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Photonic Aharonov-Bohm Effect Based on Dynamic Modulation
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We show that when the refractive index of a photonic system is harmonically modulated, the phase of
the modulation introduces an effective gauge potential for photons. This effective gauge potential can be
used to create a photonic Aharonov-Bohm effect. We show that the photonic Aharonov-Bohm effect
provides the optimal mechanism for achieving complete on-chip nonmagnetic optical isolation.
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The Aharonov-Bohm effect [1] is a very important effect
in quantum physics, since it demonstrates the importance
of the gauge potential for electrons. It is of fundamental
interest to ask whether an analogous Aharonov-Bohm
effect can be created for photons. The answer to this
question has proved elusive: Photons are neutral particles,
and therefore there is no natural gauge potential that cou-
ples to a photon. In this Letter, we exploit the concept of
photonic transition as induced by the dynamic modulation
of a material’s permittivity [2-4] and show that the phase
of the modulation can be used to create an effective gauge
potential and, hence, a photonic Aharonov-Bohm effect.
As an application, we show that such a photonic Aharonov-
Bohm effect leads to the design of an on-chip nonmagnetic
photonic isolator that is significantly simpler compared
with the currently available designs.

To start, we first briefly review the concept of photonic
transition [2-5]. We consider a slab waveguide where light
propagates along the z direction [Fig. 1(a)]. The waveguide
supports two photonic bands of transverse electric modes
(electric field along the y direction) with even and odd
symmetry with respect to the center of the waveguide
[Figs. 1(b) and 1(c)]. Here, for simplicity, we have consid-
ered only a two-dimensional system. However, our design
should be applicable to three-dimensional waveguides, as
has been demonstrated in three-dimensional numerical
simulations and experiments [6]. We consider an even
mode |1) and an odd mode |2), with frequencies w; and
w, and with the same wave vector k. A photonic transition
between |1) and |2) can be induced with a dielectric
modulation:

e(r) = €, + 6(x) cos(Qt + @), €))

where ()} = w, — w,. The transition takes place as the
photons propagate along the waveguide under modulation.
Note that the modulation here as described by a profile §(x)
is uniform along the z direction. Hence, the wave vector of
the modes is conserved in the photonic transition, and thus
the transition is direct. This is in contrast with Refs. [4,5],
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where the modulation was of a traveling wave form that
induced an indirect transition.

The electric field in the modulated waveguide can be
expressed as [4]

Ei(x, z, 1) = al(z)Elk(_x)ei(*kzﬁ»wlz)
+ ay(2) Ey (x)e Rt o), )
where k is the wave vector along the z direction and

E\;.2:(x) are the modal profiles of the even and odd modes,
respectively, normalized such that |a,|* is the photon
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FIG. 1 (color online). (a) A silicon slab waveguide. The width
of the waveguide is 1.1a. The x-z plane is parallel to the surface
of the waveguide. We consider only two-dimensional propaga-
tion in the x-z plane. (b) Band structure of the waveguide. The
first and second bands are the fundamental even and odd trans-
verse electric modes, respectively, both having an electric field
only along the y direction. The gray area is the light cone. The
photonic transition is induced vertically between an even mode
(blue dot) and an odd mode (red dot). (c) Modal profile of the
even mode (left) and the odd mode (right).
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number flux carried by the nth mode [7]. Equation (2)
assumes that the modulation is weak as compared to the
dielectric constant of the structure and that the modulation
can provide phase-matched coupling only between these
two states. Substituting Eq. (2) into Maxwell’s equation,
we obtain the coupled mode equation [8]

dfar) _ 0 Ce ¢ \( a, 3)
iz a, C*e'¢ 0 a, )

where C = —1 [8(x)Ef,(x)Ey(x)dx. In order to have
C # 0, for the two modes considered here that have oppo-
site symmetry, 8(x) cannot be uniform along the x direc-
tion. The solution of this coupled mode equation can be
expressed by a transfer matrix 7T(¢), relating the mode
amplitudes a/,(z) = a,(z)e”** at the positions of z and 0:

aﬁ(z)) _ (ai(O)) 4
(agu) T\ w0y ) @
ke cos(Cz)  ie ¢ sin(CZ))
T(¢)=e (ie""S sin(Cz) cos(Cz) /) ©)

