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Abstract

We review some of the recent advances in the theory of photonic crystals, drawing examples from our own work in magneto-optical

and dynamic photonic crystals. The combination of theory and simulations shows that these crystal structures exhibit rich optical physics

effects, and can provide new ways to accomplish sophisticated optical information processing tasks.
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1. Introduction

There has been great interest in designing wavelength-
scale or even deep sub-wavelength scale structures in order
to enable new functionalities for optical information
processing [1,2]. In this paper, we review some of our
own recent works along this direction. Examples given here
include analysis of magneto-optical [3–5] as well as
dynamic photonic crystals [6–11]. These structures are
designed towards accomplishing tasks such as signal
isolation and buffering, which are critically important for
creating large-scale on-chip optical circuits.
2. Magneto-optical photonic crystals

One of the most fundamental challenges to the creation
of on-chip, large-scale integrated optics has been to provide
signal isolation and to suppress parasitic reflections
between devices. In this context, there is a very strong
interest in the miniaturization of nonreciprocal optical
devices and their on-chip integration [12–14]. Due to the
weakness of magneto-optical effects, conventional devices
require a long propagation distance and occupy a large
footprint. Thus, it should be very fruitful to explore the
enhancement of magneto-optical effects in photonic
e front matter r 2007 Published by Elsevier B.V.
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crystals [15,16], for the purpose of creating ultra-compact
devices with enhanced functionalities.
We start by considering the modal properties of micro-

cavities incorporating magneto-optical materials. At opti-
cal wavelengths, the property of a magneto-optical
material is typically characterized by a gyrotropic dielectric
tensor �

2
[17]:

D ¼ �
2

E ¼ �0E þ j�aM̂ � E � ð�0 þ �0
2

ÞE, (1)

where e0 is the dielectric constant in the absence of
magnetization, ea measures the strength of the magneto-
optical effects, and M̂ is the unit vector indicating the
direction of magnetization. (Below, for concreteness, we
assume a magnetization along the z direction.) The
strength of magneto-optical effects is measured by the
Voigt parameter QM ¼ �a=�0. For most transparent mate-
rials, the Voigt parameter is typically less than 10�3 [17].
To theoretically describe modes in a magneto-optical

photonic crystal system, we expand to first order in ea the
master equations for photonic crystals [18] that describes
the magnetic field H in the steady state at an angular
frequency o, to obtain

Y Hj i ¼ r �
1

�0
r � Hj i � r �

�0
2

�20
r � Hj i ¼

o
c

� �2
Hj i.

(2)
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In Eq. (2), Y0 � r� ð1=�0Þr� describes a photonic crystal
in the absence of magneto-optical effects. The effects of
magneto-optics can now be treated in terms of the coupling
of eigen-modes of Y0 as induced by the perturbation
V � �r� ð �0

2

=�20Þr�. For two normalized eigen-modes
H1;2

�� �
for Y0 at eigen-frequencies o1,2, the coupling

constant between them as induced by V can be calculated
as

V12 � H1h jV H2j i ¼ �

Z
H�1 � r �

�0
2

�20
r �H2

¼ o1o2

Z
j�aM̂ � ðE

�
1 � E2Þ. ð3Þ

As a concrete example, we consider a two-dimensional
crystal shown in Fig. 1 [3]. The structure consists of a
triangular lattice of air holes in bismuth iron garnet. The
air holes have a radius of 0.35a, where a is the lattice
constant. The corresponding nonmagnetic photonic crystal
exhibits a large band gap for TE modes that have electric
field polarized in the plane. Filling one of the air holes
creates a pair of degenerate dipole modes in the photonic
band gap. These two modes can be categorized as an even
mode ej i (Fig. 1(a)) and an odd mode oj i (Fig. 1(b)) with
respect to a mirror plane of the crystal.

