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Abstract: Based on the recently proposed concept of effective gauge
potential and magnetic field for photons, we numerically demonstrate
a photonic de Haas-van Alphen effect. We show that in a dynamically
modulated photonic resonator lattice exhibiting an effect magnetic field, the
trajectories of the light beam at a given frequency have the same shape as
the constant energy contour for the photonic band structure of the lattice in
the absence of the effective magnetic field.
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1. Introduction

The use of externally-imposed electric and magnetic fields is of crucial importance in control-
ling both the classical and quantum motions of electrons. It will be of practical and fundamen-
tal importance to explore similar mechanisms for controlling the flow of photons. While an
effective electric field for photons can be straightforwardly created with the use of spatially-
inhomogeneous dielectric or metallic structures [1–8], creating an effective magnetic field for
photons has been more elusive.

Very recently, it was pointed out [9–11] that an effective magnetic field for photons can
emerge in a dynamic system undergoing temporal modulation. In these systems the phase of
the modulations correspond to a gauge potential for photons [9,11]. And hence with a spatially
inhomogeneous distribution of modulation phases, an effective magnetic field for photons can
emerge [10]. Since the temporal modulation can break time-reversal symmetry [12], such an
effective magnetic field also breaks time-reversal symmetry, in contrast to some of the recent
related proposals to create a gauge field for photons based on a spin degree of freedom for pho-
tons where time-reversal symmetry is not broken [13–17]. Time-reversal symmetry breaking
effective gauge potential is also proposed to realize in circuit-QED based photon lattices us-
ing external magnetic flux [18]. Temporal modulation has also been used in condensed matter
systems to achieve topologically non-trivial states [19, 20].

Ref. [10] showed that a photon in the presence of a uniform effective magnetic field expe-
riences an effective Lorentz force. In this paper, we consider the interplay between the effec-
tive magnetic field and the photonic band structure. We show that for a photon in a dynamic
resonator lattice exhibiting an effective magnetic field, its motion in fact exhibits a photonic
analogue of the electronic de Hass-van Alphen effect, with the circular trajectory as seen in
the Lorentz force demonstrated in Ref. [10] being only a special example of such photonic de
Hass-van Alphen effect. The concepts proposed here may also be demonstrated in the waveg-
uide array structure, where an artificial gauge potential for photons is recently demonstrated
experimentally [17].

The paper is organized as follows. In Section II, we briefly review the method to create
effective magnetic field for photons and related numerical simulation method. In Section III, we
numerically demonstrate a photonic de Haas-van Alphen effect, where a light beam propagating
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under an effective magnetic field traces out a trajectory with a shape that corresponds to the
constant energy contour of the underlying photonic resonator lattice. In Section IV, we conclude
by discussing the experimental requirement to realize these novel effects.

2. Model system, theoretical background, and numerical methods

In this section, we discuss our model system of a dynamically modulated photonic resonator
lattice. We briefly review the mechanism to generate an effective gauge field and magnetic field
for photons in such dynamically modulated lattice [9,10]. We also provide a brief discussion of
the numerical simulation methods that we use.

2.1. Model Hamiltonian and Floquet Bandstructure

Our model system consists of a two-dimensional photonic resonator lattice as shown in Fig.
1(a). The lattice has a square unit cell and each unit cell contains two resonators A and B with
different resonant frequencies ωA and ωB (ωA > ωB), respectively. We assume only nearest-
neighbor coupling with a form of Vcos(Ωt +φ), where V is the coupling strength, Ω and φ are
the modulation frequency and phase respectively. The dynamics of the fields on this lattice is
then described by the coupled mode equation

i
d
dt
|ψ〉= H(t)|ψ〉, (1)

where |ψ〉 is the photon amplitude. The Hamiltonian H(t) of this resonator lattice is

H(t) = ωA ∑
i

a†
i ai +ωB ∑

j
b†

jb j (2)

+∑
〈i j〉

Vcos(Ωt +φi j)(a
†
i b j +b†

jai),

where a†
i (ai) and b†

j(b j) are the creation (annihilation) operators of the A and B resonators,
respectively, and φi j is the phase of the modulation between resonators at site i and j.