The coupled mode equation of the waveguide system
[Eq. (3)] corresponds to a Hamiltonian H = Ce‘i‘/’airaz +
Cei"ba;al (if we do a substitution of z = vt and set v = 1,
where v is the group velocity of the waveguide mode). The
phase ¢ thus describes a gauge transformation of the
system [9]. There is an arbitrariness in choosing ¢, since
as we see in Eq. (1) it is related to the time origin of the
modulation, which can be arbitrarily set. Also, in associa-
tion with this phase, one can construct a gauge potential in
analogy to a lattice model for an electron. Consider an
electronic lattice model described by a tight-binding
Hamiltonian H = Z,/,,C(r),’rb;r,b, in the absence of a mag-
netic field, where C?,,r
states b, and b.. In the presence of a magnetic field, as

is the hopping coefficient between

described by a gauge potential A(F), the Hamiltonian is
modified via the Peierls substitution [10] to H' =

ie/n) [ Adl 0 _ i
ZV’,rCr’,rbI’br» where Cr’,r = el(f/ )'[r C(r)/’r = eld)c(r)’,r'
Thus, the phase ¢ in the coupling constant C,., is asso-
ciated with a gauge potential through

e (r - -
= [ A-dl= ¢. (6)
nJ,

Similarly, for the photonic system considered here, we can

associate a gauge potential A to the phase ¢ through [} A

= ¢, where 1 and 2 represent the spatial locations of the
two photonic states |1) and |2), respectively (the spatial
location of a state can be defined as the center of mass of
the photon field distribution). In the special case, where
the two states are colocated spatially, A is singular.

Nevertheless, the line integral of A in Eq. (6), which is
the only relevant physical quantity for a gauge potential

[11], is finite. Also, since the line integral depends on the

direction of integration, we have f %A dl = —¢. Thus,
while a photon does not carry any charge, we nevertheless
find that the phase of the dynamic modulation can create a
gauge potential for photons.

In this system, all operations on the photon modes
belong to a SU(2) group. However, the gauge transforma-
tion here is connected to the arbitrariness in setting a single
relative phase factor between the components of states |1)
and [2). Since there is only a single such phase factor, the
corresponding gauge degree of freedom has a U(1) sym-
metry. This is fundamentally different from the SU(2)
gauge field as described in Ref. [12], where the gauge
degrees of freedom themselves have a SU(2) symmetry.

One of the most prominent consequences of a gauge
potential is the Aharonov-Bohm effect. For electrons, the
typical geometry for demonstrating this effect is shown in
Fig. 2, where two arms of electron waveguides are con-
nected on either end at z; and z, by a waveguide coupler, to
form a ring enclosing a magnetic flux. We denote the states
that correspond to an electron in either of the two wave-
guides as |1) and |2), respectively. Imagine that one injects
an electron into waveguide 1 from the left and measures
the transmission amplitude in waveguide 1 on the right
[Fig. 2(a)]. There are two separate pathways that contribute
to such a transmission amplitude. The first pathway con-
sists of an electron emerging from the first coupler as state
|2), propagating along the upper arm, and then going
through the second coupler returning to state |1). In the
second pathway, the electron remains in state |1) as it
passes through the two waveguide couplers. The phase
difference between these two pathways is then

ﬁ

FIG. 2 (color online). Illustration of the Aharonov-Bohm ef-
fect for both an electron and a photon, with the particle injected
from (a) the left or (b) the right of the structure. In the case of the
electron, the structure consists of two waveguides coupled
together through two waveguide couplers at the end, forming a
ring that encloses a magnetic flux. The dashed arrows correspond
to the location of the waveguide couplers. |1) and |2) represent
the quantum states of having the electron in either waveguide. In
the case of the photon, this plot is used to illustrate the interfer-
ence effect for the structure in Fig. 3(a). Here |1) and [2)
represent the even and odd modes in the waveguides, respec-
tively. The dashed arrows represent photonic transition as in-
duced by dynamic modulation.
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z
where ¢, — ¢ + 7 describes the accumulated phase b 1
difference between the two pathways in the absence of
the magnetic field, with ¢, and ¢, being the accumulated
propagation phases in the two arms, the extra phase N

arising due to the beam splitter. § A - dI describes the effect
of the magnetic field. The physics of a gauge potential in

general depends only on such a line integral fﬁ -dlona
closed path. Therefore, we are free to choose a gauge such

that f A-dlis nonvanishing only at the waveguide cou-
plers, in which case

e - - e [2- - e (2 - N
ﬁfA.dlzﬁ,[lA(Z]).dl_ﬁ,[]A(ZZ).dl
= ¢(z1) — d(20). )

Based on the description of the Aharonov-Bohm effect
above, we create an analogous photonic Aharonov-Bohm
effect using dynamic modulation, in a structure as shown in
Fig. 3(a). The structure consists of two modulated wave-
guide regions, centered at z; and z,, each modulated with a
modulation phase ¢(z;) and ¢(z,), respectively. Between
the two modulated waveguide regions is a central wave-
guide region that is unmodulated and, in general, can have
a width different from the modulated waveguide. The even
and odd modes, upon passing through the central wave-
guide, acquire different phases ¢, and ¢,,, respectively.
The corresponding transfer matrix is

T . ei¢x] O 9
f a 0 eid’xZ ’ ( )

