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Systematic Photonic Crystal Device Design: Global
and Local Optimization and Sensitivity Analysis

Yang Jiao, Member, IEEE, Shanhui Fan, and David A. B. Miller, Fellow, IEEE

Abstract—We present a set of modeling, sensitivity analysis, and
design optimization methods for photonic crystal structures based
on Wannier basis field expansion and efficient matrix analysis tech-
niques. We develop the sensitivity analysis technique to analyze
both refractive index perturbations and dielectric boundary shift
perturbations. Our modeling method is 1000 faster than fi-
nite-difference time-domain (FDTD) for searching through a large
number of similar device designs. We show that our optimization
techniques, relying on the efficiency of the modeling and sensi-
tivity analysis methods, enable systematic global and local opti-
mizations of integrated optical components. We show that our de-
sign method can be controlled to favor designs without high-en-
ergy build-ups, potentially making them more fabrication-error
tolerant. We present design examples and verify our designs with
FDTD calculations.

Index Terms—Bragg scattering, design automation, design
methodology, electromagnetic scattering by periodic structures,
integrated optics, optical propagation in nonhomogeneous media,
optimization methods, periodic structures, photonic crystals,
Wannier functions.

I. INTRODUCTION

PHOTONIC CRYSTAL (PC) devices are finding applica-
tions in many areas of optics and optoelectronics. As a

result there is an increasing demand for better PC device anal-
ysis and design tools. Finite-difference time-domain (FDTD)
[1] simulation has become a reliable analysis tool, but it re-
mains computationally expensive for most personal computers.
Efficient plane wave-based eigenmode solvers (PWM) [2] are
greatly simplifying the analysis of PC materials and aiding
resonator designs, but they fail short of supporting analysis of
large arbitrary PC devices. PC device analysis thus remains
a computationally expensive process. Furthermore, there has
been no method available for efficiently and systematically
designing PC devices. Even though physical insights and
innovative modeling provide guidelines when designing PC
devices, the majority of PC device designs still require tedious
trial and error fine tuning [3], [4]. The fine-tuning is particularly
tedious because the standard analysis tools are not fast enough
and their computational cost scales badly with device size. In
this paper, we introduce a set of new design, optimization, and
sensitivity analysis methods for PC devices. The methods are
based on Wannier basis analysis of the device, and on efficient
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matrix analysis techniques that make design optimization and
sensitivity analysis computationally inexpensive. Our design
optimization method allows one to design PC devices that
satisfy arbitrary transmission/reflection characteristics using
modest personal computational hardware. Analysis of perfor-
mance changes due to perturbations, such as fabrication error
and temperature induced index change, is an important step
for PC structure design. Our Wannier basis gradient (WBG)
sensitivity analysis method allows one to calculate the effect of
perturbations with unprecedented speed and efficiency.

Due to the limitations and inefficiencies of FDTD and PWM,
various authors have worked on more efficient methods of an-
alyzing PC devices. Multiple-multipole methods [5], [6] ex-
pand the field in cylindrical or vector spherical harmonics, and
are very efficient at analyzing PC structures made of dielectric
cylinders or spheres. However, the method cannot be general-
ized for arbitrary unit cells. Transfer matrix methods have been
successfully generalized to treat wave propagation in layers of
PC materials [7]. However, because the method treats PC de-
vices as stacks of materials, supercell calculations must be used
in conjunction to handle waveguide structures. This greatly in-
creases the computational complexity of the method for large
structures.

To perform sensitivity analysis on PC strucutre, the standard
finite difference approach is to solve for the performance param-
eters before and after perturbations. Often, computationally ex-
pensive FDTD or PWM simulations need to be repeated for each
perturbation scenario. An emerging technique, the finite-differ-
ence frequency-domain (FDFD) sensitivity analysis method [8],
is much more efficient. The method works very well for arbi-
trary dielectric structures, not just periodic media. Our WBG
method, after a set of initial calculations, is optimized for each
particular PC. To analyze multiple designs in the same PC, it is
more efficient to use the WBG method for sensitivity analysis
than FDFD.