In the presence of magneto-optical materials, the two
modes ej i and oj i couple with each other. The system is
now described by a 2� 2 matrix

Y ¼
o2

e V eo

�V eo o2
o

 !
. (4)

Since the two modes are standing waves that possess
real-valued electric fields, the coupling constant Veo as
described by Eq. (3) is purely imaginary. For this system,
which has C6v symmetry, oe ¼ oo � o0. With the presence
of magneto-optical materials in the cavity, the eigen-modes
of the systems, denoted as |+S and |�S, now take the
form of a rotating wave:

�j i ¼ ej i � i oj i, (5)
Fig. 1. (a) and (b): A pair of doubly degenerate defect states in a two-

dimensional photonic crystal. The crystal consists of an array of air holes

introduced into a high dielectric material. Red and blue represent large

positive or negative magnetic fields.
with the frequencies located at

o� ¼ o0 �
V eoj j

2o0
. (6)

The above modal analysis reveals some of the most
interesting properties about magneto-optical photonic
crystals in general:
(1)
 Time-reversal symmetry breaking. Since the two
counter-rotating modes |7S are related by a time-
reversal operation, the frequency splitting between
them clearly indicates the breaking of time-reversal
symmetry and reciprocity.
(2)
 Fundamental suppression of the effects of disorder by
time-reversal symmetry breaking. Even in the case
where oe deviates from oo, for example, due to
fabrication-related disorder that breaks the three-fold
rotational symmetry, as long as the magneto-optical
coupling is sufficiently strong, i.e. V eoj j � oe � ooj joe,
ej i � i oj i remain the eigen-states of the system. Thus, in
the limit of strong magneto-optical coupling, the
rotating waveform of the eigen-modes is independent
of the slight structural disorders that would almost
always occur in practical devices.
Exploiting the unique modal properties of rotating states
inside a magneto-optical photonic crystal cavity, we design
a four-port circulator as shown in Fig. 2. The system
consists of a bus and a drop waveguide, both evanescently
coupled to the resonator. Magneto-optical materials are
introduced to create circularly rotating modes in opposite
directions at different frequencies in the cavity. When the
magneto-optically induced frequency splitting between the
two rotating modes exceeds the cavity linewidth that results
from the cavity-waveguide coupling, the device functions
as an optical circulator that provides optical signal
isolation. Light incident from the waveguide in the lower
half of the structure, with a frequency coincide with the
counter-clockwise resonance in the cavity, is completely
transferred to other waveguide (Fig. 2(a)). In the time-
reversed scenario, the incident light through the upper
waveguide remains un-transferred since the clockwise
rotating resonance in the cavity has a different frequency
(Fig. 2(b)). The device footprint is on the single-micron
scale and the device is readily integrated with other planar
components.
The nonreciprocal transport property is fundamentally

protected against the effects of disorders. To highlight this,
we have designed the circulator structure, such that the
device functions as an ideal add-drop filter, when the off-
diagonal part of the matrix elements in the dielectric tensor
is set to zero. In such a reciprocal add/drop filter, the ideal
100% transfer efficiency relies upon creating rotating states
from a linear superposition of two degenerate standing
wave modes having the same frequency and linewidth [19].
Preserving the degeneracy condition of the standing wave
modes translates to stringent tolerance requirements. This
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Fig. 2. Operation of a photonic crystal circulator, constructed by coupling the magneto-optical cavity as shown in Fig. 1 to two waveguides. Shown here

are steady state field distributions when the incident light is in resonance with the counter-clockwise rotating state. Red and blue represent large positive or

negative fields. The arrows indicate the direction of the incident light. The field between two dashed lines is plotted with a different saturation such that

fields in both waveguides and cavities can be seen.
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Fig. 3. (a) A photonic crystal circulator structure with two waveguides

side coupled to a cavity at the center. The green region at the center of the

cavity consists of magneto-optical material. In the absence of the disorder,

in the form of a small bump at the side the cavity, both the circulator

structure, and its fictitious reciprocal counter part, created by removing

the off-diagonal part of the dielectric tensor, give ideal transfer efficiency

between the waveguides at resonance. The black arrows represent the

direction of transfer. (b) Comparison of the transfer property of the

circulator and its reciprocal counter part, in the presence of the disorder.
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is demonstrated in Fig. 3, where as an example of disorder
we introduce small bump on the side of the cavity. For the
reciprocal structure, such a disorder reduces the transfer
efficiency between the waveguides from 100% to 25%, and
causes strong reflection in the incoming waveguide. In the
nonreciprocal structure, on the other hand, the peak
transmission efficiency remains very close to 100% in spite
of the disorder [5]. We believe that exploring the interplay
between time-reversal symmetry breaking and disorder to
be a particularly exciting area, which can potentially lead
to regimes of photon propagation that are completely
absent in reciprocal structures.