The interference process for the structure in Fig. 3(a) can
also be illustrated with Fig. 2, provided that we now asso-
ciate states |1) and |2) with the even and odd modes in the
photonic waveguide instead. Compared with the electronic
Aharonov-Bohm effect, the two waveguide couplers are
now replaced by the two modulated waveguide regions,
whereas the central waveguide region plays the role of the
arms. Suppose that we inject a photon in the even mode |1)
from the left and measure the transmitted amplitude in the
even mode |1) at the right [Fig. 2(a)]. The transmitted
amplitude again results from the interference of two path-
ways. In the first pathway, the photon state undergoes an
upward transition at z;, propagates as the odd mode |2), and
then undergoes a downward transition at z,, acquiring a
phase ¢, + 7+ ¢(z;) — d(z,) (note that the extra 7
phase comes from the i factor in the off-diagonal compo-
nents of the transfer matrix [Eq. (5)]). In the second path-
way, the photon state does not undergo any transitions and
acquires a phase ¢, as it propagates as the even mode |1).
The phase difference between the two pathways is then
b — dg + 7+ d(z)) — P(z5). Comparing this phase
with Egs. (7) and (8) for the electronic case, we see that
the phases ¢(z;) and ¢(z,) due to dynamic modulation play
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FIG. 3 (color online). (a) Waveguide isolator structure (x-z
plane) simulated by using the finite-difference time-domain
method (the length along the z direction is compressed by a
factor of 1/4). The width of the modulated waveguide is 1.1a,
and the width of the central waveguide region is 2.0a. The
modulation covers only the upper half of the waveguide (black
region). The length of a single modulated region and the central
waveguide region is 19a and 11.6a, respectively. The phase of
the modulation on the left and right is O and 7/2, respectively.
(b) Incident photon flux. (c),(d) Transmitted photon flux through
the structure in (a) when the pulse of (b) is incident from the
left (c) and right (d), respectively. The insets are the distribution
of the electric field (the length along the z direction is com-
pressed by a factor of 1/4), and the gray regions are the
modulated regions.

exactly the same role as the magnetic-field-dependent
phase in the electronic Aharonov-Bohm effect. This dis-
cussion of the Aharonov-Bohm effect based on a line
integral of the gauge potential is equivalent to the discus-
sion based on the Berry phase [13]. In particular, the phase
factor ¢(z;) — ¢(z,) is the Berry phase as a photon goes
through a round trip in this structure.

Although either ¢(z;) or ¢(z,) is arbitrary, since it
depends on the choice of the time origin, ¢(z;) — P(z,)
is fixed, since a time translation r — ¢ + At would change

153901-3



PRL 108, 153901 (2012)

PHYSICAL REVIEW LETTERS

week ending
13 APRIL 2012

¢(z;) and ¢(z,) by the same value Q2Ar. This means that
the phase difference of the two pathways is gauge-
independent, just like the magnetic-field-dependent phase
X A - d in the electronic Aharonov-Bohm effect.

In the electronic Aharonov-Bohm effect, the time-
reversal symmetry is broken. When an electron is instead
injected from the right end of waveguide 1, and we con-
sider the transmission amplitude in waveguide 1 at the left
end [Fig. 2(b)], the phase difference of the two pathways is

¢s2 - ¢s1 + 77_% fAdl: ¢s2 - ¢s1 +m— ¢(Z1) + ¢(Z2)a
where the magnetic-field-dependent phase flips sign.
Similarly, the photonic system also has broken
time-reversal symmetry. The dynamical modulation
V cos(dt + ¢) is not invariant under a time-reversal op-
eration t — —t, if ¢ # 0. Thus, the time-reversal symme-
try breaking for a single modulated region is gauge-
dependent and does not have a real physical effect. On
the other hand, in our photonic Aharonov-Bohm interfer-
ometer, with the two waveguide regions modulated with
different phases, at least one of the modulated regions must
have a nonzero modulation phase. Consequently, the time-
reversal symmetry breaking becomes gauge-independent
and therefore physical. As a result, if we inject a photon
state |1) in the second modulated waveguide [Fig. 2(b)], as
the state propagates to the first modulated waveguide, the
phase difference of the two pathways is ¢, — ¢ + 7 —
&(z1) + ¢(z,), where the modulation-induced phase flips
sign, since, as can be seen from Eq. (3), upward and
downward transitions acquire opposite phases.

One application of such a photonic Aharonov-Bohm
effect is to achieve nonmagnetic optical isolation. By
choosing the modulation phases satisfying ¢(z,) —
¢(z,) = m/2, the length L of the modulated region to be
7/(4C), and the length of the central waveguide region
such that ¢, — ¢,; = 7/2, we have the transfer matrix
for modes propagating to the right:

T, =111y = e e O () o

With the same modulation, for modes propagating to the
left, the total transfer matrix becomes

1= 11T = e (0 0)a

Thus, an even mode injected at w; from the left is com-
pletely converted to an odd mode after passing through the
structure. An even mode injected from the right, however,
stays an even mode after passing through the structure. In
this case, therefore, we have used the photonic Aharonov-
Bohm effect to create an optical isolator.

