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Microscopic theory of photonic one-way edge mode
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We consider a system consisting of a honeycomb lattice of magneto-optical resonators. We show that this
system can be very well described by a tight-binding model. Moreover, when truncated, this system supports a
one-way edge mode. We discuss the microscopic physics, linking the properties of the one-way edge modes to
the corresponding bulk modes.

DOI: 10.1103/PhysRevB.84.075477 PACS number(s): 42.70.Qs, 42.25.Gy

I. INTRODUCTION

Unusual wave propagation effects can occur in systems
with broken time-reversal symmetry. In a two-dimensional
electron gas, for example, time-reversal symmetry can be
broken by a perpendicular static magnetic field. As a result, the
system can exhibit a quantum Hall effect, with a unidirectional
flow of electrons on the edge of the system.1–4 Analogous
one-way modes of photons have recently been proposed using
surface plasmon polaritons,5 photonic crystals,6–10 and the
interface of two magneto-optical materials.11 In all cases,
time-reversal symmetry is broken by the use of materials
exhibiting magneto-optical effects. Most recently, such a one-
way edge mode in a photonic crystal has been experimentally
observed.12–14

In a magneto-optical photonic crystal system,15–17 the
existence of a one-way edge mode is typically linked to
a nonzero Chern’s number of bulk band structure.6–8 Such
a link is important because it provides a general condition
for designing the magneto-optical photonic crystal structure.
However, since the Chern’s number is a universal number
characterizing the topological properties of the band over
the entire first Brillouin zone, the microscopic connection,
between the properties of the bulk mode and the properties of
the one-way edge mode, is not evident in the Chern’s number
analysis.

In this paper, we consider a model system consisting of
a honeycomb lattice of magneto-optical resonators. We show
that the existence and the detailed physical properties of the
one-way edge modes in this system can be understood in terms
of the properties of the bulk modes at the edge of the bulk
photonic band gap. This understanding then provides insights
into the design of many properties of one-way edge modes.

The paper is organized as follows: in Sec. II we describe
our physical model consisting of a honeycomb lattice of
resonators, and we present numerical results of the band
structure and the eigenmode field distribution at the band edges
for this system. In Sec. III we construct a tight-binding model to
analytically calculate the band structure of such a honeycomb
lattice of resonators. We obtain excellent agreement between
the tight-binding model and the numerical results. In Sec. IV,
we present a microscopic picture of the emergence of the one-
way edge modes in this system, combining the numerical and

the tight-binding analyses outlined in the previous sections. In
Sec. V, we apply the microscopic picture developed in Sec. IV
to other kind of edges, and we design a one-way edge state
with a small group velocity.

II. PHYSICAL MODEL

In this section, we introduce the physical model step by step.
We start from a photonic crystal with a triangular lattice of air
holes in a background with dielectric constant εb = 16. The
lattice constant of the triangular lattice is a and the radius of the
air holes is r = 0.35a [Fig. 1(a)]. Figure 1(b) shows the band
structure, as calculated using the MIT Photonic-Bands (MPB)
package,18 of transverse electric (TE) modes, which have
electric fields that are entirely in-plane. The TE modes have a
complete band gap between the frequencies of 0.192(2πc/a)
and 0.295(2πc/a).

Next we create localized resonance in this band gap. To
create a single resonator, we replace one air hole with a rod of
magneto-optical material having a radius r ′ = 0.5a [Fig. 2(a)].
The permittivity tensor of the magneto-optic material has the
form

ε =

⎛
⎜⎝

εr −iεi 0

iεi εr 0

0 0 εr

⎞
⎟⎠ , (1)

when the magnetization is along the z direction parallel to
the rod. We take εr = 16. Without magnetization, i.e.,εi = 0,
the resonator supports two degenerate dipole-like resonances
[Figs. 2(b) and 2(c)] with a frequency ω0 = 0.224(2πc/a).