3. Dynamic photonic crystals and stopping light

The idea of dynamic photonic crystal is to modulate the
property of a crystal while a photon pulse is inside the
crystal. In doing so, the spectrum of the pulse can be
molded almost arbitrarily [6,20], leading to highly non-
trivial information processing capabilities on chip.

3.1. Control the spectrum of light with dynamics

As a simple example illustrating the general aspects of
dynamics, consider a linearly polarized electromagnetic
wave in one dimension, the wave equation for the electric
field is

q2E
qx2
� �0 þ �ðtÞð Þm0

q2E

qt2
¼ 0. (7)

Here, e(t) represents the modulation and e0 is the back-
ground dielectric constant. We assume that both e0 and e(t)
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Fig. 4. The general conditions for stopping a light pulse. (a) The large-

bandwidth state that is used to accommodate an incident light pulse. (b)

The narrow-bandwidth state that is used to hold the light pulse. An

adiabatic transition between these two states stops a light pulse inside the

system.
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are independent of position. Hence different wavevector
components do not mix in the modulation process.
Consider a specific wavevector component at k0, with
electric field described by EðtÞ ¼ f ðtÞeiðo0t�k0xÞ, where
o0 ¼ k0=ð

ffiffiffiffiffiffiffiffiffi
m0�0
p

Þ
� �

. By using a slowly varying envelope
approximation, and by further assuming that the index
modulations are weak, i.e. e(t) ¼ e0, Eq. (7) can be
simplified as

i
qf

qt
¼

�ðtÞo0

2 �ðtÞ þ �0½ 	
f 


�ðtÞo0

2�0
f , (8)

which has an exact analytical solution

f ðtÞ ¼ f ðt0Þ exp �io0

Z t

t0

�ðt0Þ

2�0
dt0

	 

, (9)

where t0 is the starting time of the modulation. Thus the
‘‘instantaneous frequency’’ of the electric field for this
wavevector component is

oðtÞ ¼ o0 1�
�ðtÞ

2�0

� �
. (10)

We note that frequency change is proportional to the
magnitude of the refractive index shift alone. Thus, the
process defined here differs in a fundamental way from
traditional nonlinear optical processes, in that,
regardless of how slow the modulation is, as long as light
is in the system, the frequency shift can always be
accomplished.

3.2. Stopping light

Here we will demonstrate important consequence of the
dynamic process discussed in the previous section, in its
application for stopping a light pulse. By stopping light, we
aim to reduce the group velocity of a light pulse to zero,
while completely preserving all the coherent information
encoded in the pulse. Such ability holds the key to the
ultimate control of light, and has profound implications for
optical communications and quantum information proces-
sing [21,22].

There has been extensive work attempting to control the
speed of light using optical resonances in static photonic
crystal structures [23–27]. Nevertheless, such structures are
fundamentally limited by the delay-bandwidth product
constraint—the group delay from an optical resonance is
inversely proportional to the bandwidth within which the
delay occurs [28,29]. Therefore, for a given optical pulse
with a certain temporal duration and corresponding
frequency bandwidth, the minimum group velocity achiev-
able is limited.