Because H(t +2π/Ω) = H(t), the solution of Eq. (1) can be written as |ψ(t)〉= e−iεt |χ(t)〉,
where |χ(t + 2π/Ω)〉 = |χ(t)〉, and ε (modΩ) is the quasi-energy [21, 22]. Using Eq. (1), we
see that |χ(t)〉 satisfy an eigenvalue equation:

(i∂t −H(t))|χ(t)〉=−ε|χ(t)〉, (3)

where the left-most minus sign is put in for later convenience. Eq. (3) can be solved by a Fourier
expansion,

|χ(t)〉=
∞

∑
n=−∞

|χn〉einΩt , (4)

H(t) = H0 +H1eiΩt +H−1e−iΩt . (5)

Substitute Eqs. (4) and (5) into Eq. (3), and compare the coefficient of nth Fourier component,
we obtain for all integer n

(H0 − ε +nΩ)|χn〉+H1|χn−1〉+H−1|χn+1〉= 0. (6)

We see if ε is a solution of Eq. (6), then ε +mΩ is also a solution for any integer m, so we
restrict ε to the irreducible zone between −Ω/2 and Ω/2.

When φi j ≡ const., the lattice has spatial periodicity, and thus H(t) has good quantum num-
bers (momenta) kx and ky. ε as a function of kx and ky is the Floquet band structure.
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Fig. 1. a Schematic of a photonic crystal resonator lattice with dynamically modulated
nearest-neighbor coupling. The modulation phase is zero along the x direcition, and varies
in space along the y direction as indicated in the figure. b Constant energy contours in the
first Brillouin zone of a square lattice with lattice constant a and nearest-neighbor coupling
strength V in the absence of effective magnetic field, which corresponds to the case with
φ = 0 everywhere in a.

2.2. Rotating wave approximation and effective gauge field

If the modulation is on resonance, i.e. Ω = ωA − ωB, and the modulation strength satisfies
rotating wave approximation V � Ω, One can ignore the counter rotating term in Eq. (2). As a
result

H(t) ≈ ωA ∑
i

a†
i ai +ωB ∑

j
b†

jb j (7)

+∑
〈i j〉

[
V
2

e−i(Ωt+φi j)a†
i b j +

V
2

ei(Ωt+φi j)b†
jai].

After transferring to a rotating frame, ai(b j)→Uii( j j)ci(c j) with Uii( j j) = eiωA(B)t , the Hamil-
tonian in Eq. (7) simplifies to

Hrwa = UHU−1 + i
dU
dt

U−1

= ∑
〈i j〉

V
2
(e−iφi j c†

i c j + eiφi j c†
j ci). (8)

Note in the first equality we have written in matrix form. Eq. (8) resembles the Hamiltonian of
electrons in a lattice under a gauge field, with a Peierls substitution [23]. The effective gauge
potential for photons can thus be defined as

∫ j

i

�Aeff ·d�l = φi j. (9)

If the integral of the effective gauge potential around a plaqutte in the lattice is non-zero, then
there is an effective magnetic flux through the plaquette. The magnetic field strength is

Beff =
1
a2

∮
�Aeff ·d�l, (10)
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where a is the distance between two nearest-neighbor resonators. Since the modulation phase
distribution can in principle be arbitrarily chosen, there are great flexibilities in specifying dif-
ferent effective magnetic field and gauge potential distribution, as we will exploit in this paper.

Note under rotating wave approximation and on-resonance condition, the quasi-energy ε of
H(t) (solution of Eq. (6) for the Hamiltonian of Eq. (7)) becomes the eigen-energy εrwa of Hrwa

of Eq. (8). This can be proved as follows. We write |χn〉= |χn,A〉+ |χn,B〉, where |χn,A(B)〉 is the
component in resonators A(B). Under rotating wave approximation, H(t) is given by Eq. (7),
and thus Eq. (6) becomes

(H0,A − ε +nΩ)|χn,A〉+H−1|χn+1,B〉= 0, (11)

(H0,B − ε +nΩ)|χn,B〉+H1|χn−1,A〉= 0, (12)

where H0,A(B) = ωA(B) ∑
i( j)

a†
i( j)ai( j). Replacing n in Eq. (12) with n+1 and combining these two

equations, we obtain an eigenvalue equation:(
H0,A +nΩ H−1

H1 H0,B +(n+1)Ω

)( |χn,A〉
|χn+1,B〉

)
= ε

( |χn,A〉
|χn+1,B〉

)
. (13)

Since in the matrix form H0,A + nΩ = H0,B +(n+ 1)Ω under Ω = ωA −ωB, the matrix in Eq.
(13) has the same form as the matrix form of the Hamiltonian Hrwa. It follows therefore that
ε = εrwa.

