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Principal modes in multimode waveguides
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We generalize the concept of principal states of polarization and prove the existence of principal modes in
multimode waveguides. Principal modes do not suffer from modal dispersion to first order of frequency
variation and form orthogonal bases at both the input and the output ends of the waveguide. We show
that principal modes are generally different from eigenmodes, even in uniform waveguides, unlike the
special case of a single-mode fiber with uniform birefringence. The difference is most pronounced when
different eigenmodes possess similar group velocities and when their field patterns vary as a function of fre-
quency. This work may provide a new basis for analysis and control of dispersion in multimode fiber systems.
© 2005 Optical Society of America
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Multimode fibers (MMFs) are widely used in
local-area networks because of the ease of optical
coupling and alignment and the low cost of related
components.1 The bandwidth–distance product of
MMF links, however, is strongly limited by modal dis-
persion.2 Hence it is essential to provide a rigorous
and systematic analysis of modal dispersion in MMF.

Here we show that the concept of principal states of
polarization (PSPs), originally developed to describe
polarization-mode dispersion in single-mode fibers,3,4

can be generalized to modal dispersion in MMFs.
We prove the existence of principal modes in a
MMF. These modes, like eigenmodes, are orthogonal
at both input and output ends of the fiber but, unlike
eigenmodes, do not suffer from modal dispersion to
first order. Principal modes form a natural basis for
a theoretical description of modal dispersion. Also,
selective excitation or detection of principal modes
may be an effective means to control modal dispersion
or achieve spatial multiplexing in MMF systems.

We consider a narrowband optical signal, centered
at a frequency v, propagating in a fiber that sup-
ports N propagating modes. This f iber may be uni-
form along the axis of propagation (an ideal fiber) or
may be nonuniform (a nonideal fiber). Suppose that a
normalized electric f ield pattern ja� with an amplitude
ea at the fiber input propagates to a f ield pattern jb�
with an amplitude eb at the output. We represent this
propagation by

ebjb� � Teaja� , (1)

where T �v� is an N 3 N matrix representing propa-
gation (both loss and phase change), as well as mode
coupling. If we neglect mode-dependent loss, we can
represent T �v� as

T �v� � exp�f�v��U�v� , (2)

where f�v� is a scalar representing overall loss and
phase change and U �v� is an N 3 N unitary matrix
representing lossless propagation and mode coupling.

The eigenmodes of the fiber are defined to be eigen-
modes of the operator U ; i.e., they are field patterns
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that, launched at the input, propagate to identical f ield
patterns at the output, except for an overall phase
shift. By analogy with the PSPs,3 the principal modes
are defined so that given an input principal mode ja�,
the corresponding output principal mode jb� is inde-
pendent of frequency v to f irst order. Consequently, a
pulse-modulated optical signal transmitted with modal
shape ja� retains its integrity and is received in modal
shape jb�. Motivated by such considerations, we take
the derivative with respect to frequency v on both sides
of Eq. (1), with the assumptions that ea � 1 and that
≠ja��≠v � 0, to obtain
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Requiring that ≠jb��≠v � 0, and noting also from
Eq. (1) that jb� � efU ja��eb, we have

F �v� ja� � tja� , (4)

where

F �v� � 2iU1�v�
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defines the group-delay operator, and
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represents group delay.
The group delay operator F is Hermitian. This is

evident by noting that, since U is unitary, U1U � 1,
and therefore 0 � �≠U1�≠v�U 1 U1�≠U�≠v�, which
provesF1 � F . Consequently all eigenvalues of the F
operator are real, which is required for the group delay
of a physical system. The set of eigenmodes �ja�	 of the
F operator, which is a set of the input principal modes,
forms an orthogonal basis. The set of output principal
modes �jb�	 � �U ja�	 also forms an orthogonal basis.
Thus the input and output principal modes can be used
to expand any input or output electromagnetic f ield
pattern and provide a convenient basis for describing
dispersion properties in multimode systems.
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The principal mode model, as represented by Eq. (4),
is applicable to general cases of nonideal MMFs that
are not uniform along the propagation direction, and
in which strong modal mixing and coupling occurs.
Building on the analogy between the PSPs and the
principal modes defined here, one might be able to sys-
tematically generalize the statistical theory of polar-
ization mode dispersion5 to the more complex cases of
MMFs. The principal mode model also suggests new
approaches for modal dispersion control6 and mode-
division multiplexing in MMF systems.7

Despite the formal similarity between the PSPs
and the principal modes, in practice, there are impor-
tant differences between the two. One can model a
single-mode fiber with polarization-mode dispersion
by cascading multiple f iber segments, each segment
having a uniform but differently oriented birefrin-
gence that is frequency independent. Within each
uniform segment, the principal modes (the eigen-
modes of the F operator describing the segment) are
identical to the eigenmodes (the eigenmodes of the
operator U describing the segment). In the general
case, however, operators F and U do not commute
��F , U � fi 0�, and the principal modes differ from the
eigenmodes, even for a fiber that is uniform along the
propagation direction. It it thus of interest to relate
the principal modes to the eigenmodes in the case of
a general uniform system.