To stop light, it is necessary to use a dynamic system.
The general condition for stopping light [6] is illustrated
in Fig. 4. Imagine a dynamic photonic crystal system, with
an initial bandstructure possessing a sufficiently wide
bandwidth. Such a state is used to accommodate an
incident pulse, for which each frequency component
occupies a unique wavevector component. After the pulse
has entered the system, one can then stop the pulse by
flattening the dispersion relation of the crystal adiabati-
cally, while preserving the translational invariance.
In doing so, the spectrum of the pulse is compressed,
and its group velocity is reduced. In the meantime, since
the translational symmetry is still preserved, the wavevec-
tor components of the pulse remain unchanged, and thus
one actually preserves the dimensionality of the phase
space. This is crucial in preserving all the coherent
information encoded in the original pulse during the
dynamic process.
To create a dynamic photonic crystal, one needs to

adjust its properties as a function of time. However, the
amount of refractive index tuning that can be accomplished
with standard optoelectronics technology is generally quite
small, with a fractional change typically on the order of
ððdnÞ=nÞ�10�4. Therefore, we employ Fano interference
schemes in which a small refractive index modulation leads
to a very large change of the bandwidth of the system. The
essence of Fano interference scheme is the presence of
multi-path interference, where at least one of the paths
includes a resonant tunneling process [30]. Such inter-
ference can be used to greatly enhance the sensitivity of
resonant devices to small refractive index modulation
[31,32].
Here we consider a waveguide side coupled to two

cavities [33]. The cavities have resonant frequencies
oA;B � o0 � ðdo=2Þ. (This system represents an all-
optical analogue of atomic systems exhibiting electromag-
netically induced transparency (EIT) [34,35].) For
simplicity, we assume that the cavities couple to the
waveguide with equal rate of g. The transmission and
reflection coefficients (tA,B and rA,B, respectively) in
the waveguide with a single-side cavity can be derived
[36] as

tA;B ¼
jðo� oA;BÞ

jðo� oA;BÞ þ g
, (11)

rA;B ¼
g

jðo� oA;BÞ þ g
. (12)
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When two cavities are cascaded together, the transmis-
sion spectrum becomes [37]

T ¼
tAtBj j

1� rArBj j

� �2
1

1þ 4
ffiffiffiffiffiffiffiffiffiffiffiffi
rArBj j

p� �
= 1� rArBj jð Þ

� �2
sin2 y

.

(13)

Here, y is one-half the round trip phase accumulated in the
waveguides: y ¼ 1

2ArgðrArBe
�2jbðoÞL1 Þ, where b(o) is the

waveguide dispersion relationship and L1 is the spacing
between the cavities.
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Fig. 5. (a) Transmissions spectrum through a waveguide side coupled to a

single-mode cavity. (b) and (c) Transmission spectra through a waveguide

side coupled to two cavities. The spectra are calculated using

Eqs. (11)–(13). The parameters for the cavities are: o0 ¼ ð2pcÞ=L1 and

g ¼ 0:05o0. The waveguide satisfies a dispersion relation b(o) ¼ o/c,
where c is the speed of light in the waveguide, and L1 is the distance

between the cavities. In (b), oa;b ¼ o0 � 1:5g. In (c), oa;b ¼ o0 � 0:2g.
The transmission spectra of one- and two-cavity
structures, calculated using Eqs. (11)–(13), are plotted in
Fig. 5. In the case of one-cavity structure, the transmission
features a dip in the vicinity of the resonant frequency, with
the width of the dip controlled by the strength of
waveguide-cavity coupling (Fig. 5(a)). With two cavities,
when the condition

2bðo0ÞL ¼ 2np (14)

is satisfied, the transmission spectrum features a peak
centered at o0. The width of the peak is highly sensitive to
the frequency spacing between the resonances do. When
the cavities are lossless, the center peak can be tuned from a
wide peak when do is large (Fig. 5(b)), to a peak that is
arbitrarily narrow with do-0 (Fig. 5(c)). The two-cavity
structure, appropriately designed, therefore behaves as a
tunable bandwidth filter, as well as a tunable delay element,
in which the bandwidth can be in principle adjusted by any
order of magnitude with very small refractive index
modulation.
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Fig. 6. (a) Schematic of a coupled-cavity structure used to stop light,

