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Model Dispersive Media in Finite-Difference
Time-Domain Method With Complex-Conjugate
Pole-Residue Pairs

Minghui Han, Robert W. Dutton, Fellow, IEEE, and Shanhui Fan, Member, IEEE

Abstract—In this letter, we show that both Debye poles and
Lorentz pole pairs are special cases of complex-conjugate pole-
residue pairs, and the general form of such pairs is in fact far more
efficient than the commonly used Debye poles and Lorentz pole
pairs for modeling real dispersive media with the finite-difference
time-domain method. We first derive an alternative formulation of
the auxiliary differential equation method for arbitrary dispersive
media based on general complex-conjugate pole-residue pairs. We
then numerically demonstrate the efficiency of using these pairs
in modeling dispersive media.

Index Terms—Auxiliary differential equation method, dispersive
medium, finite-difference time-domain (FDTD).

I. INTRODUCTION

HE finite-difference time-domain (FDTD) method has

been widely used to model dispersive media because it
allows the treatment of broadband response in a single simula-
tion run [1]-[18]. For this purpose, one needs to accurately and
efficiently incorporate real material dispersions. At present, the
common practice is to fit a given permittivity function as the
sum of multiple Debye poles or Lorentz pole pairs. However,
in many practical situations the number of poles required for
such a fit can become quite large, which directly leads to a high
computational cost.

Here, we propose to describe a permittivity function as the
sum of multiple complex-conjugate pole-residue pairs. We show
by numerical examples that this new fitting basis can lead to
a substantial saving in both the memory space and CPU time
consumption. We also derive a corresponding formulation of
the auxiliary differential equation (ADE) method [7], [8], [12],
in part because the ADE method is particularly attractive for
modeling nonlinear dispersive effects [5], [15]. Also, the ADE
method can be readily combined with other differential equa-
tions, e.g., the rate equation in laser simulations [9], [16], [17]
to simulate complex device behaviors.

II. FORMULATION

We propose to model the permittivity of a given dispersive
medium as the sum of complex-conjugate pole-residue pairs
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where the real part of a, is negative such that e(w) is stable
and causal. This model readily yields an ADE formulation. For
each term in the summation in (1), we introduce two complex

— —
quantities .J,, (w) and J; (w), defined as
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Since E)(t) is real in standard FDTD implementations, .J;, (1) =
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J, (t) always holds provided that they have the same 1£1>t1a1
values. Thus, we only need to store and update either J,(¢)

=
or .J; (t) instead of both. Combining the auxiliary differential
equation (4) and the Maxwell curl equations, we arrive at the
corresponding ADE-FDTD implementation
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and o denotes the electric conductivity. During the simulation,

each new time ste;i starts with calculating Emt+DAt using (6),
- (n+1)A
then all the Jp( A components are updated using (7), and fi-

nally H(n+3/2)At gre obtained from the standard Yee algorithm.
In our derivation, we adopt the semi-implicit difference scheme
[7] to achieve the full synchronism.

In particular, when ¢, = Ae,/(27,) and a, = —1/7,, the
formulation described above is exactly the same as the known
ADE formulation for a medium modeled by Debye poles

[1]. On the other hand, when ¢, = jAeyw?/(2y/w? - 62)

and a, = —0, — jy/w?— 02, we get an alternative ADE
formulation for a medium modeled by Lorentz pole pairs.
Here, Aep, 7, wp, and 6, are the parameters for characterizing
Debye poles and Lorentz pole pairs [1]. Therefore, in our ADE
formulation Debye media and Lorentz media are treated in a
unified manner. Compared to the current ADE formulations
in which the two media are treated differently, our unified
formulation reduces the implementation complexity.

As to the memory cost, to update each electrical field com-
ponent, P auxiliary complex variables, i.e., 2P auxiliary real
variables, are needed. That is the same as what are required by
using P Lorentz pole pairs in the latest ADE formulation [12].
However, in contrast to a Lorentz pole pair in which ¢, is purely
imaginary, a complex-conjugate pole-residue pair can have a
real partin its c,,. With these additional degrees of freedom, one
should be able to fit a given permittivity function more accu-
rately with the same number of poles than using Debye poles or
Lorentz pole pairs. Below, we show that this is indeed the case.
Thus, using complex-conjugate pole-residue pairs does increase
the computational efficiency.

III. NUMERICAL RESULT

We demonstrate the improved computational efficiency from
the proposed fitting basis of complex-conjugate pole-residue
pairs by modeling two material systems: metal Ag and
GaAs/AlGaAs quantum wells.

