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Abstract: We propose a simple geometric criterion based on the size of the 
core relative to the photonic crystal to quickly determine whether an air-
core photonic-bandgap fiber with a given geometry supports surface modes. 
Comparison to computer simulations show that when applied to fibers with 
a triangular-pattern cladding and a circular air core, this criterion accurately 
predicts the existence of a finite number of discrete ranges of core radii that 
support no surface modes. This valuable tool obviates the need for time-
consuming and costly simulations, and it can be easily applied to fibers with 
an arbitrary photonic-crystal structure and core profile. 
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1. Introduction 

In recent months there has been mounting evidence that surface modes impose serious 
limitations in air-core photonic-bandgap fibers (PBFs) [1-4]. Surface modes, which do not 
exist in conventional fibers, are defect modes that form at the boundary between the air core 
and the photonic-crystal cladding. A typical surface mode is displayed in Fig. 1(a) for the 
purpose of illustration. This mode was calculated for a triangular-pattern air-core PBF made 
of silica, with a core radius R = 1.15Λ and air holes of radius ρ = 0.47Λ, where Λ is the period 
of the photonic crystal. The supercell size used in these calculations was 10x10 and a grid 
resolution of Λ/16. Unless suitably designed, a fiber will support many such surface modes 
[3]. The propagation constants of surface modes often fall close to or can even be equal to the 
propagation constant of the fundamental core mode [2,3]. The fundamental mode can thus 
easily be coupled to surface modes, for example by random perturbations in the fiber cross-
section. Because surface modes are inherently lossy due to their high energy density in the 
dielectric, this coupling represents a loss mechanism. Recent findings indeed demonstrate 
conclusively that surface modes are at the origin of the reduced transmission bandwidth in 
Corning's 13-dB/km air-core PBF [5]. They are also likely responsible for the remaining loss 
of air-core PBFs.  

 

Fig. 1. (a) Example of a surface mode calculated for a triangular-pattern PBF with an air hole 
radius ρ = 0.47Λ and a core radius of 1.15Λ, and (b) the highest frequency bulk mode of the 
same fiber in the absence of core. Both were calculated at kzΛ/2π = 1.7. 

Direct detection of surface modes is experimentally difficult. At present their existence 
can only be predicted by time-consuming and costly numerical simulations on 
supercomputers. For example, generating the surface mode of Fig. 1(a) (together with the 
other modes of that fiber) took about 6 hours using 16 parallel processors [3]. Given the 
significance of surface modes, it was both timely and important to devise expedient modeling 
alternatives. In earlier work we showed that the presence of surface modes can be predicted 
on the basis of whether the air-core surface intersects the high intensity lobes of the highest 
frequency bulk mode of the lower band of the photonic crystal [3]. In this paper, we present a 
much simpler, more intuitive existence criterion that requires no advanced simulations at all. 
We show that surface modes are created when the surface of the core intersects one or more 
of the dielectric corners of the photonic crystal. Based on this observation, we propose a fast 
and simple geometric criterion to evaluate whether a particular fiber design supports surface 
modes. We apply this criterion to triangular-pattern PBFs with a circular air core and find that 
in spite of its simplicity, this approximate model yields quantitative predictions in remarkable 
agreement with computer simulations. 
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2. Physical origin of surface modes 

Surface modes can occur when an infinite photonic crystal is abruptly terminated, as happens 
for example at the edges of a crystal of finite dimensions. Terminations introduce a new set of 
boundary conditions, which result in the creation of surface modes that satisfy these 
conditions and are localized at the termination [6]. In a photonic crystal, the existence of 
surface modes depends strongly on the location of the termination [6-8]. For example, in 
photonic crystals made of dielectric rods in air, surface modes are induced only when the 
termination cuts through rods. A termination that cuts only through air is too weak to induce 
surface modes [7]. 