We construct a honeycomb lattice of such resonators with
a lattice constant a′ = 6a [Fig. 3(a)]. A schematic view of the
honeycomb lattice, with the two sublattices A and B labeled,
as well as the corresponding first Brillouin zone in wave vector
space, is shown in Fig. 3(b). Such a lattice supports four
photonic bands within the band gap of the photonic crystal
[Fig. 3(c)]. A more detailed view of these four bands is shown
in Fig. 4(a). The middle two bands touch at K and K ′, forming
two Dirac cones.

In the presence of magnetization (εi �= 0), time-reversal
symmetry is broken. The individual resonator in Fig. 2 supports
two counter-rotating states at different frequencies.19 For the
honeycomb lattice of such resonators, the degeneracy at the K
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FIG. 1. (Color online) (a) Photonic crystal consisting of a trian-
gular lattice of air holes introduced in a background material with a
dielectric constant εb = 16. The holes have a radius r = 0.35a, where
a is the lattice constant. (b) Transverse electric band structure of this
photonic crystal.

and K ′ points is lifted [Fig. 4(b)]. This paper will be entirely
concerned with the edge and defect states that are introduced
into such a lattice of resonators. For this purpose, we refer to
a perfect lattice of such resonators as the “bulk” for the rest of
the paper.

III. TIGHT-BINDING MODEL

In this section we will build a tight-binding model to study
the bulk band structure as formed by the honeycomb array
of localized resonances shown in Fig. 3(a). As shown in
Fig. 3(b), every unit cell of the honeycomb lattice contains
two nonequivalent sites A and B. At each site there are two
different states as shown in Fig. 2(b). As a result, the basis
for our tight-binding model contains four states: |pA

x 〉, |pA
y 〉,

|pB
x 〉, and |pB

y 〉. Since the resonance is highly localized, we

only consider two interactions: the on-site coupling and the
nearest-neighbor coupling. The on-site coupling describes the
interaction of two resonances on the same site. For example, for
the state |pA

x 〉 on site A, the on-site interaction is its coupling
with |pA

y 〉 on the same site A. The on-site interaction vanishes
when there is no magnetization, i.e., εi = 0. In the presence
of magnetization, the on-site interaction iVp can be calculated
as19

iVp = i

2

ω0
∫

dSεi�̂z · ( �E∗
px

× �Epy
)√∫

dSεr | �Epx
|2 ∫

dSεr | �Epy
|2

, (2)

where ω0 = 0.224(2πc/a) is the frequency of the resonance
in the absence of magnetization. �Epx

and �Epy
are the electric

field of |px〉 and |py〉 states, respectively, dS is an infinitesimal
area, and the integration is defined in the unit cell. The
nearest-neighbor coupling represents the interaction between
two nearest A and B sites and it is generally nonzero.
For state |pA

x 〉 on site A, the nearest-neighbor coupling
is its interaction with both |pB

x 〉 and |pB
y 〉 on the three

nearest B sites surrounding such a site A. For the coupling
between the two nearest-neighbor sites with the vector
connecting them being along the x direction, we use Vσ to
represent the interaction between |pA

x 〉 and |pB
x 〉, and Vπ to

represent the interaction between |pA
y 〉 and |pB

y 〉. In this model,
the time-reversal-symmetry breaking arises purely from the
on-site interaction iVp. Both Vσ and Vπ are assumed to be
real, and thus there is no time-reversal-symmetry breaking
associated with the nearest-neighbor coupling.

Based on the descriptions above regarding various interac-
tions, and following the standard procedure,20 we obtain the
tight-binding Hamiltonian in momentum space in the basis of
(|pA

x 〉,|pA
y 〉,|pB

x 〉,|pB
y 〉)T :

H =

⎛
⎜⎜⎜⎜⎝

ω0 iVp

(
3
2Vσ + 1

2Vπ

)
cos(3akx)ei

√
3aky + Vπe−i2

√
3aky i

√
3

2 (Vσ − Vπ )sin(3akx)ei
√

3aky

ω0 i
√

3
2 (Vσ − Vπ )sin(3akx)ei

√
3aky

(
3
2Vπ + 1

2Vσ

)
cos(3akx)ei

√
3aky + Vσ e−i2

√
3aky

ω0 iVp

ω0

⎞
⎟⎟⎟⎟⎠ , (3)

Here we show only the diagonal and the upper half of the
Hamiltonian matrix. The lower half of the matrix can be easily
obtained since H is Hermitian.