Wannier functions were first used to study quantum mechan-
ical systems in solid state physics. Wannier functions are uni-
tary transforms of the Bloch functions of any periodic system,
including PCs. Like the Bloch functions, the Wannier functions
form a complete basis for analyzing fields. Unlike the Bloch
functions, however, the Wannier functions are localized, i.e.,
they decay to zero rapidly away from a center point. The lo-
calization of the Wannier basis makes them ideal for analyzing
PC defect structures with localized fields. Taking advantage of
the arbitrary phase that can be assigned to the Bloch functions
when constructing the Wannier basis, Marzari [9] developed a
method to maximize the localization of the resulting Wannier
basis. Since then, Busch and many researchers [10], [11] have
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worked on constructing maximally localized Wannier bases for
PCs and have introduced methods for analyzing PC structures
in such a basis. The full power of the Wannier basis representa-
tion, however, has yet to be exploited in constructing a design
and optimization method for PC defect structures. The core of
this paper is to develop such a method, and we will show that it
enables the design of extremely compact PC devices with com-
plex functionalities.

Our design, optimization, and sensitivity analysis methods all
involve a one-time evaluation of a few small perturbation ma-
trices associated with modifications made to a particular single
unit cell in a PC. The perturbation matrices for the same mod-
ification applied to different unit cells or multiple unit cells are
then obtained by trivial matrix additions and shifts of the single-
unit cell perturbation matrices. Furthermore, the same matrices
can be used for different devices constructed in the same PC.
After obtaining the perturbation matrices, both the design and
optimization method and the sensitivity analysis method only
involve a few computationally trivial matrix multiplications. As
a result, in contrast to FDTD and PWM methods, our methods
can be used to design and analyze large PC devices (hundreds
of lattice sites) on personal computers. Also compared to FDTD
and PWM, the new methods do not require finer computational
grids for smaller dielectric boundary perturbations.

We have presented a brief outline of our design and opti-
mization method for two-dimensional (2-D) scalar fields with
isotropic, nonmagnetic materials in [12]. In this paper, we
review Wannier basis EM analysis and develop our design
and optimization method in the general framework of three-di-
mensional (3-D) vector fields, and general permittivity and
permeablity tensors for the PC and for the defects. In [13], we
have outlined our sensitivity analysis method for scalar fields.
In this paper, we present a method for resolving the difficulties
in applying the sensitivity analysis to shifts in discontinuous
dielectric boundaries when we are dealing with vector fields.
This paper is self-contained and presents thorough derivations
of the design, optimization, and sensitivity analysis equations.

In addition, we will introduce a local optimization algo-
rithm that takes advantage of both the design method and the
sensitivity analysis method. Our previous design method is a
global optimization algorithm that finds a good design using a
heuristic search. We will show that the new local optimization
algorithm can be used to fine-tune designs obtained by the
previous method either to further improve the performance or
to optimize secondary characteristics of the design.

We demonstrate our design paradigm with a design of an ex-
tremely compact mode demultiplexer. The device separates the
three modes of the input waveguide and converts them into the
modes of three output single mode waveguides. As the example
will show, the method works even when there is very little phys-
ical intuition to guide the design. We will demonstrate the ap-
plication of our sensitivity analysis method to transmission type
structures as well as resonator structures, and verify the results
with FDTD and PWM supercell simulations.

Lastly, we will demonstrate design refinements of the mode
demultiplexer with two approaches. First, we show the design
can be easily improved if we allow a tradeoff of device area with
device performance. We show that the Wannier basis low rank

update allows us to enlarge a device, increase the transmission,
while maintaining the operation bandwidth. Second we apply
our new localized optimization method to improve the trans-
mission efficiency of the mode demultiplexer design. The new
method improved the peak transmission of the device from 90%
to near unity. We verify the result with FDTD simulations.

In the next section, we will start with the formulation of the
wave equation in the Wannier basis for PC defect structures.
In Section III, we will present the theory behind systematic
design of PC devices using small rank adjustments. Next, in
Section IV, we will present our sensitivity analysis method
for both transmission type structures and resonator structures.
We will elaborate in that section on the application of the
sensitivity analysis method to shifting material boundaries. In
Section V, we present the new Wannier basis local optimization
algorithm. In Section VI, we present numerical examples of the
methods and results of the new local optimization algorithm.
We conclude in Section VII.