Similarly, in a PBF the core acts as a defect that perturbs the crystal and may introduce 
surface modes at the core's edge. Whether surface modes appear, and how many appear, 
depends on how the photonic crystal is terminated, which determines the magnitude of the 
perturbation introduced by the defect. In the absence of core, a PBF carries only bulk modes. 
An example of bulk mode is illustrated in Fig. 1(b). This mode was calculated for the same 
triangular-pattern air-core PBF as in Fig. 1(a). Contour lines represent equal intensity lines. 
This particular bulk mode consists in a series of narrow intensity lobes centered on each and 
every one of the thicker dielectric corners of the photonic crystal. Here we define corners as 
the thicker portions of the dielectric photonic crystal separated by three adjacent holes (see 
Fig. 2(a)). The thinner portions of dielectric that connect corners, i.e., the portions separated 
by any two adjacent holes, are referred to as membranes (see Fig. 2(a)). Other bulk modes 
have different lobe distributions, e. g. with all lobes centered on membranes. When an air core 
is introduced, the core locally replaces dielectric material with air. The portions of the core 
surface that cut through the cladding air holes (see Fig. 2(a)) replace air by air and thus, just 
like in the case of a planar photonic crystal [7], they do not induce much of a perturbation. On 
the other hand, the portions of core that cut through dielectric regions of the crystal (see Fig. 
2(a)), which replace dielectric by air, perturb the bulk modes strongly enough to potentially 
induce surface modes. Since a core of any size and shape always cuts through dielectric 
material, this perturbation is always present. The sign of the perturbation is such that in the ω-
k diagram, the bulk modes all shift up in frequency from their respective unperturbed position. 
For a silica/air PBF, the perturbation is comparatively weak, this shift is thus small and almost 
all perturbed bulk modes remain in a bulk-mode band, i.e., they do not induce surface modes. 
The exception is modes from the highest frequency bulk-mode band of the lower band 
(HFBM in short). Because they are located just below the bandgap in the ω-k diagram, the 
perturbation moves them into the bandgap as surface modes [7]. Surface modes can always be 
written as an expansion of bulk modes. For the weak perturbation considered here, it can be 
shown that the main term in this expansion is the HFBM, as expected given the origin of these 
surface modes. The HFBM is the mode shown in Fig. 1(b). The fact that its lobes are all 
centered on corners of the crystal has two important consequences. First, because surface 
modes are induced by a perturbation of this bulk mode, their lobes are also centered on 
corners (see fig. 1(a), for example). Second, for the HFBM to be perturbed strongly enough to 
yield surface modes, the perturbation must occur in regions of the photonic crystal that carry a 
sizable HFBM intensity, i.e., corners of the photonic crystal. In other words, for a surface 
mode to be created the air core must intersect corners of the photonic crystal. This is true, for 
example, for the core of radius R1 shown in Fig. 2(a), but the core of Fig. 2(b) (radius R2) does 
not support surface modes. 

In earlier work, we established that surface modes are indeed strongly correlated with the 
magnitude of the perturbation introduced by the air core on the HFBM [3]. If the core surface 
intersects lobes of the HFBM in the dielectric, the perturbation is large and surface modes are 
induced. The number of surface modes is then proportional to the highest intensity intersected 
by the core in the dielectric. Conversely, if the core surface does not intersect any of the lobes 
of this bulk mode, no surface modes are created. By comparison to exact simulations, we 
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showed that this bulk-mode-based criterion predicts the presence or absence of surface modes 
fairly accurately [3]. Note that although some of the solid edges at the core boundary have 
abrupt corners (see Fig. 2), we do believe that the effects of such sharp corners on the 
existence of surface modes are minimal. The best proof is that when the core cuts through the 
membranes of the photonic crystal, sharp corners are present yet no surface mode is induced. 

 

 

Fig. 2. Example of a circular core (a) that intersects corners of the photonic-crystal cladding 
(surface modes expected), and (b) that intersects only membranes of the photonic crystal (no 
surface modes expected). 