At a given frequency v, an eigenmode jn� and its cor-
responding wave vector bn can be obtained by solving
an eigenvalue problem8,9:

Q�v� jn� � bnjn� , (6)

where the Q matrix is calculated directly from the
Maxwell equations. The propagation matrix U for
a f iber that is uniform along the propagation direc-
tion is related to the Q matrix by U � exp�iQ�v�z�,
where z is the length of the f iber. To determine
the principal modes of such a uniform fiber in
terms of the eigenmodes �jn�	, we first note that
�dU�dv� jn� � d�dv�U jn�� 2 U �djn��dv� and therefore
from Eq. (5), in the basis of the eigenmodes �jn�	, the
F operator can be represented as
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µ


mj
d

dv
jn� 2 
mjU1 d

dv
U jn�

∂

� z
dbn

dv
dmn 1 i�1 2 exp�i�bn 2 bm�z	

3 
mj
d

dv
jn� . (7)

The first term in Eq. (7) is a diagonal element of the
F matrix and is the usual group delay for individual
eigenmodes. The second term represents an off-
diagonal element and arises from the variations of the
eigenmode field patterns as a function of frequency.
To evaluate 
mjd�dv jn�, we take the derivative of
Eq. (6) on both sides with respect to v to obtain
d
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Inserting Eq. (8) into Eq. (7), and noticing that the sec-
ond term in Eq. (7) is nonzero only for off-diagonal el-
ements, we have


mjF jn� � z
dbn

dv
dmn 1 i

Ω
1 2 exp�i�bn 2 bm�z�

bn 2 bm

æ

3 
mj
dQ

dv
jn��1 2 dmn�

� z
dbn

dv
dmn 1 z sinc

∑
�bn 2 bm�z�

2

∏

3 exp
∑
i

�bn 2 bm�z
2

∏

mj

dQ

dv
jn��1 2 dmn� , (9)

where sinc�x� � sin�x��x. The off-diagonal terms
become important when the differences between the
group velocities of eigenmodes are sufficiently small
(e.g., this may occur in graded-index fibers). In such
cases there will be significant differences between
the eigenmodes and the principal modes even for a
uniform fiber. If the group-velocity differences are
large, on the other hand, the off-diagonal terms can
be safely ignored, and the principal modes can be well
approximated by the eigenmodes.

As a simple example of a uniform multimode system
where the off-diagonal terms in Eq. (9) dominate,
we consider the coupling of two different single-mode
waveguides in the vicinity of the phase-matching
frequency v0, as shown in the inset of Fig. 1. The
waveguides have group velocities n1 and n2. For such
a system, the Q matrix can be represented as8

Fig. 1. Schematic of the dispersion relations for a
multimode waveguide system in the vicinity of the
phase-matching frequency. The system, shown in the
inset consists of two single-mode waveguides coupled
together. The dashed lines represent the dispersion
relations of the individual waveguides. The solid curves
represent the dispersion relations of the two eigenmodes
of the coupled system. v0 is the frequency at which
phase-matched coupling between the two waveguides
occurs.
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Fig. 2. Properties of the two principal modes, represented
as solid and dashed curves, as a function of propagation
distance z, for the system shown in Fig. 1. k is the
coupling constant between the waveguides. (a) Nor-
malized group delay. The vertical axis corresponds to
�t�2k� �1�n1 2 1�n2�, where t is the group delay and n1 and
n2 are the group velocities of the individual waveguides.
(b) Fraction of the total optical power that is localized
in waveguide 1 at the input. Notice that the principal
modes vary as a function of propagation distance, unlike
eigenmodes in this uniform system.
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where k is the coupling constant. The parameters

b0 �
1
2

µ
v 2 v0

n1
1

v 2 v0

n2

∂
,

d �
1
2

µ
v 2 v0

n1
2

v 2 v0

n2

∂

represent the average of and difference between the
wave vectors of the two waveguides. The eigenmodes
of the coupled system have wave vectors b1,2 � b0 6p

d2 1 k2, which are shown as solid curves in Fig. 1.
At the phase-matching frequency v � v0, d � 0, the
eigenmodes become

j1� �
1
p
2

µ
1
1

∂
, j2� �

1
p
2

µ
1

21

∂
. (11)

The eigenmodes are independent of propagation
distance z and have wave vectors b1, 2 � b0 6 k.
The group velocities of the eigenmodes are identical.
To determine the principal modes of this system,
noting that
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and inserting Eqs. (11) and (12) into Eq. (9), we have
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Diagonalizing F , we find that the principal modes have
group delays (after subtracting the average) given by
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At the input, the principal modes are represented by
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Plots of the group delays for the two principal modes
(after subtracting the average) and the fractional pow-
ers of the two principal modes in the first waveguide
are shown in Fig. 2. It is evident that in this sys-
tem the principal modes are dependent on the propa-
gation distance and are thus markedly different from
the eigenmodes of this uniform system.
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