Optical isolators are traditionally based on the magneto-
optical effect [14—18], which is incompatible with on-chip
integration. Isolation based on dynamical modulation
can overcome this material difficulty [4,19,20].
References [4,19,20] rely upon a traveling wave modula-

tion profile. Such a modulation profile can be implemented
by separately modulating a large number of regions, with
each region being modulated uniformly but different re-
gions having different modulation phases. In contrast to
Ref. [4], the scheme proposed in this Letter uses only two
uniformly modulated regions with different modulation
phases. Since as argued above, in a modulated system,
time-reversal symmetry breaking is gauge-independent
only if we use at least two regions modulated at different
phases, we have here proposed the optimal dynamic optical
isolator design in terms of the number of regions that need
to be modulated.

We demonstrate the interference effect and the isolator
concept as discussed above by using finite-difference time-
domain simulations. The waveguide is made of silicon with
€, = 12.25. The two modulated regions have a width of
1.1a, where a is a length unit [Fig. 3(a)]. The direct
interband transition is induced between an even mode
with a frequency w; = 0.129(27¢/a) and an odd mode
with a frequency w, = 0.197(27¢/a), by a permittivity
modulation §e(f) = 0.1€, cos(Q2r + ¢), where ) = w, —
w,. We set the phase of the modulation to be 0 and 7/2 for
the modulated regions on the left and right, respectively. To
maximize the transition between the even and odd modes,
the modulated region covers only the upper half of the
waveguide in the x direction [4]. The length of each
modulated region is 19a. The central waveguide region
has a width of 2a and a length of 11.6a, such that the even
and odd modes, upon passing through this region, acquire a
7r/2 phase difference. The finite-difference time-domain
simulation result is shown in Fig. 3. It agrees with the
transfer matrix analysis, as complete transition from an
even mode to an odd mode occurs for one direction, while
no transition happens for the opposite direction, with a
contrast ratio above 25 dB.

The state-of-the-art silicon modulators can achieve a
modulation frequency of 20 GHz and an index modulation
strength of §/€, = 5 X 10~* [21,22]. Within such a prac-
tical constraint, and using the coupled mode theory above,
we design the structure as shown in Fig. 4. Each of the two
modulated regions now consists of two single-mode wave-
guides brought in close proximity to each other. The width
of each waveguide is 0.20 um. The air gap between them
has a width of 0.76 pwm. These parameters are chosen such
that the two waveguides couple to each other to form a pair
of even and odd eigenmodes that have a frequency differ-
ence of 20 GHz. Only one of the two waveguides is
modulated. The length of the modulated region is

R

z

0 /2

FIG. 4. The structure for experimental realization of the pho-
tonic Aharonov-Bohm effect. The gray regions are dielectric
waveguides. The two black regions are modulated, with modu-
lation phases of 0 and 77/2, respectively.
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4.36 mm. The center waveguide region, which is unmodu-
lated, has a width of 2 um and a length of 6.90 um. The
resulting simulation using coupled mode theory indicates
that the structure functions as an isolator, with a contrast
ratio exceeding 25 dB, over a bandwidth of 1.25 THz. In a
modulated waveguide, propagation loss due to the carrier
injection is typically the dominant loss mechanism. The
free carrier loss for a modulation strength of §/€, = 5 X
10~*is about 1.5 cm ™' [23]. Thus, the propagation of light
over a distance of millimeters, as required for our isolator
device, is quite achievable. Moreover, since such a loss
applies to transmission in both directions, the isolation
contrast ratio remains the same in the presence of such a
loss. In aiming to achieve a large bandwidth, the even and
odd modes need to have parallel bands [4,5], i.e., having
matching group velocity. When such parallel bands are
achieved, the bandwidth is then limited by the higher-order
dispersions of the waveguide modes. Since such a band-
width is far smaller than the optical frequency, the variation
of the modal profile within the bandwidth, which would
have resulted in the variation of coherence length as a
function of frequency, is negligible [4,5].

In conclusion, we show that, in a dynamically modulated
photonic system, the phase of the modulation can be used
to create an effective gauge potential for photon states.
This concept can be applied to induce a photonic
Aharonov-Bohm effect. As an application, we show that
the use of such a gauge potential concept can greatly
simplify dynamic isolator design. More generally, we an-
ticipate that such an effective gauge potential can generate
many other novel phenomena in photonic systems that are
analogous to a charged system coupled to a magnetic field.
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