II. MAXWELL EQUATIONS ON A WANNIER BASIS

A. Vector Wave Equation in the Wannier Basis for PC Defects

In this paper, we will use lower case bold symbols, such as ,
to denote vectors. Upper case bold symbols, such as , will de-
note matrices. Underlined letters, such as , will denote tensor
quantities. We denote the perfectly periodic PC by the loss-
less permittivity and permeability tensors and . As-
suming a monochromatic field and a linear medium, the source-
free Maxwell’s equations for the E-field lead to the eigenequa-
tions for the periodic system

(1)

where are the Bloch waves indexed by band and
wavevector . The Bloch waves form a complete basis for
physical fields in PC devices. A device in this PC can be de-
scribed by the perturbed tensors

where and represent defects in the otherwise peri-
odic material. For later convenience, we write the inverse of the
permeability tensor as

(2)

where we have defined the perturbation to as . For the
device, we have

(3)

where is the electric field vector, and is the frequency.
To solve for the steady state field for a particular device,
we make use of the Wannier basis functions. The maximally
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localized Wannier functions are defined by the lattice
transform of the Bloch wave basis [9]

(4)

where is the unit cell volume, is a real space lattice vector,
are elements of the unitary transform matrix that

mixes the Bloch functions from different PC bands, and the in-
tegration is over the first Brillouin zone. The inverse relation is

(5)

Now we expand the E-field in the Wannier basis as

(6)

where are the expansion coefficients. The Wannier basis is
a very efficient basis, in the sense that a relatively small number
of expansion coefficients is sufficient to accurately represent
typical fields in a PC structure. Various works have studied the
wave equation in the Wannier basis for structures with dielectric
constant perturbations in both E-field and H-field [10], [14]. In
particular, Busch [10] presented a Wannier basis formalism for
analyzing PC structures with dielectric constant defects. For the
more complete case of vector fields, when both dielectric con-
stant defects and magnetic permittivity defects are present, we
show (see Appendix A) that the source-free wave equation can
be written in the form

(7)

where is the vector of Wannier basis coefficients and
. is the identity matrix, where nm is the

kroneker delta. Elements of are defined as

(8)

The permeability defect matrix describes the coupling of the
Wannier coefficients due to the magnetic defects and

(9)

The permittivity defect matrix describes the coupling of the
Wannier coefficients due to the dielectric defects and

(10)

If we denote the number of lattice sites used in the expansion as
and the number of bands as , then the number of elements

in the vector is . The matrices , and have the
same dimension of .

The efficiency of our design methods partly relies on the ef-
ficiency of the maximally localized Wannier basis expansion.
First, because the Wannier functions are transformations of the
Bloch waves, they contain information about the underlying
crystal. As a result only a few Wannier basis functions per lat-
tice site are needed to represent the field (i.e., the number of el-
ements in the vector is much less than the number of elements
in a plane wave basis decomposition). Second, because the Wan-
nier functions are highly localized, defects induce nonnegligible
interactions only among Wannier functions centered on neigh-
boring lattice sites [(9), (10)]. Therefore, due to the localization
of the Wannier functions, the matrices and are sparse. Due
to the complex exponential term, is also sparse. All three ma-
trices are banded (i.e., elements of the matrices quickly decay
to zero away from the diagonal).

Equation (7) is very general; under most circumstances it can
be further simplified. For example, when there are no magnetic
perturbations, we can write (7) as

(11)

The matrix is invertible since it is positive definite [10].
As a result, (11) can be solved as an eigenvalue equation for the
modes and frequencies supported by a PC structure.

B. Linear Superposition of the Defects and Translation
Property of Perturbation Matrices

An important property of the permittivity defect matrix
is that it can be decomposed into contributions from different
defects. If we can decompose the defect into

(12)

it is straightforward to show from (10) that , with
defined by (10) with in place of . This is true

even when the nonzero regions of the defect functions
are overlapping.