(b) and (c), band structures for the system shown in (a), as the frequency

separation between the cavities are varied, using the same waveguide and

cavity parameters as in Figs. 5(b) and (c), with the additional parameter

L2 ¼ 0:7L1. The thicker lines highlight the middle band that will be used

to stop a light pulse.
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Fig. 7. Light-stopping process in a photonic crystal simulated using finite-

difference time-domain methods. The crystal consists of a waveguide side

coupled to 100 cavity pairs. Fragments of the photonic crystal are shown

in part (b). The three fragments correspond to unit cells 12–13, 55–56,

97–98. The dots indicate the positions of the dielectric rods. The black dots

represent the cavities. (a) The dashed green and black lines represent the

variation of oA and oB as a function of time, respectively. The blue solid

line is the intensity of the incident pulse as recorded at the beginning of the

waveguide. The red dashed and solid lines represent the intensity at the

end of the waveguide, in the absence and the presence of modulation,

respectively. tpass is the passage time of the pulse in the absence of

modulation. (b) Snapshots of the electric field distributions in the photonic

crystal at the indicated times. Red and blue represent large positive and

negative electric fields, respectively. The same color scale is used for all the

panels.
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By cascading the tunable bandwidth filter structure as
described above, one can construct a structure that is
capable of stopping light (Fig. 6(a)). In such a light-
stopping structure, the photonic band diagram becomes
highly sensitive to small refractive index modulation.

The photonic bands for the structure in Fig. 6(a) can be
calculated using a transmission matrix method. The
transmission matrix for a waveguide side coupled to a
single resonator with resonance frequency oi can be
calculated as [36]:

Tci
¼

1þ jg=ðo� oiÞ jg=ðo� oiÞ

�jg=ðo� oiÞ 1� jg=ðo� oiÞ

 !
. (15)

The transmission matrix through an entire unit cell in
Fig. 6 can then be determined as

T ¼ Tc1T l1T c2T l2 , (16)

where

T li ¼
e�jbLi 0

0 ejbLi

 !

is the transmission matrix for a waveguide section of length
Li. Here, b is the wavevector of the waveguide at a given
frequency o. From this, we obtain the band diagram of the
system as [8]

1

2
TrðTÞ ¼ cosðkLÞ ¼ f ðoÞ � cosðbLÞ

þ
Cþ

ðo� oAÞ
þ

C�

ðo� oBÞ
, ð17Þ

where

C� ¼ g sinðbLÞ � g2
2 sinðbL1Þ sinðbL2Þ

ðoA � oBÞ
.

The band diagrams thus calculated are shown in Fig. 6,
in which the waveguide and cavity parameters are the same
as those used to generate the transmission spectrum in
Fig. 5. In the vicinity of the resonances, the system
supports three photonic bands, with two gaps occurring
around oA and oB. The width of the middle band depends
strongly on the resonant frequencies oA and oB. By
modulating the frequency spacing between the cavities, one
goes from a system with a large bandwidth (Fig. 6(b)), to a
system with a very narrow bandwidth (Fig. 6(c)). In fact, it
can be analytically proved that the system can support a
band that is completely flat in the entire first Brillouin zone
[8], allowing a light pulse to be frozen inside the structure
with the group velocity reduced to zero.

The system presented above can be implemented in a
photonic crystal of a square lattice of dielectric rods
(n ¼ 3.5) with a radius of 0.2a, (a is the lattice constant)
embedded in air (n ¼ 1) [8] (Fig. 7). The photonic crystal
possesses a band gap for TM modes with electric field
parallel to the rod axis. Removing one row of rods along
the pulse propagation direction generates a single-mode
waveguide. Decreasing the radius of a rod to 0:1a and the
dielectric constant to n ¼ 2.24 provides a single-mode
cavity. The nearest-neighbor cavities are separated by a
distance of l1 ¼ 2a along the propagation direction, and the
unit cell periodicity is l ¼ 8a. The waveguide-cavity
coupling occurs through barrier of one rod. The resonant
frequencies of the cavities are tuned by refractive index
modulation of the cavity rods.
We simulate the entire process of stopping light for

