic (TM)
modes (H, =0, E, # 0). When the hole is filled with
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a dielectric medium that exhibits extreme anisotropy
(g, — 00, u, — 00), however, all modes become purely
TEM modes (E, =0, H, =0). To demonstrate this,
the anisotropic medium [Eq. (1)] is placed at the core
of a cylindrical waveguide (hole) with its axis along
the z direction. Assuming the field components are
o« exp(—iwt) with frequency w, we find for the z compo-
nent of the curl equations

(VXH),=—iwegye E, (VXE),=iopou H,. (2)

The left-hand sides of Eq. (2) are finite. Hence, the longi-
tudinal components E, and H, must vanish (E, =0
and H, = 0) in the limit of extreme anisotropy &, — o0,
m, — oo. All modes therefore become purely TEM modes.
This result is valid for holes with an arbitrary cross section.
For holes with sidewalls made of any material, our result
remains valid for the field profile inside the hole.

We now show that the dispersion relation of these modes
is free from geometrical dispersion and without cutoff. For
this proof, we start again by considering a general wave-
guide (aperture) filled with a dielectric medium described
by Eq. (1). We treat TM and TE modes separately in the
appropriate limit of &,, u, — o0. For TM modes, the non-
zero field components are the transverse electric, magnetic
vector fields E| and H | and the longitudinal electric field
component E_; they satisfy the following equations:

d
V_LXHJ_ +a—ez><Hi=—iw80(siEl+szEzez), (3)
<

d
VJ_XEl+a—ez><EJ_=iw,u.0,uJ_Hl, (4)
<

where e, is the unit vector in the z direction. In Eq. (4), we
used that £, = 0 when &, — co. We assume that all field
components are « exp(ifBz), where B is the wave vector.
Equations (3) and (4) can both be split into their transverse
and longitudinal parts:

Vi XH, = —iwege,E e, 5
Bez X HJ_ = —wsolel,
Vi XE; =0, Be, XE; =opou Hy.  (6)

We then combine the expressions for the transverse fields
in Egs. (5) and (6) and arrive at the dispersion relation of
the TM modes,

w = Uaniso:B’ (7)

where vy,io = ¢/ JEL 1. A treatment for TE modes
yields an expression identical to Eq. (7).

The analysis above shows that in an aperture filled with
an extreme anisotropic medium (g, — o0, u, — 00) all
modes are free from geometrical dispersion with a velocity
Uaniso  (group velocity = phase velocity) that is entirely
controlled by the transverse permittivity and permeability

and have zero cutoff frequency. Moreover, all modes are
degenerate with the dispersion relation of a TEM mode
[Eq. (7)]. These properties are quite unusual for an aperture
with a simply connected cross section.

For an in-depth analysis of physically realizable cases,
i.e., for e,, u, finite but very large comparedto e |, w , we
now consider a hole with a circular cross section of radius
ro- All modes in this system can be calculated analytically.
We employ an exact one-dimensional finite-difference
frequency-domain method in cylindrical coordinates
(r, 0, z) to visualize them [18]. For illustration, we focus
on the lowest-order TE and TM modes (TE,;, TMy,, TE,,,
and TM,,). In calculating the dispersion curves (8, w), we
assume a uniaxial anisotropic dielectric with & = 2.13,
g, =2130,u = land e = 2.13, u; = 1, u, = 1000. We
also calculate the dispersion curves for an isotropic dielec-
tric with € = 2.13 and u = 1, as well as for one with
e = 2130 and p = 1000.

For a waveguide filled with an isotropic dielectric me-
dium, the dispersion relations for the TM and TE modes
are well-known [19]:

w? = vzﬁz + wiTMm, w? = v2,82 + w%)TE , (8)

mn

with v =c¢/ /e w and cutoff frequencies w.ry

hive/Jwe and o g, = hrge/ /e w. The constants
hoy and App depend on the mode order (m, n), according
to boundary conditions for E, and H, at r = ry [19]. As
shown in Fig. 1(a) (¢ = 2.13 and p = 1), the dispersion
curves go to nonzero cutoff frequencies when B — 0.

(b) (c)
{O
&)
[
A
©
§2}
'c
5 .
é e=2.13
=1
S o2 " ] ]
g =213
g, =2130
0.1 @ E €=2130 4 u,=1
PEC u= 1000 },lz =1000
0 0.5 10 0.5 10 0.5 1

B (in units of 2n/r,)

FIG. 1 (color online). Dispersion diagram (83, w) for the
lowest-order modes supported by a circular waveguide with
PEC walls and filled with (a),(b) an isotropic dielectric
(e =213 and u =1, e = 2130 and p = 1000) and (c) a uni-
axial anisotropic dielectric (¢; = 2.13, ¢, = 2130, u =1 for
TM modes, and ¢ = 2.13, u; =1, u, = 1000 for TE modes).
The solid blue, red, green, and cyan curves are for the TE,;,
TMy;, TE,;, and TM;; modes, respectively (in order of ascend-
ing cutoff).
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For large B, all curves approach the light line of the
isotropic dielectric w = vB. Figure 1(b) illustrates the
simple approach towards lowering cutoff frequency,
i.e., filling the hole with an isotropic medium with large
permittivity and permeability (¢ = 2130 and p = 1000).
In addition to lowering the cutoff frequency, this approach
also dramatically reduces group velocity (flat dispersion
curves). By contrast, Fig. 1(c) describes the dispersion
curves in the case of extreme anisotropy (g; = 2.13,
g, = 2130, u = 1 for TM modes and ¢ = 2.13, u, =1,
m. = 1000 for TE modes). All TM (TE) modes exhibit
extremely low (near-zero) cutoff frequencies but also re-
tain substantial maximum group velocities.

