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We present the theoretical condition and actual numerical design that achieves an optical pulling force in
resonator–waveguide systems, where the direction of the force on the resonator is in the opposite direction to
the input light in the waveguide. We also show that this pulling force can occur in conjunction with the lateral
optical equilibrium effect, such that the resonator is maintained at the fixed distance from the waveguide while
experiencing the pulling force. © 2013 Optical Society of America
OCIS codes: (230.4555) Coupled resonators; (350.4855) Optical tweezers or optical manipulation.
http://dx.doi.org/10.1364/OL.38.003264

Optical force is of significant interest since it provides the
mechanism to couple mechanical motion with optical
field. Some of the recent works on this subject are on
the somewhat counterintuitive optical pulling force or
negative force, where the optical force on an object is
in the opposite direction to that of the incident light
[1–8]. Optical pulling force can be achieved by different
mechanisms. In [2–4], pulling is achieved using optical
gradient force, which attracts the object to spatial
locations with higher light intensity. Optical scattering
force can also provide pulling force if the object can
scatter incident light in a mode with low forward
momentum to an outgoing mode with higher forward mo-
mentum [5–8]. All previous works on optical pulling
force, however, use free-space beams. The diffraction
of these beams then becomes a major limitation. While
[6–8] use nondiffracting Bessel beams to overcome the
difficulties associated with diffraction, a Bessel beam
contains infinite power and can only be approximately
realized.
A natural way to overcome the diffraction problem is

to use a waveguide. Therefore, in this Letter, we design
structures that achieve optical pulling force in an on-chip
waveguide–resonator system (Fig. 1), where light is inci-
dent through a waveguide, and the object experiencing
the force is a side-coupled resonator. Various optical
force effects related to resonance have been extensively
studied before [9,10]. Our focus here is specific to the
study of pushing and pulling forces related to the reso-
nance. For this waveguide–resonator system, the lateral
force perpendicular to the waveguide has been studied
extensively. It has been shown that both repulsive and
attractive lateral force can be achieved at resonances
[11–18]. The longitudinal force parallel to the waveguide
was studied in [17,18] which, however, only reported a
pushing force. In this Letter, we show that one can
achieve a pulling force in the waveguide–resonator sys-
tem. We also show that this optical pulling force can be
combined with the lateral optical equilibrium effect re-
ported in [16], to achieve an all-optical conveyor belt
effect where the object is maintained at the fixed dis-
tance from the waveguide while being pulled along the
waveguide entirely with optical force.

We start by illustrating the general idea for creating op-
tical pulling force in waveguide–resonator system. As a
simple example, we consider a two-mode waveguide.
In this Letter, we normalize the parameters to the length
scale of a, such that if a is chosen to be 1 μm, the oper-
ating free-space wavelength is approximately 1550 nm,
which is the telecommunication wavelength. We choose
our waveguide to be 0.4a wide, made with silicon with
permittivity ϵSi � 12.1, and surrounded by air with per-
mittivity ϵair � 1. We calculate the modes in TM polariza-
tion (electric field along the z direction) using a finite-
element frequency domain method [19], which is suitable
for the simulation of the field excitation of a resonator
because an adaptive computational meshing can be
easily implemented (we use a grid size of 1∕100 to
1∕40 of the free-space wavelength in the resonator and
the waveguide region, and three-time coarser size for
the air region). Note that a coarser grid size is sufficient
to calculate the wave propagation inside each region, but
the fine grid size is used to accurately describe the
curved boundary of the resonator. We found that the
computation boundary can be terminated with either a
perfectly matched layer or an absorbing boundary
condition with little difference.

This waveguide supports an even mode and an odd
mode [Figs. 2(a) and 2(b)]. The dispersion relation (fre-
quency ω as a function of propagation constant k) of
these modes are shown in Fig. 2(c). At a given frequency
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Fig. 1. Schematics of a resonator–waveguide system, with the
definition for the force in each direction on the resonator.
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ω, the even mode has a higher k, and hence a higher
momentum, as compared to the odd mode.
An object placed near the waveguide can scatter light

in the waveguide. This may convert an incident photon in
one mode into a scattered photon in another mode. If an
incident photon is in the high momentum mode, upon
scattering into the low momentum mode, the difference
in momentum is imparted on the object, giving it a push-
ing force. On the other hand, if an incident photon is in
the low momentum mode, scattering into a high momen-
tum mode gives the object a pulling force. This connec-
tion between the modal conversion and the sign of the
optical longitudinal force, as shown in Fig. 2(c), can
be considered as a waveguide analogue of the free-space
pulling force in [5–8].
We support the intuitive picture above regarding the

origin of optical pulling force with analytic calculations.
Rakich et al. [20] show that an optical force F can be
calculated as