3. Geometric criterion 

In the present work we simplify this criterion by recognizing that the intensity lobes of the 
HFBM being nearly azimuthally symmetric (see Fig. 1(b)), the portion of each lobe confined 
in a dielectric corner can be approximated by the circle inscribed in this corner. This inscribed 
circle is illustrated as a black circle in Fig. 3. Its radius is related to the crystal's parameters by 
a = Λ 3 − ρ . Thus we approximate the portions of the HFBM confined to the dielectric by a 
two-dimensional array of circles centered on all the photonic-crystal corners. This array is 
illustrated by the small black circles in Fig. 4, plotted for a triangular pattern and ρ = 0.47Λ. 
This approximation makes it possible to formulate a new, simpler existence criterion for 
surface modes, namely that surface modes are predicted to exist when and only when the core 
surface intersects one or more of these circles. Of course it should be kept in mind that many 
other kinds of perturbations can induce surface modes in a photonic crystal, so that the above 
condition for the absence of surface modes is necessary but not sufficient. 
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Fig. 3. Schematic of the rod (small black circle) inscribed within a corner of a photonic-crystal 
cladding (larger open circles), drawn for ρ = 0.47Λ. 

Interestingly, the same geometric criterion can be derived with coupled-mode theory. In 
light of the symmetry of the lower-band bulk modes, each corner can be approximated by a 
dielectric rod inscribed in this corner, and which extends the length of the PBF. Each isolated 
rod is surrounded by air and constitutes a dielectric waveguide. This waveguide carries a 
fundamental mode with strong fields in the rod that decay evanescently into the air, so it looks 
much like the individual lobes of the HFBM (see Fig. 1(b)). In the periodic array of rods of 
Fig. 4, the waveguide modes of individual rods are weakly coupled to each other due to the 
proximity of neighboring rods and form the bulk modes. The HFBM is just one particular 
superposition of individual waveguide modes. If an air core that cuts into one or more rods is 
introduced, the removal of dielectric perturbs the waveguide modes in the opposite direction 
to that forming bulk modes. The waveguide modes of the ring of perturbed rods located at the 
core surface are then coupled to each other and form a surface mode. The latter is supported 
by the ring of rods and has fields that fall off outside each rod, as evidenced in the exemplary 
surface mode of Fig. 1(a). If the core cuts only through membranes instead of corners, the 
rods are unperturbed, they couple to each other much as they did without the core, and no 
surface mode is formed. In this description, surface modes exist if and only if the core surface 
intersects rods. This is of course the same criterion as derived by approximating the HFBM 
lobes by inscribed circles. 

 

 
 

Fig. 4. The gray regions represent the ranges of core radii that intersect rods, and thus support 
surface modes, and the white regions between them the surface-mode-free bands. See text for 
details. 

To verify the validity of this new criterion, we applied it to the most widely studied class 
of air-core PBFs, namely fibers with circular air holes in a triangular pattern, as illustrated in 
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Fig. 4. The core is a larger circular air hole of radius R at the center of the fiber. Again, we 
postulate that when R is such that the core surface intersects one or more rods, (1) surface 
modes exist, and (2) the number of surface modes is proportional to the number of rods 
intersected. This scaling law is expected because as the number of intersected rods increases 
the perturbation magnitude increases and so does the number of surface modes. Conversely, 
when the core does not intersect any rods no surface modes occur. A simple diagram of the 
fiber cross section (e.g., Fig. 4) makes the application of this criterion to any fiber geometry 
very easy. 

Table 1. Location of the 14 bands of core radii that support no surface modes in triangular PBFs with ρ = 0.47Λ (see 
text for details). 

All entries are in units of Λ.  Uncertainties:* = ±0.1; ^ = ±0.04. 