We can obtain the band structure by solving the Hamiltonian
in Eq. (3), which can then be compared to the band structure
calculated from MPB. This process allows us to fit the coupling
coefficient in Eq. (3):

Vσ = −0.001185, Vπ = 0.000085 (4)

for the case with time-reversal symmetry and

Vσ = −0.001192, Vπ = 0.000092, Vp = 0.0007 (5)

for the the case where the time-reversal symmetry is broken.
All these coupling constants have the unit of angular frequency

2πc/a. Note that the value of coupling constant Vp here
corresponds to εi = 1. We see in Fig. 4 that the tight-binding
model reproduces the band structure well, for the cases both
with and without magnetization.

Using the tight-binding model, for the band structure shown
in Fig. 4(b), we can calculate the Chern’s number Cn for the
nth band,4

Cn = 1

2π

∫
dkx

∫
dky

(
∂an

y (�k)

∂kx

− ∂an
x (�k)

∂ky

)
, (6)

where an
x,y(�k) = −i〈n�k|∂kx,y

|n�k〉 is the Berry’s gauge field and

the integrand is the Berry’s curvature, with �k the Bloch wave
vector. |n�k〉 is a four-element vector representing an eigenstate
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FIG. 2. (Color online) (a) A single resonator introduced into
the photonic crystal shown in Fig. 1(a). The resonator consists of
a dielectric rod (red) made from magneto-optic material of radius
r ′ = 0.5a. (b) and (c) Two dipole modes associated with the resonator.
Red and blue correspond to, respectively, large positive and negative
out-of-plane magnetic fields.

of the Hamiltonian shown in Eq. (3). We can easily verify that
for the first and fourth bands, respectively,

C = ±sgn(Vp), (7)

and for the second and third bands C = 0. We see that C is
nonzero for the first and fourth bands when Vp �= 0.

Having considered the bulk lattice consisting of an infinite
honeycomb array of magneto-optical resonators, we now
construct edge modes by truncating the bulk lattice. We
consider the structure shown in Fig. 5(b), consisting of an
infinite photonic crystal. Half of the crystal consists of a
semi-infinite array of a honeycomb lattice of resonators. The
other half is a perfect crystal without any resonator. The
honeycomb lattice is truncated such that the edge is of a zig-zag
type. As seen in the projected band structure of Fig. 5(a), which
plots the frequency of all the modes in the system as a function
of wave vector k parallel to the edge, such an edge supports a
one-way mode in the frequency range between the second and
the third bands of the bulk lattice. The field profile of the edge
mode at wave vector k = 0 is plotted in Fig. 5(b). The field is
localized on the outer sites of the zig-zag edge.21

IV. THE CONNECTION BETWEEN BULK AND EDGE
STATES IN TERMS OF MICROSCOPIC PHYSICS

In the previous section, we have presented a model system
with its bulk band structure characterized by a nontrivial
topological feature in terms of a nonzero Chern’s number,
and we demonstrated the existence of one-way edge modes
when such a bulk system is truncated. The general connection
between the topological feature of the bulk band structure and
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FIG. 3. (Color online) (a) A honeycomb lattice of resonators in-
troduced into the photonic crystal shown in Fig. 1(a). (b) Honeycomb
lattice and its first Brillouin zone. (c) TE band structure when εi = 0.
Notice the four bands (red lines) lying in the band gap of the photonic
crystals. These four bands are associated with the honeycomb lattice
of resonators.
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FIG. 4. (Color online) Comparison between band structures
calculated using the tight-binding model of Eq. (3) (red solid line) and
using MPB (blue dashed line), for the honeycomb lattice of resonators
shown in Fig. 3(a). (a) εi = 0. (b) εi = 1.

the existence of one-way edge modes is quite well known.22,23

Such a general conclusion, however, is rather mathematical.
Instead, here we aim at establishing the connection between
the bulk band structure and various properties of one-way
edge modes based on microscopic physics. We will do so by
means of first-principles band structure calculations and the
tight-binding model.