As an important special case, assume we can decom-
pose the defect into contributions from each lattice site as

, where is the contribution
from lattice site . Furthermore assume the defects are the
same, i.e., . Using the defini-
tion of Wannier functions, it is straightforward to show that

, (i.e., is a
simple shift of ). This translation property of the perturba-
tion matrix can greatly simplify the calculation of the defect
matrix , which in turn can speed up sensitivity analysis and
device optimization.

The situation is more complicated with the permeability per-
turbation matrix . We can decompose the defect into

. The term that relies on in (9) is in the
form

In order to write as a sum, the above expression needs to be
broken into a sum, which in general cannot be done. In a couple
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of cases decomposition is possible. First, if there are no dielec-
tric defects but only magnetic defects, then using the duality
of the Maxwell’s equations, the permeability perturbation ma-
trix can be decomposed. Second, if are disjoint in their
nonzero regions, then can be composed and written as

If we just need to analyze an existing design, then we have the
choice of breaking into spatially disjoint contributions. If
we want to optimize a structure by changing an existing device,
however, we may need to treat the change as an additional defect
contribution. In that case, the additional defect may overlap
with the existing defect, and we will not be able to perform
the decomposition. Modifications to the permeability function
cannot in general be treated as simple additive contributions
to the permeability perturbation matrix . In the rest of this
paper we will perform optimization and sensitivity analysis
for dielectric constant perturbations only (though the original
device may contain magnetic materials). If we want to optimize
a structure by modifying solely the permeability function, we
can use the duality of Maxwell’s equations to convert the
problem to an equivalent permittivity optimization problem.
Efficient optimization involvingconcurrent permittivity function
and permeability function changes remains a topic for future
research.

III. SYSTEMATIC DEVICE DESIGN USING LOW RANK

ADJUSTMENTS OF MATRIX INVERSE

The unique algebraic structure of the Wannier function basis
enables extremely fast analysis of PC structures, particularly
multiple structures that differ little from each other. Leveraging
on this property, we can systemically design novel devices with
complex prescribed functionalities by combining Wannier basis
analysis with efficient optimization techniques to search through
tens of thousands of possible designs.

A. Wannier Equations for Input/Output-Type Devices

Consider transmission-type devices, where PC waveguides
are the ports that lead to a central defect region. Equation (7) can
be rewritten in way such that it only deals with Wannier coeffi-
cients for lattices sites close to the central defect region (e.g., the
boxed regions in Fig. 1.). Our formulation for input/output-type
devices closely follows the formulation given by Busch [10]. We
will highlight the structure of the equation that will be useful in
the optimization process.

Without loss of generality, assume, for example, that the
structure has two waveguide ports, where port 1 is a single
mode waveguide and port 2 is a two mode waveguide. Assume
the input excitation is in the form of the mode of waveguide
1. The waveguide regions defined in Fig. 1 are far enough
from the central defect region such that the only nonzero fields
are the propagating waveguide modes. A finite length vector
of Wannier coefficients, , describes the field in the device.
We can expand in the waveguide regions by the normalized
traveling waveguide modes. Let be the vector of Wannier

Fig. 1. White circles define the PC structure. Each box outlines the lattices
sites associated with each Wannier coefficient vector. The regions are large
enough so that there is negligible field outside the boxed regions except along
the waveguide. The overlap between the waveguide regions and the evanescent
field regions is needed to solve for the transmission and reflection coefficients.

coefficients describing mode for waveguide traveling to the
right/left. We can write as

(13)

In (13), , and are the reflection and transmission coef-
ficients for the respective waveguide modes, and is a vector
of Wannier coefficients for lattice sites in the central defect re-
gion. By the notation , where , and are vectors
and is a matrix, we mean a matrix with the vectors , and

as additional columns added to the left of the matrix . In
(13), we defined ,
and . The matrix has more columns than rows. It is
important to note that the vector contains the Wannier coef-
ficients for both the waveguide regions and the central defect
region. Therefore, in (13), and are padded with zeros
of appropriate lengths.

We can now write (7) as

(14)

where , and are now truncated to have the dimension of
the length of vector (number of unknowns) times the length of
vector (number of Wannier coefficients in the central defect
and the waveguide regions).