F � −

1
ω

X

j

Pj
∂
∂d

ϕj ; (1)

where Pj and ϕj are the power and phase of the output at
port j, respectively, and d is the relevant displacement. In
the configuration of Fig. 1, the j’s in Eq. (1) label different
waveguide modes that the ring resonator couples to.
Note the extra minus sign here in comparison to [20] be-
cause we use the exp��iωt� sign convention. To apply
this formula to the waveguide–resonator system, we
measure the input at x � 0 and the output at x � L, and
assume that the resonator is located at x � xr < L.
Because we are interested in the longitudinal force on
the resonator, d in Eq. (1) is taken to be xr. Let kin be
the propagation constant of the input mode, and kj be

the propagation constant of each output mode. Eq. (1)
then becomes

F � −

1
ω

X

j

Pj
∂
∂xr

ϕj; (2)

ϕj � −kinxr � θj − kj�L − xr�; (3)

where θj is the phase shift due to the coupling with the
resonator, which is independent of xr . Note that all the
output channels, including both the scattering in the
waveguide as well as radiation or material loss, have
to be included in Eq. (1). For scattering in the waveguide,
we use the appropriate kj for the corresponding wave-
guide modes. For scattering into radiation modes, we
use the average forward wavevector of the radiation
modes. In most cases, including our example of a ring
resonator below, the resonator is symmetric in�x direc-
tion. Therefore, the forward and the backward scattering
from these resonators are equal; hence kj for these scat-
tering modes can be taken to be zero. This conclusion is
consistent with our direct numerical calculation of the
waveguide–resonator force. Similarly, for material loss,
we set kj � 0. From Eqs. (2) and (3), the force is then

F � −

1
ω

X

j

Pj�Δk�j; (4)

where �Δk�j � kj − kin. We can also write the input power
in terms of photon flux in each output mode (Φj) as
Pj � Φjℏω, where ℏ is Planck’s constant. Therefore,
we can write

F � −

X

j

Φjℏ�Δk�j: (5)

This means that the longitudinal force per photon comes
from the exchange of momentum ℏ�Δk�j as described in
the intuitive explanation above.

Motivated by the theoretical considerations above, we
next provide a numerical example. We couple the wave-
guide described above with a ring resonator shown in
Figs. 3(a) and 3(b). Even though any object that can cre-
ate mode mixing in a waveguide can experience an opti-
cal pulling force, we use a resonator structure that can
achieve efficient mode mixing in order to achieve a large
pulling force. We use a silicon ring resonator with an
outer radius of 4.3a, inner radius of 3.9a, and permittivity
of 12.1. The silicon region is sufficiently narrow that a
waveguide with the same silicon width supports only
the fundamental mode. The gap between the resonator
and the waveguide is 0.1a.

In Figs. 3(c) and 3(d), we plot the output power in each
mode per input power (Pj∕Pin) as a function of frequency
when we excite either the even or odd modes in the
waveguide. We see that the two waveguide modes excite
the same set of resonances. At the incident wave fre-
quency ω � 0.65 × 2πc∕a, where c is the speed of light
in vacuum, we show the steady-state field distribution,
in Figs. 3(a) and 3(b), when we excite either the even
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Fig. 2. Modal field pattern of a waveguide with width 0.4a,
permittivity of 12.1, at ω � 0.65 × 2πc∕a, in (a) the even mode
and (b) the odd mode. The red (dark grey) and blue (light grey)
represents positive and negative electric fields in the z direc-
tion. (c) Dispersion relation of the above waveguide for the
even mode (dashed–dotted line) and the odd mode (dashed
line). The solid line is the light line ω � ck.
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mode or the odd mode in the waveguide. As can be seen
in Figs. 3(c) and 3(d), we observe significant modal con-
version when the input consists of either mode. As shown
in Figs. 3(e) and 3(f), due to the mode conversion, the
resonator experiences a pushing force if the input is in
the waveguide’s even mode and a pulling force if the in-
put is in the waveguide’s odd mode, in consistency with
the theory above. By inducing strong modal conversion,
the resonance is responsible for achieving a large longi-
tudinal pulling or pushing force.
In this example, the input in both modes can couple

with the resonator due to the approximate phase match-
ing between the traveling wave in the ring and that in the
waveguide. Specifically, at this frequency, the even and
odd modes of the waveguide have the propagation con-
stant k of 2.07 × 2π∕a and 1.43 × 2π∕a, respectively, while
the 0.2a wide waveguide that makes up the ring resona-
tor has k � 1.78 × 2π∕a. In our case, because of the small
radius of the curvature of the ring, the coupling between
the waveguide and the ring does not require exact phase
matching, and our numerical results here indicate that
the phase mismatch is sufficiently small that both input
modes couple to the same resonator mode of the ring,
resulting in large modal conversion. In this system, the

odd mode is closer to critical coupling, and hence has
a higher energy in the resonator, as can been seen by
comparing Figs. 3(a) and 3(b). Also, note that the reso-
nator–waveguide gap is small, such that the coupling
between the resonator and the waveguide in either mode
is much larger than the radiation loss; hence, very little
power is lost into the radiation mode. This can be seen
from Figs. 3(c) and 3(d), where the sum of the power
fraction of the two output modes is very close to 1.