N ¼ 100 pairs of cavities with finite-difference-time-do-
main (FDTD) method, which solves Maxwell’s equations
without approximation. The dynamic process for stopping
light is shown in Fig. 7. We generate a Gaussian pulse in
the waveguide (the process is independent of the pulse
shape). The excitation reaches its peak at t ¼ 0.8tpass,
where tpass is the traversal time of the pulse through the
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static structure. During the pulse generation, the cavities
have a large frequency separation. The field is concentrated
in both the waveguide and the cavities (Fig. 7(b),
t ¼ 1.0tpass), and the pulse propagates at a relatively high
speed of vg ¼ 0.082c. After the pulse is generated, we
gradually reduce the frequency separation D to zero.
During this process, the speed of light is drastically reduced
to zero. As the bandwidth of the pulse is reduced, the field
concentrates in the cavities (Fig. 7(b), t ¼ 5.2tpass). When
zero group velocity is reached, the photon pulse can be
kept in the system as a stationary waveform for any time
duration. In this simulation, we store the pulse for a time
delay of 5.0tpass, and then release the pulse by repeating the
same index modulation in reverse (Fig. 7(b), t ¼ 6.3tpass).
The pulse intensity as a function of time at the right end of
the waveguide is plotted in Fig. 7(a), and shows the same
temporal shape as both the pulse that propagates through
the un-modulated system, and the initial pulse recorded at
the left end of the waveguide. Thus, the pulse is perfectly
recovered without distortion after the intended delay.

In the all-optical light-stopping scheme presented above,
for a small refractive index shift of dn/n ¼ 10�4 achievable
in practical optoelectronic devices, and assuming a carrier
frequency of approximately 200THz, as used in optical
communications, the achievable bandwidths are on the
order of 20GHz, which is comparable to the bandwidth of
a single-wavelength channel in high-speed optical systems.
The storage times are limited only by the cavity lifetimes,
which may eventually approach millisecond time scales as
limited by residual loss in transparent materials. With such
performance, the capabilities for on-chip stopping light
should have important implications for optical commu-
nication systems. As an important step towards its eventual
experimental demonstration, the required EIT-like two-
cavity interference effects have recently been observed in a
micro-ring cavity system on a silicon chip [37]. The general
concept of introducing dynamics into photonic crystal
systems could also be very promising for creating new
optical signal processing functionalities far beyond the
capabilities of static systems.

4. Concluding remarks

In this paper we review some of the recent developments
in the theory of photonic crystals, drawing examples from
our own recent work on magneto-optical as well as dynamic
crystal structures. These developments highlight two general
trends in the theoretical work in this field. On one hand,
using computational electromagnetics techniques such as
the FDTD methods [38] in combination with modern large-
scale computing architectures, almost any complex optical
processes in photonic crystal can now be simulated through
exact numerical solutions of Maxwell’s equations. On the
other hand, with the band structures and modal properties
of passive dielectric photonic structures largely mapped out,
one can now create analytical models with only a few
dynamic variables based upon these modal properties, in
order to describe the essential physics of optical processes in
photonic crystals. These developments in both theory and
simulations, in the context of very rapid progress in
experimental fabrications of photonic crystals, are leading
to ways of controlling light that are truly unprecedented.

Acknowledgments

The work is supported in part by NSF and DARPA. The
author acknowledges the important contributions of
members of Fan’s group at Stanford, especially M.F.
Yanik, Z. Wang, M.L. Povinelli, and S. Sandhu, to the
works presented here.

References

[1] E. Yablonovitch, Phys. Rev. Lett. 58 (1987) 2059.

[2] S. John, Phys. Rev. Lett. 58 (1987) 2486.

[3] Z. Wang, S. Fan, Appl. Phys. B 81 (2005) 369.

[4] Z. Wang, S. Fan, Opt. Lett. 30 (2005) 1989.

[5] Z. Wang, S. Fan, Photon. Nanostruct. Fundam. Appl. 4 (2006) 132.

[6] M.F. Yanik, S. Fan, Phys. Rev. Lett. 92 (2004) (Art. No. 083901).

[7] M.F. Yanik, S. Fan, Phys. Rev. Lett. 93 (2004) (Art. No. 173903).

[8] M.F. Yanik, W. Suh, Z. Wang, S. Fan, Phys. Rev. Lett. 93 (2004)

(Art. No. 233903).

[9] M.F. Yanik, S. Fan, Phys. Rev. A 71 (2005) (Art. No. 013803).