Now if we define

(15)

we get a matrix equation for the transmission-type devices

(16)

The vector describes the input excitation, and the system
matrix links the input excitation to the system state vector

. The vector , describing the system state, contains both the
Wannier coefficients for the central defect region and the ampli-
tudes of the waveguide modes for the waveguide regions. There-
fore, by solving (16), we fully characterize the device. For de-
vices with as many as hundreds of lattice sites, is small enough
to be inverted in reasonable time on modest personal computing
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hardware. It is extremely computationally expensive, however,
to repeat the inverse calculation in the iterative loop of an op-
timization procedure. We will now develop a method to make
design optimization computationally feasible.

B. Optimization

We start with an initial guess of the device design and form an
initial system matrix . The transmission/reflection coefficients
can then be found with (16) by finding . Next we will
modify the dielectric constant distribution to try to improve
the transmission characteristic. In our algorithm, we assume
there is very little information to guide us in the initial design.
If the initial design is very far from the optimum then a local
optimum found by gradient methods is not meaningful. In this
case, a heuristic global search algorithm, such as simulated
annealing, is more appropriate than gradient methods. This also
restricts the allowable modifications to the dielectric constant
distributions to a discrete set. As we will show by an example, if
we work with a large number of unit cells, restricting allowable
modifications to a discrete set still allows us to satisfy the
transmission/reflection tolerances.

Without loss of generality, we will optimize the dielectric
constant distribution of lattice sites in the optimization region
(see Fig. 1). We assume each lattice site takes on one of the
two allowed dielectric constant distributions (e.g., presence or
absence of a dielectric rod at a lattice site). Generalization to
a larger set of allowed distributions is straightforward. We will
use a simulated annealing algorithm to choose the modification
at each step. Let the allowed modification to the lattice site
be given by . A modification changes the dielectric constant
distribution to . As we pointed out in
Section II.B, the perturbation matrix, , associated with the
modification only needs to be calculated once for one lattice site.
The perturbation matrices for all other lattice sites are simple
translations of the one found. Equation (14) now becomes

where is defined by (10), but with in place of
. This equation can be written as

Since is only nonzero for a few lattice sites around the
modified lattice site, the modification in the optimization re-
gion does not affect the system matrix in the waveguide regions.
Therefore, . For the same reason, .
Therefore, the system equation for the modified device is simply

(17)

After modifying the structure, we can find the new transmis-
sion/reflection coefficients using (17). We can then iterate the
tuning process until the tolerances on the transmission/reflec-
tion coefficients are satisfied.

The main cost of the optimization is solving (17) in each
search step. Let be the size of the system matrix . is typi-
cally several thousand for devices made of several hundred lat-
tice sites. In our method, we dramatically speed up the search

process by taking advantage of a low rank matrix inverse up-
date, made possible by the highly localized Wannier basis.

Because the Wannier functions are localized to a few unit
cells, the matrix is zero everywhere except for
a small number of elements that couple the Wannier coeffi-
cients for the modified lattice site to the coefficients for the
neighboring lattice sites. We can then write as the product
of the nonzero region of (with dimensions smaller than

) with two rectangular matrices. The rectangular matrices
are slices of the identity matrix. Their function is to position the
nonzero region at the correct location in .

For example, if , and is zero everywhere ex-
cept in the block ranging from row 101 to 130 and column 101 to
130, we can then denote as the sub-matrix in containing
all of the nonzero elements, with dimension . We
then have

(18)

where , and
. The identity matrix has the same di-

mension as . and are rectan-
gular block matrices of all zeros.

The matrix is typically not well conditioned, i.e., the
many elements in can be very small, particularly elements
describing the coupling of Wannier functions several lattice
sites apart. Therefore, we use a singular value decomposition
to write

(19)

where , and . In the end, the
rank of the update matrices is , which is typically much
less than 100.

Now, in order to find the new transmission coefficient for a
possible modification, we need to solve (17). In our method, we
dramatically speed up the inversion of by taking
advantage of the low rank of . We can find
using an expression for the inverse of a small rank adjustment
[15], for which we provide a derivation in Appendix B.