In the analysis of photonic crystals, it is well known that
the properties of defect states can be understood from the bulk
state at the edge of the photonic band gap.24 Here, we show
that the property of the edge modes can be understood in terms
of the properties of the bulk modes at the K and K ′ points.
In the rest of the paper, we will only consider the band of the
edge mode in the bulk band gap between the second and third
bands, and the other branches of the edge mode band can be
viewed as a continuous extension of this one.

We start by analyzing the field distribution of the second
and third bands at the K and K ′ points in the presence of
magnetization, as shown in Fig. 6. At the K point, the field of
the second-band mode is localized in sublattice A and rotates
clockwise, represented at each A site by 1√

2
(|pA

x 〉 + i|pA
y 〉),

and the field of the third-band mode is localized in sublattice
B and rotates counterclockwise, represented at each B site by

1√
2
(|pB

x 〉 − i|pB
y 〉). On the other hand, at the K ′ point, the field

of the second-band mode is localized in sublattice B and rotates

(b)(a)

0.227

0.225

0.223

ω
(2

πc
/a

)

(K’) (K)

-π/(9a) π/(9a)
kx

FIG. 5. (Color online) (a) MPB calculation of the projected band
structure of a truncated honeycomb lattice with one zig-zag edge.
There is a one-way edge mode in the bulk band gap due time-reversal-
symmetry breaking. (b) Edge mode field profile corresponding to
k = 0. The field is highly localized in the magneto-optical rods. In
this figure, small circles are air rods and the sites without small circles
are magneto-optic rods.
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(b)(a) (c)

FIG. 6. (Color online) (a) The schematic plot of the field distri-
bution of the second-band and third-band modes of the honeycomb
lattice at the K and K ′ points. Circles with an arrow represent the
rotation direction of the fields. Real-space field distribution of (b)
third-band mode and (c) second-band mode at the K point.

clockwise, represented at each B site by 1√
2
(|pB

x 〉 + i|pB
y 〉),

and the field of the third-band mode is localized in sublattice
A and rotates counterclockwise, represented at each A site
by 1√

2
(|pA

x 〉 − i|pA
y 〉). We note that a time-reversal operation

relates the field distributions of the second-band mode at K and
the third-band mode at K ′. These two modes having different
frequencies thus directly indicates time-reversal-symmetry
breaking.

Examining Fig. 5, we note that the edge of the truncated
bulk lattice lies entirely on the B site. As a result, among the
four bulk modes at the K and K ′ points as discussed above, one
expects that the second-band mode at K ′, and the third-band
mode at K , should play a significant role in the formation of
the one-way edge mode in this structure, since these modes
have most of their energy concentrated at the B site as shown
in Fig. 6. In Fig. 5, the edge mode indeed has a band structure
that connects the lower bulk gap edge at K ′ to the upper gap
edge at K .

As a more explicit demonstration of the connection between
the bulk and the edge, we consider the “spin” of both the bulk
and the edge states. The edge modes, as well as the second-
band bulk modes near K ′ and the third-band bulk modes near
K , all have most of their fields concentrated on the B sites.
For such a mode with a wave vector �k, the field at each B site
is fx(�k)|pB

x 〉 + fy(�k)|pB
y 〉, where fx(�k) and fy(�k) are complex

numbers satisfying |fx(�k)|2 + |fy(�k)|2 = 1. In the following,
we refer to such a modal field on the B site as the “spin” of
the photon state, since the field resides in a two-dimensional
Hilbert spaceH spanned by the two orthogonal basis functions
|pB

x 〉 and |pB
y 〉.

As a simple way to quantify the “spin,” we calculate the
expectation value of the operator

σ =
(

0 −i

i 0

)
, (8)

which acts on a state in the Hilbert space H. The second-band
mode at K ′, which is a clockwise rotating state having fx(�k) =

1√
2

and fy(�k) = i√
2
, has 〈σ 〉 = +1. The third-band mode at K ,

which is a counterclockwise rotating state having fx(�k) = 1√
2

and fy(�k) = − i√
2
, has 〈σ 〉 = −1.