Thus, since we assume rotating wave approximation through out this paper, in order to
achieve the effective magnetic field, we will only consider the band structure of Hrwa for sim-
plicity. As an example, Fig. 1(b) shows the band structure of Eq. (8) for φi j ≡ 0, given by

εrwa(kx,ky) =V (cos(akx)+ cos(aky)). (14)

2.3. Numerical methods

We will numerically simulate the propagation of photon beams in the dynamically modulated
resonator lattices, using the time-dependent Hamiltonian of Eq. (2). We will compare the results
of such simulations with theoretical derivations based on the time-independent Hamitonian of
Eq. (8) which is simpler. We only consider the weak effective magnetic field case, i.e. a2Beff �
1. The motion of the photon state is then simulated using the coupled mode equation in the
presence of a source

i
d|ψ〉

dt
= H(t)|ψ〉+ |s〉, (15)

where H(t) is of Eq. (2) and |ψ〉 = [∑
i

vi(t)a
†
i +∑

j
v j(t)b

†
j ]|0〉 is the photon state and vi( j)(t)

gives the amplitude at site i( j). The beams are excited by a continuous wave source with a
spatial Gaussian profile of the form

|s〉= θ(t − t0)∑
x,y

e−((x−x0)
2+(y−y0)

2)/w2
ei(kx0x+ky0y)−i(ωx,y+ε0)(t−t0)a†(b†){x,y}|0〉, (16)

where w is the width of the source, {x0,y0} is the center of the source, {kx0,ky0} are the momen-
tum of the beam, ωx,y is the frequency of the resonator at coordinate {x,y}, ε0 is determined
by the energy band ε0 = ε(kx0,ky0) of the lattice without effective magnetic field, t0 is the
excitation time and θ(t) is the Heaviside step function.

We solve Eq. (15) using a second-order finite-difference time-domain method [24]. We dis-
cretize time into a sequence {tn}, and |ψ(t)〉 is acquired through iterations:

|ψ(tn+1)〉= |ψ(tn−1)〉−2iH(tn)|ψ(tn)〉δ t −2i|s(tn)〉δ t. (17)
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From the photon state |ψ〉 we define the photon beam intensity I[i( j)] = 〈ψ|a†
i ai(b

†
jb j)|ψ〉.

As is important for practical implementation, we will prove that the trajectory of photons as
characterized by the beam intensity is independent of the excitation time of the source (t0 in
Eq. (16)) in the long evolution time limit. To assure a well-defined trajectory, we require the
Gaussian source to satisfy w 	 a. We separate Eq. (16) into two parts |s〉= |sA〉+ |sB〉, where
|sA(B)〉 has non-vanishing coefficients only in resonator A(B). First of all, we numerically ob-
served that the two sources |sA〉 and |sB〉, excited at t0 = 0, generate photon states that in the
long evolution time limit are only different up to a phase, i.e. |ψA(B)〉= eiαA(B) |χ〉, and thus the
photon beam amplitude distribution IA(B) in the long evolution time limit is the same. Based on

this, sources of the form |s̃〉= eiα |sA〉+eiβ |sB〉 excited at t0 = 0 leads to a same beam trajectory,
where α and β are two arbitrary phases. Next, we consider an excitation source |s〉 (Eq. (16))
with t0 
= 0. At t = t0, the modulation phase for the bond between sites i and j has the form
φi j +Ωt0, where φi j is the phase at t = 0 as shown in Fig. 1(a). By changing the origin of the
time axis from 0 to t0, which corresponds to a transformation of t → t − t0 in both the Hamil-
tonian and the source, the modulation phase distribution at t = t0 for the Hamiltonian becomes
the same as that in Fig. 1(a), while the source is transformed to |s′〉 = eiωAt0 |sA〉+ eiωBt0 |sB〉.
As noted above, this source induces the same beam propagation for any t0 under the phase
distribution of Fig. 1(a). On the other hand, since the physics of the problem does not depend
on the detailed choice of the time origin, we have therefore proved that the beam propagation
effect shown here in this paper therefore does not depend on the detailed timing of the photon
entering the structure.