(20)

where are given in (19) and (18). Despite the
longer form, (20) involves the inversion of two matrices of di-
mension , and uses that was already calculated for the
initial design. is typically less than 100, while the dimension
of the system matrix is , which can be several thousand. Be-
cause a matrix inversion has a complexity of , using (20)
to find the inverse is at least three orders of magnitude faster than
direct inversion. This speedup means that simulated annealing
based heuristic search has become a computationally practical
design method for PC devices.

The one time inversion of in the initial step is com-
putationally expensive. Because the cost of computing
scales cubically with the number of lattice sites, while FDTD
simulation scales linearly, for large structures (with several
hundred lattice sites), the inversion requires roughly the same



JIAO et al.: SYSTEMATIC PC DEVICE DESIGN 271

amount of time as a FDTD simulation. However, once
is found, using the method presented, transmission for new
designs can be found at least 1000 faster than rerunning
FDTD simulations.

There is also a computational overhead for calculating ,
or more specifically, . As we have shown in II.B, how-
ever, this computation only needs to be performed once for one
type of perturbation to a unit cell. The computational cost is
amortized over the analysis of applying the same perturbation
to other unit cells, for any device constructed in the same PC.

IV. SENSITIVITY ANALYSIS IN WANNIER BASIS

Once we have found an acceptable design using a global
search within a set of discrete modifications, we can fine-tune
the device by using certain continuously tunable parameters of
the dielectric constant distribution (e.g., index or radius of a rod
for a PC unit cell). In this case, the sensitvity of the perfor-
mance parameters with respect to small perturbations is useful
for picking the fine-tuning steps.

We will now develop our WBG sensitivity analysis method
as a separate topic, and tie it to the optimization procedure in
the next section. The sensitivity analysis itself has additional
applications such as evaluating the robustness of PC devices
against perturbations.

A. Transmission Coefficient Sensitivity

We will again assume that each perturbation is restricted to
the unit cell of a single lattice site, and occurs in the optimization
region (see Fig. 1). The optimization algorithm in Section III-B
can be used to treat both lossless and lossy defect structures
in a lossless periodic system. Here, however for the sensitivity
analysis, we assume the defect structure itself is lossless as
well. Furthermore, we assume that the perturbation term is
isotropic.

We employ an adjoint-variable method (AVM) to analyze the
sensitivity. AVM was first applied to PC structures by Veronis
[8] for the FDTD method. Here we will elaborate on its usage
and additional advantages under the Wannier basis.

Assume parameterizes the small perturbation
such that . and are then functions of . To
find the sensitivity of the transmission coefficients w.r.t , we
take the derivative of (17) w.r.t. and get

(21)

Rearranging and evaluating at , we get

(22)

Formally, one of the transmission/reflection coefficients is
given by , where is a unit vector in the form

. The sensitivity of is then

(23)

Following the AVM formulation, we define a vector
that is a solution to the adjoint problem

(24)

With the definition of from (15) we have

where we have used the fact that , and are Hermitian
if the original structure is lossless. Equation (23) then takes the
form

(25)

We obtained when solving the transmission of the
nonperturbed structure, so and can be found with simple
multiplications. Due to the localization of the Wannier functions
to a few neighboring unit cells, typically only has a
few hundred nonzero elements. Multiplying a few matrices and
vectors with a few hundred elements is a trivial computation
for most modern personal computers. After we properly define
and calculate , we will be able to use (25) to find the
gradient of one of the transmission coefficients with respect
to with a simple multiplication.

We can evaluate as

(26)

where switching integration and differentiation is justified be-
cause all the integrals converge uniformly. From line two to line
three of (26), we used the fact that the change in the perturbation
of the dielectric function is the same as the change in the overall
dielectric function.

1) Dielectric Constant Scaling Perturbations: One type
of perturbation where is easily defined is the local
scaling of the dielectric constant distribution. For example,
because of effects such as temperature changes or presence
of electric fields, we could have a scaling of at a
lattice site . This perturbation can be written as ,
where parameterizes the perturbation. From (26), we have

, with defined in Section II.B. The sensi-
tivity calculation using (25) then follows without any numerical
difficulty.