For the edge mode, we plot its 〈σ 〉 as a function of wave
vector in Fig. 7. We indeed see that the modes having their
parallel wave vector corresponding to the projection of K and

0

1

-1

<
σ>

-π/(9a) π/(9a)

(K’) (K)

kx

FIG. 7. “Spin” 〈σ 〉 of a photon for the edge mode as a function
of wave vector. +1 (−1) indicates clockwise (counterclockwise)
rotating mode with equal weight on |pB

x 〉 and |pB
y 〉.

K ′ have the same 〈σ 〉, and hence the same rotation direction
of the fields, as the corresponding bulk modes at K and K ′.

We also study the field distribution of modes in the second
and third bands near the K and K ′ points. Graphically, we
represent the state fx(�k)|pB

x 〉 + fy(�k)|pB
y 〉 by plotting out a

parametrized curve [x(s),y(s)], where x(s) = Re(fx(�k)eis)
and y(s) = Re(fy(�k)eis). Using such a representation, we plot
in Fig. 8 the spin of the photon modes in the third band, at a
frequency of ω = 0.22572(2πc/a) that is slightly above the
third band edge at K . At this frequency, the constant-frequency
contour features a closed loop in the wave vector space. We

K

K

x

y

BZ Zone 1 2

1 2

FIG. 8. (Color online) Spin of the bulk modes of the third band at
eight k points in momentum space on the constant frequency contour
ω = 0.22572(2πc/a) around K . The ratio between the major and
minor axes of the ellipse indicates the ratio between |pB

x 〉 and |pB
y 〉

components of the mode. The bottom panels show the time-averaged
field density of modes at 1 and 2, respectively.
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note that the photon spin changes as the wave vector is varied
along the contour. At �k = (0.042,0.096)2π/a (point 1 on
the contour in Fig. 8), the state has a larger component in
|pB

y 〉 and the relative phase between |pB
x 〉 and |pB

y 〉 is π
2 , and

thus the parametrized curve is an ellipse with its major and
minor axes parallel to the y axis and x axis, respectively. As a
result, the intensity of the mode is more extended along the y

direction. On the other hand, at �k = (0.065,0.096)2π/a (point
2 on the contour in Fig. 8), the state has a larger component
in |pB

x 〉 and the intensity of the mode is less extended along
the y direction. Such a wave vector dependency of the photon
spin is a direct manifestation of the local Berry’s curvature.
The Berry’s phase γ accumulated along the contour can be
expressed as the following equation:

γ = −
∮

|fy(�k)|2∇�kArg

[
fx(�k)

fy(�k)

]
· d�k(mod2π ). (9)

The difference in field spatial distribution for the bulk states
near K and K ′ points determines the dispersion slope of the
band of the one-way edge mode. For the zig-zag edge along
x direction as shown in Fig. 5, the wave vector kx parallel
to the x direction is a conserved quantity. Thus, we can
compare the properties of the edge modes at a particular kx to
the corresponding bulk modes with the same kx . Examining
Fig. 8, we see that the two third-band modes 1 and 2, which
have their parallel wave vector symmetric with respect to K ,
have substantially different modal field distributions. Since
the truncation is imposed perpendicular to the y direction,
the two modes which have their field distribution extending
in the y direction in different ways, therefore, will be affected
differently. Specifically, in the tight-binding model, the zig-zag
edge is characterized by missing bonds in the y direction. As
a result, mode 1, which has most of its field aligned with
the missing band, will be more strongly affected, and lies
deeper inside the gap as compared to mode 2. Thus, the band
of the one-way edge mode emerges to the left of point K .
The Berry’s curvature around the K point for the bulk modes
directly determines the slope of the edge modes around the K

point. A similar argument can be made for the slope of the
edge band around the K ′ point as well.

V. OTHER KINDS OF EDGE STATES

In the previous sections, using the example of a zig-zag edge
of a honeycomb lattice, we have shown that many properties
of the one-way edge modes can be understood in terms of the
properties of the corresponding bulk modes. Building upon this
understanding, here we examine a few other kinds of edges and
relate the properties of the edge modes in terms of bulk modes.