Figure 2 shows the transverse electric field distributions
for the lowest-order modes in the anisotropic waveguide
(hole). They are obtained by using the finite-difference
frequency-domain method. The modes have distinct trans-
verse distributions that closely resemble those of the TM
(TE) modes in an isotropic waveguide [19]. This is ex-
pected. In both the anisotropic and the isotropic case,
the transverse fields for the TM (TE) modes satisfy
ViHJ_ +h%~MHJ_ =O(ViEJ_ +h"21"EE.L =O) andDL =
—Be, XH,)/ow [B; = B(e, XE|)/w]. These equa-
tions are identical in both cases with the constant Aty
(htg) determined by cross-sectional geometry (boundary
conditions) and mode order only. Hence, the field profiles
should be identical as well for modes with the same /iy
(htg) independent of (an)isotropy. In the extreme aniso-
tropic case (¢, = 2.13, e, = 2130, u = 1 for TM modes
and ¢ = 2.13, u; =1, u, = 1000 for TE modes), how-
ever, the modes feature these distinct transverse field pro-
files while having near-zero longitudinal fields H, = 0 and
E.=~0for TM (E, = 0 and H, =~ 0 for TE).
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FIG. 2 (color online). Transverse electric vector field E | for
the lowest-order modes of a circular waveguide with PEC
cladding and filled with a uniaxial anisotropic dielectric with
(b),(d) e, =2.13, e, = 2130, u =1 for TM modes and (a),
(c) e =213, uy =1, u, = 1000 for TE modes.

Figure 3 shows the cutoff frequency for the lowest-order
TM modes (0. = w.1ym,,) as a function of the ratio
between the longitudinal (e,) and the transverse (g ) per-
mittivity when &, = 2.13, as well as for lowest-order
TE modes (o, = w,1g,, ) as a function of the ratio be-
tween the longitudinal (w,) and the transverse (u ) per-
meability when w; = 1. As the ratio increases (g, — o0 or
m, — 00), the cutoff frequency goes to zero. We also graph
the maximum group velocity for each mode and observe
that the velocity does not vary with the permittivity
(permeability) ratio. It remains at the value of the velocity
in an isotropic medium with ¢ = 2.13 and w = 1. This
shows the absence of a trade-off; i.e., the cutoff frequency
can be lowered arbitrarily without affecting the maxi-
mum group velocity. The analytic prediction that we
made with &, — o0 and u, — oo can therefore be realized
in physical systems by making &,, w, much larger com-
paredto e, u .

The combination of simultaneous small (finite) trans-
verse permittivity or permeability and large (infinite) lon-
gitudinal permittivity or permeability is typically hard to
find in naturally occurring materials. Metamaterial design,
however, offers an approach for designing a medium with
such an extreme anisotropy. The required anisotropy can
be obtained by alternating concentric layers of dielectric
media with low and high relative permittivity. When the
thickness of each individual layer is much less than the
operating wavelength, we can treat this finely structured
material as an effective dielectric with
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FIG. 3 (color online). Cutoff frequency and maximum group
velocity for a circular waveguide with PEC cladding and filled
with a uniaxial anisotropic dielectric. Cutoff frequency w, and
maximum group velocity v are graphed as a function of w./u
for the TE;; (blue curve) and TE,; (green curve) modes and as a
function of &./e, for the TMy, (red curve) and TM;; (cyan
curve) modes.
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FIG. 4 (color online). Metamaterial design for a dielectric with
extreme anisotropy based on alternating concentric rings of a
high (e,) and a low (e;) permittivity dielectric medium. €. /¢,
for the uniaxial anisotropic metamaterial is graphed versus &,
(for ; = 2.13). The inset shows the cross section of the aperture
and metamaterial geometry.

where €; and &, are the relative permittivities of the
component media, while f and 1 — f are the fractions of
the total volume occupied by each of the respective media
[20]. We note that the field distribution of E | for the
lowest-order TM;; mode is purely radial and thus
e = &,. The ratio of &, to g, is maximized when
f = 1/2, thereby simultaneously achieving a low cutoff
frequency while maintaining significant maximum group
velocity. Figure 4 shows the ratio ¢,/¢, as a function of &,
(for &; = 2.13). In particular, &,/¢, reaches ~10000 if
we use a dielectric with &, = 85000. Dielectrics with
such large relative permittivities exist up to radio frequen-
cies [21].

As another example, we create a metamaterial in the
microwave regime that combines Bag¢Srg4TiO5, which
has a permittivity of 900 at 2 GHz [22], and Teflon
(e = 2.1). We find that the cutoff frequency of the TM,
mode, in a 3-mm radius hole filled with such a metamate-
rial, is reduced by more than an order of magnitude from
o.M, = 26.4 GHz (for a hole filled with Teflon & = 2.1)
to wgflﬁ‘}lm = 1.8 GHz (for a hole filled with the uniaxial

anisotropic metamaterial with &, = 4.2 and e, = 451.1),
while the maximum group velocity changes by less than a
factor of 2 (compared to a group velocity that is more than
20 times smaller in Bag ¢St 4TiO3). It is important to note,
in this context, that the extremely large values for &, are
required only near the cutoff frequency. In particular, to
achieve this behavior over a wide range of frequencies,
large permittivity values are needed only at the low end of

the frequency range. In general, materials with larger
permittivity are found at lower frequencies. Thus the
approach proposed here can be useful in designing aper-
tures with extremely broad bandwidth. For the fabrication
of such structures, finally, there exist self-assembly ap-
proaches for creating cylindrical periodic structures with
nanosize periods [23], as well as conformal coating meth-
ods for achieving thin nanolayers of polymers around
nanowires [24].
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