3. Photonic de Haas-van Alphen effect

In this section, we show a photonic de Haas-van Alphen effect in a lattice with uniform effective
magnetic field, which is an exact analogue of the electronic de Haas-van Alphen effect.

We first briefly review the electronic de Haas-van Alphen effect. We consider a solid as
described by an electronic band structure ε(�k), where�k is the Bloch momentum of the electrons.
For simplicity, we assume a two dimensional case where the solid and hence the wavevector
is restricted to the x− y plane. In the presence of a perpendicular external magnetic field, the
motion of the Bloch electrons is described by semiclassical equations [25]:

d�r
dt

=�vg ≡ ∇�kε, (18)

d�k
dt

=�vg ×qB�̂z (19)

where q is electron charge, and �vg denotes the group velocity. From Eq. (19), we have d�k ·
∇�kε = 0, and thus the momentum satisfies ε(kx,ky) = ε0, which means that the trajectory of the
electrons in momentum space is a constant energy contour. Integrating Eqs. (19) and (18), we
can relate the trajectories in the real and momentum spaces:

kx(t)− kx(t = 0) = qB[y(t)− y(t = 0)], (20)

ky(t)− ky(t = 0) =−qB[x(t)− x(t = 0)]. (21)

As a result, the trajectory of electrons in real space is

ε
(
qB[y(t)− y(t = 0)]+ kx(t = 0),−qB[x(t)− x(t = 0)]+ ky(t = 0)

)
= ε0. (22)

We therefore see that the trajectory in real space has the same shape as the constant energy
contour.
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Fig. 2. Beam trajectories for different initial momenta. The unit of axes is a. The ini-
tial momenta are: (a)�k1 = −0.41(π/a)�̂x, (b)�k2 = −0.48(π/a)�̂x+ 0.48(π/a)�̂y, (c)�k3 =
−0.59(π/a)�̂x+(π/a)�̂y, (d)�k4 = 0.5(π/a)�̂x+0.5(π/a)�̂y as labeled in Fig. 1(b). The width
w of the source is

√
50a. Red arrows indicate the initial propagation direction. For (d), the

beam will eventually trace out a large square grid. Here we show only part of such a grid
that has been traced out in the duration of a finite-time simulation.

Having reviewed the electronic case we now consider the corresponding photonic case. In
the configuration as shown in Fig. 1(a), photons are subject to a uniform effective magnetic
field Beff =

φ
a2 . Therefore, the equation of motion for photons in the photonic resonator lattice

with uniform effective magnetic field here is similar to that of electrons (Eq. (19) and (18)),
with qB replaced by Beff. With rotating wave approximation, we can use the band structure εrwa

of Hrwa (Eq. (8)) to represent the Floquet band structure, and thus ε(kx,ky) = V (cos(akx) +
cos(aky)). The constant energy contours are shown in Fig. 1(b). Applying Eq. (22) to this case,
the trajectory of photons in real space in the presence of an effective magnetic field is given by

ε
(
Beff[y(t)− y(t = 0)]+ kx(t = 0),−Beff[x(t)− x(t = 0)]+ ky(t = 0)

)
= ε0. (23)

Thus the photon trajectory in real space has the same shape as the constant energy contour
where the initial momentum of the photon beam locates. Moreover, unlike the electronic case,
where the de Haas-van Alphen effect only probes the electron on the Fermi surface, in the
photonic case here, one can map out the entire band structure by simply changing the photon
frequency.

We now numerically demonstrate the photonic de Haas-van Alphen effect. We choose φ =
0.05 in the configuration shown in Fig. 1(a). We study four different cases with four different
initial momenta�k(t = 0) as indicated in Fig. 1(b). The corresponding four trajectories are shown
in Fig. 2.
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Case 1: �k(t = 0) = −0.41(π/a)�̂x (�k1 in Fig. 1(b)). The initial momentum is near Γ point
at the center of the first Brillouin zone, where the constant frequency contour is a circle. The
corresponding real space trajectory in the presence of the effective magnetic field is indeed
a circle (Fig. 2(a)). This is equivalent to the demonstration of a Lorentz force for photons as
shown in Ref. [10].