The result of this geometric analysis is graphed in Fig. 4 for a triangular pattern. The 
shaded rings represent the ranges of core radii that intersect rods and thus support surface 
modes. The white rings between them represent ranges of radii that intersect no rods (no 
surface modes). The dependence of the number of surface modes on core radius, calculated 
straightforwardly by applying elementary trigonometry to Fig. 4 to track down how many 
rods a core of given radius crosses, is plotted in Fig. 5 (solid curve). Our simple postulate 
predicts the important result that there are several bands of radii for which this type of PBF 
supports no surface modes at all, across the entire bandgap, as we established previously with 
numerical simulations [3]. Six bands occur in the range covered in Fig. 5 (R up to 3.5Λ), not 
counting the band below R = 0.47Λ, for which the radii are too small to support a core mode. 
Another eight bands occur for radii larger than 3.5Λ, the last one being at R ≈ 8.86Λ. Table 1 
lists the boundaries and width of these 14 bands. The first band is the widest; it is also the 
most important, because it is the only one that falls in the single-mode range of this PBF (R < 
1.2Λ for ρ = 0.47Λ). All other bands, except for the third one, are substantially narrower, 

Band number Range 
(from criterion) 

Range 
(from simulations) 

Width 
 

#1 0.685—1.047 0.65*—1.05* 0.363 

#2 1.262—1.420 1.27^—1.45* 0.158 

#3 1.635—1.974 1.65*—2.05* 0.339 

#4 2.189—2.202  0.013 

#5 2.624—2.779  0.155 

#6 3.322—3.405  0.083 

#7 3.619—3.679  0.059 

#8 3.893—3.934  0.071 

#9 4.271—4.402  0.131 

#10 5.239—5.400  0.161 

#11 6.218—6.244  0.026 

#12 6.914—6.916  0.0022 

#13 7.875—7.914  0.039 

#14 8.844—8.856  0.0113 
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generally getting narrower as the core size increases. Note that by nature of the rod 
approximation, these values are independent of the dielectric refractive index. 

 

 

Fig. 5. Dependence of the number of surface modes on core radius predicted by numerical 
simulations (dashed curves with triangles) and by the proposed geometric criterion (solid 
curve). 

4. Comparison to simulations 

To evaluate the accuracy of these quantitative predictions, we conducted numerical 
simulations of the surface modes of this same class of PBFs on a supercomputer using a full-
vectorial plane wave expansion method [9]. The dielectric was taken to be silica and ρ = 
0.47Λ. Simulations results are plotted in Fig. 5 (open triangles joined by dashes). The grid 
size used to generate the filled triangles was Λ/16. To generate additional points in the more 
interesting range of core radii between 1.1Λ and 1.3Λ, we had to reduce the grid size to Λ/32 
(open triangles). As a result, the absolute number of surface modes predicted in this range 
does not scale the same way as in the rest of the graph, which is inconsequential since we are 
only interested in the boundaries of the surface mode regions. Figure 5 shows that the 
agreement with the predictions of the geometric criterion is excellent. This is further apparent 
by comparing in Table 1 the boundary values of the first three surface-mode-free bands 
generated by the geometric criterion (second column) and by simulations (third column): the 
accuracy of the criterion is better than 5%. It is worth pointing out that the exact boundary 
radii were computed in limited numbers and with a limited number of digits because 
simulations are very time consuming (again, about six hours per radius). The accuracy of 
these simulated radii is also limited (see uncertainties listed in Table 1) by the finite sampling 
and the grid size. In contrast, the geometric criterion provided far more information with a 
greater accuracy (within the approximation of the model) in a considerably shorter time. Also 
note that although the geometric criterion does not accurately predict the number of surface 
modes (see Fig. 5), it does exhibit the right trend, namely that surface modes generally 
become more numerous with increasing R, which supports our earlier hypothesis. 

5. Effect of filling factor 

The effect of the fiber air-filling ratio on the presence of surface modes can also be quickly 
evaluated with our criterion by simply recalculating the boundary radii for different values of 
the hole radius ρ. The result is shown in Fig. 6, where the ranges of core radii that support 
(gray) and do not support (white) surface modes are plotted against ρ. Possible values for ρ 
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are constrained between ~0.43Λ, below which the photonic crystal has no bandgap, and 
0.50Λ, above which the thickness of the membranes drops to zero. Figure 6 shows that larger 
holes (higher air-filling ratios) yield wider surface-mode-free bands. The reason is that as the 
hole size is increased, the rods get smaller, thus the ranges of core radii that intersect them 
narrow and the bands of surface-mode-free radii widen. 