In the previous sections, we have also established a close
agreement between the tight-binding model and the numerical
simulation using MPB. Here, in this section, we will therefore
only use the tight-binding model, as described in Sec. III.

As a first example, we consider a truncation of the
honeycomb lattice with the same orientation as the zig-zag
edge; i.e., the truncation is perpendicular to the y direction,
but with the sites on the edge that are on the A site, as shown
in Fig. 9. In this case, the edge mode emerges from the second

0.227

0.225

0.223

ω
(2

πc
/a

)

x

y

(K’) (K)

-π/(9a) π/(9a)
kx

FIG. 9. The band structure of the bulk lattice with an edge missing
zig-zag type bonds, as shown in the bottom of the figure. A one-way
edge mode emerges from the right-hand side of theK point in the
band gap of the second and third bands.

band at K and the third band at K ′, since at these points the
bulk states have most of their fields concentrated on A sites.

Similar to the analysis for the zig-zag edge, here we also
consider the second-band bulk modes near K as shown in
Fig. 10. Comparing Fig. 10 to Fig. 8, we see that the second-
band bulk modes near K are instead concentrated on the A

site and also have their photon spin rotation direction flipped.
In this case, the truncation in Fig. 9 will affect mode 2 more
significantly, since the missing bands are now predominantly
along the x direction. As a result, we see that the one-way edge
mode indeed emerges to the right of the K point at the bulk
band edge of the second band.

As a second and final example, we show that the detailed
property of the one-way edge modes can be tuned by changing
the dielectric properties on the edge. Here we again consider
the zig-zag edge as shown in Fig. 5, but we set the on-site

K

K

x

y

BZ Zone 1 2

FIG. 10. Spin of the bulk modes of the second band at eight k

points in momentum space on the constant frequency contour ω =
0.22428(2πc/a) around K .
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0.227

0.225

0.223

ω
(2

πc
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(K’) (K)

-π/(9a) π/(9a)
k x

FIG. 11. Slow light. By reducing εi of the edge, the edge mode
dispersion curve in the second band gap near k = 0 becomes flat. In
this figure we set Vp = −0.0003 on one edge.

coupling Vp = −0.0003 on the zig-zag edge, which can
be accomplished by reducing the on-site magneto-optical
coupling only on the edge. In doing so, the band structure
of the one-way edge mode now features a flat region near
kx = 0, where the group velocity is greatly reduced Fig. 11.25

Moreover, the group velocity can be tuned by adjusting the
on-site coupling strength on the edge, allowing dynamic
modulation of such one-way slow light, which is potentially
useful for overcoming the delay-bandwidth product constraint
in standard static slow-light systems.26,27

VI. CONCLUSION AND DISCUSSION

In summary, we have proposed a system consisting of
a honeycomb lattice of magneto-optical resonators, which
supports one-way edge modes when truncated. We showed
that the properties of this system can be well described
by a tight-binding model, which greatly facilitates analytic
understanding of the one-way edge modes.

Using a combination of a tight-binding model and a first-
principles band structure calculation on this system, we have
provided a discussion of the connection between the properties
of the bulk and the edge modes. Our analysis complements the
usual Chern’s number analysis of this system, by emphasizing
the microscopic physics of bulk-edge connection.

For demonstration purposes, we have chosen a large
magneto-optical parameter, as well as a dilute honeycomb
lattice of resonators, where a tight-binding model can be
applied. However, the general conclusions regarding the
connection between bulk and edge states that we discussed
here should be applicable to other magneto-optical photonic
crystal systems. In particular, we showed that the existence of
Berry’s curvature results in a strong �k dependency of the spatial
distribution of the bulk modes. When the edge is introduced,
these different bulk modes are then affected differently, giving
rise to a local slope of the edge modes in the vicinity of the
bulk band edge. We also showed that the global aspects of
the edge modes across the entire first Brillouin zone can be
traced to different bulk band edge modes localized on different
sublattices of the system. These results may have general
applicability for magneto-optical photonic crystals exhibiting
one-way edge modes, since the conditions here are directly
related to the topological aspects of the bulk band structure,
which is robust with respect to significant parameters and
structural variations.
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