[10] M.F. Yanik, S. Fan, Studies Appl. Math. 115 (2005) 233.

[11] S. Sandhu, M.L. Povinelli, M.F. Yanik, S. Fan, Opt. Lett. 31 (2006)

1985.

[12] M. Levy, IEEE J. Sel. Top. Quantum Electron. 8 (2002) 1300.

[13] R.L. Espinola, T. Izuhara, M. Tsai, R.M. Osgood, H. Dotsch, Opt.

Lett. 29 (2004) 941.

[14] H. Yokoi, Y. Shoji, E. Shin, T. Mizumoto, Appl. Opt. 43 (2004) 4745.

[15] M. Inoue, K. Arai, T. Fujii, M. Abe, J. Appl. Phys. 85 (1999) 5768.

[16] M.J. Steel, M. Levy, R.M. Osgood, IEEE Photon. Technol. Lett. 12

(2000) 1171.

[17] A.K. Zvezdin, V.A. Kotov, Modern Magnetooptics and Magne-

tooptical Materials, Institute of Physics Publishers, Bristol, 1997.

[18] J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals:

Molding the Flow of Light, Princeton University Press, Princeton,

NJ, 1995.

[19] S. Fan, P.R. Villeneuve, J.D. Joannopoulos, H.A. Haus, Phys. Rev.

Lett. 80 (1998) 960.

[20] E.J. Reed, M. Soljacic, J.D. Joannopoulos, Phys. Rev. Lett. 91 (2003)

(Art. No.133901).

[21] C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, Nature 409 (2001) 490.

[22] D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, M.D.

Lukin, Phys. Rev. Lett. 86 (2001) 783.

[23] M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi,

I. Yokoyama, Phys. Rev. Lett. 87 (2001) (Art. No. 253902).

[24] N. Stefanou, A. Modinos, Phys. Rev. B 57 (1998) 12127.

[25] A. Yariv, Y. Xu, R.K. Lee, A. Scherer, Opt. Lett. 24 (1999) 711.

[26] M. Bayindir, B. Temelkuran, E. Ozbay, Phys. Rev. Lett. 84 (2000)

2140.

[27] Y.A. Vlasov, M. O’Boyle, H.F. Harmann, S.J. McNab, Nature 438

(2005) 65.

[28] G. Lenz, B.J. Eggleton, C.K. Madsen, R.E. Slusher, IEEE J.

Quantum Electron. 37 (2001) 525.

[29] Z. Wang, S. Fan, Phys. Rev. E 68 (2003) (Art. No. 066616).

[30] U. Fano, Phys. Rev. 124 (1961) 1866.

[31] S. Fan, Appl. Phys. Lett. 80 (2002) 910.

[32] S. Fan, W. Suh, J.D. Joannopoulos, J. Opt. Soc. Am. A 20 (2003)

569.

[33] W. Suh, Z. Wang, S. Fan, IEEE J. Quantum Electron. 40 (2004)

1511.



ARTICLE IN PRESS
S. Fan / Physica B 394 (2007) 221–228228
[34] S.E. Harris, Phys. Today 50 (1997) 36.

[35] L. Maleki, A.B. Matsko, A.A. Savchenkov, V.S. Ilchenko, Opt. Lett.

29 (2004) 626.

[36] S. Fan, P.R. Villeneuve, J.D. Joannopoulos, C. Manalatou,

M.J. Khan, H.A. Haus, Phys. Rev. B 59 (1999) 15882.
[37] Q. Xu, S. Sandhu, M.L. Povinelli, J. Shakya, S. Fan, M. Lipson,

Phys. Rev. Lett. 96 (2006) (Art. No. 123901).

[38] A. Taflove, S.C. Hagness, Computational Electrodynamics: The

Finite-Difference Time-Domain Method, Artech House, Norwood,

2005.


	Manipulating light with photonic crystals
	Introduction
	Magneto-optical photonic crystals
	Dynamic photonic crystals and stopping light
	Control the spectrum of light with dynamics
	Stopping light

	Concluding remarks
	Acknowledgments
	References