 

 

Fig. 6. Evolution of the surface-mode-free bands with increasing hole radius predicted by the 
geometric criterion. 

6. Discussions 

Other interesting observations can be made from this study. First, in experimental PBFs the 
core is typically created by removing the central seven or 19 tubes from the preform. These 
configurations correspond to core radii R of ~1.2Λ and ~2.1Λ, respectively. The geometric 
criterion confirms the predictions of exact simulations [3] that both of these configurations 
unfortunately exhibit surface modes (see Fig. 5), which explains at least in part the high 
propagation loss of these fibers. To reduce this loss, it is therefore important to design 
alternative configurations and assess their surface mode behavior, a task that can be greatly 
simplified and expedited by making use of our criterion. 

Second, the simulated curve in Fig. 5 shows that a small change in core radius is all it 
takes to move from a surface-mode-free PBF to a PBF that carries surface modes. The 
abruptness of these transitions is in keeping with the perturbation process that creates surface 
modes, and it lends credence to the rod approximation. 

Third, the trends in Table 1 discussed earlier can be explained with simple physical 
arguments. As the core radius increases, adjacent concentric layers of rods get closer to each 
other (see Fig. 4), and it becomes increasingly more difficult to find a circular radius that 
avoids all rods. Also, a given radius tends to intersect more rods, and thus the number of 
surface modes generally increases. A manifestation of this effect can readily be seen in the 5th 
and 6th layers of rods in Fig. 4: they overlap radially and thus merge into a single, wider zone 
of surface modes. The same is true of the 7th, 8th, and 9th layers. Conversely, as R increases 
the surface-mode-free bands become narrower and narrower, as predicted by Table 1. In fact, 
we expect intuitively that cores with a radius larger than some critical value Rc will all support 
surface modes, and thus that there should be a finite number of surface-mode-free bands. This 
is all consistent with the results of Table 1: for the structure under study and ρ = 0.47Λ, there 
is a limited number of bands (14), and there is a critical radius (Rc ≈ 8.86Λ) above which 
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surface modes form a continuum. The last four bands are in fact so narrow (∆R of a few 
percent of Λ) that they are probably unusable in practice. A corollary of this observation is 
that multimode PBFs with this particular geometry and R > 5.4 will likely be plagued with 
surface modes. 

It is important to remember that the criterion derived in this paper is specifically 
developed to describe the effects of photonic-crystal truncation on the creation of surface 
modes. In the geometry shown in Fig. 2, the only perturbations to the periodic lattice are the 
presence of the air core and the resulting photonic-crystal truncation. In this situation the 
geometrical criterion completely predicts the existence or non-existence of the fiber modes. In 
all manufactured air-core PBFs reported to date, in addition to this truncation, severe 
distortions of the crystal periodicity and irregular hole dimensions occur in the vicinity of the 
core. These perturbations can lead to additional surface modes that are not described by the 
geometric criterion presented here. As stressed earlier, many kinds of perturbations will 
induce surface modes in a PBF; improper termination of the core surface is only one of them, 
and that is what the geometrical criterion developed here captures. 

A final observation is that surface modes can always be avoided in principle, for any core 
size, by selecting a non-circular core shape that does not intersect any rods. 

7. Conclusions 

We have provided physical arguments for a simple geometric criterion to quickly evaluate 
whether an air-core PBF exhibits surface modes. Comparison to numerical simulations 
demonstrate that when applied to fibers with a triangular-pattern cladding and a circular core, 
this criterion accurately predicts the presence of a finite number of core radius bands that 
support no surface modes. For large enough circular cores, i.e., for radii above the largest of 
these bands, the fiber supports surface modes for any core radius. This versatile criterion 
provides an expedient new tool to analyze the existence of surface modes in photonic-crystal 
fibers with an arbitrary crystal structure and core profile. 
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