Case 2:�k(t = 0) = −0.48(π/a)�̂x+ 0.48(π/a)�̂y (�k2 in Fig. 1(b)). The initial momentum is
close to the ridge connecting two neighboring X points, where the constant frequency contour
is close to a square. The corresponding real space trajectory is now square-like (Fig. 2(a)).

Case 3:�k(t = 0) =−0.59(π/a)�̂x+(π/a)�̂y (�k3 in Fig. 1(b)). The initial momentum is near an
M point, where the constant frequency contour is again a circle. The real space trajectory in the
presence of the effective magnetic field is also a circle. However, in contrast to the cases of�k1

and�k2, here the chirality of the beam trajectory is opposite. The chirality of a beam trajectory
is defined as the sign of d2�r

dt2
· ( d�r

dt ×�̂z). Since the photon trajectory is closed in these cases, the
chirality is used to describe whether the photon moves along the trajectory in a clockwise or a
counter closewise direction as viewed from the positive z-axis.

The chirality of the beam trajectory depends on the effective photonic mass as derived from
the band structure. For our choices of the initial momentum�k1 and�k3, the energy band can both

be approximated by a quadratic formula, ε(kx,ky)≈ ε0+
|�k−�k0|2

2m , where m is the effective mass.
Substitute the quadratic dispersion into Eqs. (18) and (19), we have

d2�r
dt2 =

Beff

m
d�r
dt

×�̂z. (24)

Thus the chirality of the photon beam trajectory depends on the sign of the effective mass. Since
the effective masses of the photon at�k1 and�k3 have opposite signs, the chirality of the beam
trajectory for these two cases are opposite to each other.

Case 4:�k(t = 0) = 0.5(π/a)�̂x+0.5(π/a)�̂y (�k4 in Fig. 1(b)). The initial momentum is exactly
on the straight line connecting two neighboring X points. The real space trajectory in this case
is not a closed trajectory. The momentum of the beam starts tracing along the �̂x−�̂y direction,
towards the X point that is located at (π/a,0). This direction is clockwise with respect to the
Γ point at (0,0), while counter clockwise with respect to the M point at (π/a,π/a), which
is consistent with the discussion above regarding the chirality of the beam trajectory. When
the momentum reaches this X point, the beam in real space splits with equal amplitude into
two branches perpendicular to the original beam. This splitting process happens whenever the
momentum of the beam reaches an X point in the momentum space. The resulting trajectory in
real space is a square grid with a unit cell size of

√
2πa/φ , as shown in Fig. 2(d).

4. Experimental implementation

In Ref. [10], we have provided a detailed discussion of the experimental feasibility of achieving
an effective gauge field for photons, in either optical frequency range with electro-optic effect,
or in the micro-wave frequency range with the use of a mixer. Here, we only focus on those
aspects that are specific to the demonstration of the beam propagation effects as considered in
this paper.

In order to discuss the experimental conditions required to observe the photonic de Hass-
van Alphen effect, for concreteness we consider only the closed trajectories. To observe such
a single round trip, the beam should not be significantly dissipated after completing a closed
trajectory. Consider a beam tracing out a circle of radius k in momentum space. The trajectory
in real space then has a radius of ka2/φ . The group velocity of the beam is Va2k and thus the
time for the beam to circulate once is T = 2π/(Vφ). If we require the loss of the beam to be
less than 3 dB after one circulation, then the intrinsic loss rate of the resonator cannot exceed
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ln2
(2π)Vφ . The intrinsic loss rate is related to the Q factor of the resonator as ω

2Q . For an operating
frequency of ω = 2π ·200 THz, which corresponds to an operating wavelength near 1.5 micron,
assuming a coupling constant of V = 10 GHz, and an effective magnetic field that corresponds
to φ = 0.4, this requirement sets the Q factor to be greater than 1.4×106, which is achievable
in the state-of-the-art photonic crystal resonators [26, 27].

5. Conclusion

In summary, we have proposed a photonic de Haas-van Alphen effect using effective magnetic
field in a dynamically modulated two-dimensional square photonic resonator lattice. Such
novel beam steering can also be similarly achieved in other kinds of lattices, which have
different constant energy contours, and thus results in diverse shapes of trajectories. Moreover,
with the availability of three dimensional photonic crystals [28] and three-dimensional on-chip
integration, it is possible that such an effect can also be realized in three dimensions.
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