The permittivity of a metal is usually approximated with the
Drude-Lorentz model [19], in which the Drude part can be
viewed as a special Lorentz pole pair with the resonance fre-
quency w), set to zero. For Ag, however, the frequency range that
the Drude—Lorentz model can cover is in fact quite limited [20].
We consider the optical constant data of Ag over a very broad
frequency range (0.125-5.0 eV), which are taken from [21]. As
shown in Fig. 1, with one Drude pole pairs and as many as five
Lorentz pole pairs, the optimized fit of Ag’s permittivity func-
tion [20] performs rather poorly at photon energies higher than
4.5 eV. Instead, if we do the fitting with six complex-conjugate
pole-residue pairs, which have the same computational cost, a
significant increase in both the accuracy and the covered fre-
quency range can be achieved. The parameters for these pairs
are listed in Table 1. They are obtained through standard non-
linear least-square analysis.

Fig. 2 shows the FDTD simulation result of the transmit-
tance of a 100 nm thick Ag slab in air. The spatial resolution
in the simulation is chosen to be 1/40 of the shortest wave-
length of interest. The transmittance spectrum calculated with
the ADE formulation in Section II, using the six complex-con-
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Fig. 1. (a) Real and (b) imaginary parts, i.e., » and x, of Ag’s complex
refractive index n — j«. The circles represent the experimental data taken from
[21], the solid line represents the fitting result with the six pole-residue pairs
listed in Table I, and the dashed line represents the fitting result with one Drude
and five Lorentz pole pairs listed in [20].

TABLE 1
VALUES OF THE COMPLEX-CONJUGATE POLE-RESIDUE PAIRS
FOR MODELING THE PERMITTIVITY OF Ag

Parameters Values (unit:eV)

(e a) | (5.987x10"+j4.195x10°%, -2.502x107-j8.626x10™>)
(¢ a2) | (-2.211x107'+j2.680x10, -2.021x107-j9.407x10™)
(¢, a5) (-4.240+j7.324x10%, -1.467x10"-j1.338)
(¢ ag) (6.391x107-j7.186x107, -2.997x107-j4.034)
(cs, as) (1.806+j4.563, -1.896-j4.808)
(o a5) (1.443-j8.219x10", -9.396-j6.477)
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Fig. 2. Transmittance of a 100-nm-thick Ag slab. The circles represent the
analytic results, the solid line represents the FDTD simulation result by using
the six complex-conjugate pole-residue pairs in Table I, and the dashed line
represents the FDTD simulation result by using the one Drude and five Lorentz
poles pairs in [20].

jugate pole-residue pairs in Table I, follows the analytic result
closely. This further confirms the quality of the fit by using the
complex-conjugate pole-residue pairs and verifies numerically
the ADE formulation derived in Section II. In contrast, the trans-
mittance spectrum calculated by using the one Drude and five
Lorentz pole pairs [20] deviates significantly from the analytic
result. For the same computational cost, there is clearly an ad-
vantage of using complex-conjugate pole-residue pairs for the
FDTD broadband simulation of dispersive media.
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Fig. 3. Electroabsorption spectrum of GaAs/Alg.4Gag.¢As quantum wells
at room temperature. The reverse-biased voltage is zero, the well thickness is
95 A, and the barrier thickness is 65 A. The circles represent the measured
data taken from [23], the solid line represents the fitting result with three
complex-conjugate pairs, and the dashed line represents the fitting result with
three Lorentz pole pairs.

As a second example, we consider the electroabsorption co-
efficient of semiconductor quantum wells. The use of quantum
wells as a voltage-controllable absorber is important for active
micro-resonator devices [22]. For these applications, the fre-
quency range of interest is much narrower than that in the first
example. Nevertheless, due to the strong dispersion, it still re-
quires a large number of Lorentz pole pairs to fit the permittivity
function well. As Fig. 3 shows, for the electroabsorption spec-
trum of a GaAs/Aly 4Gag g As quantum well given in [23], using
three Lorentz pole pairs cannot accurately reproduce the whole
spectrum of interest. On the contrary, three complex-conjugate
pole-residue pairs are sufficient for this purpose. To obtain a
comparable accuracy with Lorentz pole pairs, as many as five
pairs have to be used.

Finally, we note that although in this letter we focus on the
ADE method, the proposed complex-conjugate pole-residue
pairs can be implemented in the piecewise-linear recursive
convolution (PLRC) method as well. A similar extension of the
PLRC method was in fact discussed in [10], yet no example
was given beyond the well-known Debye and Lorentz media
types. In conclusion, the use of complex-conjugate pole-residue
pairs, which can be implemented with minor modifications of
standard FDTD algorithms, results in substantial improvement
in the modeling of realistic dispersive media.
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