To demonstrate the pulling force, one can consider a
configuration similar to what was shown in [21,22],
where the suspended ring resonator is connected to a
support at its center with thin spokes. With an appropri-
ate dimension and position of the spokes, such as two
thin spokes along the y direction, the system should
be sensitive enough to the longitudinal optical force that
a mechanical response, such as a displacement, can be
measured. Another possibility is by using a microfluidics
system. For example, Schmidt et al. [23] fabricate an op-
tical waveguide under a fluidics channel. A particle in the
fluid near the waveguide experiences an optical pushing
force. This system may be adapted by using a multimode
waveguide with an appropriate optical mode to demon-
strate the optical pulling force proposed by our Letter.

As one application of the optical pulling force, we
show that such a force can be combined with the optical
equilibrium effect discussed in [16] to create an all-
optical conveyor belt. Optical stable equilibrium in the
waveguide–resonator system means that there exists a
gap width de between the resonator and the waveguide,
such that the lateral optical force is zero if the system is
at d � de, repulsive at d < de, and attractive at d > de.
Therefore, a resonator under optical stable equilibrium
is maintained at the distance de by the optical force.
By combining the pulling force with the optical stable
equilibrium, we can create an all-optical conveyor belt
effect, where the resonator does not drift laterally while
being pulled along the waveguide. Intaraprasonk and Fan
[16] show that optical equilibrium in a resonator–
waveguide system can be achieved at frequencies
between a pair of overlapping resonances. Because the
pulling force occurs from the multimode nature of the
waveguide, and the optical equilibrium occurs from
the multimode nature of the resonator, these two effects
are independent in origin and hence can occur
simultaneously.

To illustrate this, we use the same ring resonator ex-
cept that the inner radius is reduced to 3.3a. This allows
the resonator to support two sets of modes with different
transverse modal profiles shown in Figs. 4(a) and 4(b), as
is required for an optical equilibrium. In Fig. 4(c), we plot
U as a function of ω when we excite the odd mode in the
waveguide. Near the frequency ω � 0.654 × 2πc∕a, the
two sets of resonances overlap, with the second-order
resonance at higher frequency. It is then possible to find
an optical equilibrium between these two resonances;
this is shown in Fig. 4(d), where we plot the lateral force
(Fy) on the resonator at ω � 0.6552 × 2πc∕a as a function
of the gap between the resonator and the waveguide (d).
The lateral force is repulsive for d < 0.096a and attrac-
tive for d > 0.096a, creating a lateral optical equilibrium
at d � 0.096a. The longitudinal force on the resonator
plotted in the same figure shows the pulling force on

(a) (b)

(c) (d)

0

0.62 0.68

F
x (

1/
c)

ω (2πc/a)
0.62 0.68

ω (2πc/a)

1

0

1

-0.1

0.4

-0.4

0.1
(e) (f)

0

0

P
j / 

P
in

P
j / 

P
in

Fig. 3. Field pattern of the resonator–waveguide system. The
resonator has permittivity of 12.1, outer radius of 4.3a, and in-
ner radius of 3.9a. The gap between the resonator and wave-
guide has a width of 0.1a. The frequency is ω � 0.65 × 2πc∕a.
The inputs are in the waveguide’s (a) even mode and (b)
odd mode. The input direction is denoted with a black arrow.
(c) Output power in each mode per input power (Pj∕Pin) when
the input is in the even mode. Solid lines denote the even mode
output, dashed lines denote the odd mode output. (d) Same as
(c) but with the input in the odd mode. Fx per input power as a
function ofω for the input in the waveguide’s (e) even mode and
(f) odd mode.
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the resonator. This illustrates the conveyor belt effect,
where the lateral optical force keeps the resonator at
a constant distance from the waveguide while the pulling
force pulls the resonator toward the light source. Note
that this conveyor belt effect can also be achieved with
an optical pushing force in this same structure by simply
exciting the even mode in the waveguide at an appropri-
ate frequency.
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Fig. 4. Field pattern of the resonator–waveguide system with
the same parameters as Fig. 3, except that the ring has the
inner radius of 3.3a instead. The input is in the waveguide’s
odd mode. (a) First-order resonance at ω � 0.6776 × 2πc∕a.
(b) Second-order resonance atω � 0.6747 × 2πc∕a. The input di-
rection is denotedwith a black arrow. (c)U as a function ofω for
the input in the waveguide’s odd mode. Light green arrows
denote the first-order resonances, dark brown arrows denote
the second-order resonances. (d) Fx × 10 (dotted line) and Fy
(solid line) per input power of the system atω � 0.6552 × 2πc∕a.
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