2) Boundary Shift Perturbations: Another important type
of perturbation is the shift in the dielectric boundary. In this
case, however, the calculation of is less straightfor-
ward. Assume the unperturbed dielectric constant distribution

is piecewise constant, and the perturbation
causes a shift of the boundary between the two mate-

rials. Because the derivative in the integral is only nonzero close
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to the shifting material boundary, we only need to consider
the integration over a small volume covering the boundary
shift. For simplicity, consider the contribution to the integral
by a small volume covering an infinitesimal area of the
dielectric boundary. This contribution can be written as a
one-dimensional (1-D) integral

(27)

where we have oriented the coordinate system such that is
normal to the dielectric boundary, and is the area of the di-
electric boundary in the integration volume. We also shifted the

axis so that the dielectric boundary is at when . In
the vicinity of the dielectric boundary, we can write the dielec-
tric constant distribution as

(28)

where and are the dielectric tensors on each side of
boundary. If we try to evaluate the derivative directly, we get

(29)

We will now show that this expression is ill defined. Substi-
tuting (29) back into (25), we get the following expression for
the sensitivity:

(30)

where we have used the fact that the perturbation is in the cen-
tral defect region so that , and we have de-
fined . Now, because of the material
boundary, the normal components of and are discontin-
uous at , and the value of (30) is ill defined.

The source of this dilemma is elaborated by Johnson [16].
The problem is that an infinitesimal boundary shift introduces a
finite change in the dielectric constant distribution, which means
there is a finite change to the E-field. When we are taking the
derivative, however, we assume infinitesimal change in and

when changes by an infinitesimal amount.
To find a physically meaningful quantity for (27), we can

treat it as the limit of a structure with smoothed dielectric con-
stant distribution. With a appropriate smoothing function and
taking the limit using a procedure similar to Johnson [16], we
can resolve the ambiguity due to the field discontinuity. In the
isotropic case, the resulting equation for is

(31)

where is the component of the Wannier function tan-
gential to the material boundary, is the normal com-
ponent, and the surface integral is along the material boundary

. and are the dielectric constants on the opposite
sides of the dielectric discontinuity. We can check that the am-
biguity is indeed resolved. Substituting (31) back into (25), we
get the following expression for the sensitivity:

(32)

The tangential component of the E-field and the permittivity
times the normal component of the E-field are both continuous
across the boundary, so (32) gives the same value regardless of
from which side of the boundary we evaluate the integral. There-
fore, , as defined by (31), will give the same sensitivity
regardless of on which side the boundary we evaluate (31).

3) Advantages of WBG: After we determine the perturbation
matrix for one specific unit cell, applying the same
perturbation to other unit cells, or multiples of them, is compu-
tationally trivial. Following the argument in Section II-B, if the
dielectric constant distribution changes by , it is
straightforward to show that the sensitivity can be evaluated as

(33)

where

(34)

Matrix shift is a trivial operation. Therefore, after a one-time
calculation of , we can use (33) to map out the sen-
sitivity to the perturbation of each and every unit cell, as well
as coherent effects caused by simultaneous perturbation of mul-
tiple unit cells. All this can be done in a matter of seconds on
modest personal computing hardware.

Sensitivity analysis in the Wannier basis can greatly reduce
the required resolution on the computational grid. Actual nu-
merical implementation of any sensitivity analysis method in-
volves approximating continuous functions by discretization.
For small shifts in the material boundary, direct finite differ-
ence using FDTD or PWM needs high-resolution computational
grids in order to resolve the perturbation. In our method, the in-
tegral in (31) is approximated by a discrete sum over a discrete
spatial grid. Assume the Wannier functions are found on a com-
putational grid too coarse to resolve the boundary shift. Because
both and are continuous and vary
significantly only over distances comparable to the wavelength,
simple interpolation of the Wannier functions to a higher reso-
lution grid can increase the accuracy of (31).

4) Eigenfrequency Sensitivity: Under the Wannier function
expansion, we can also calculate the sensitivity of resonator
eigenfrequencies to perturbations. Again we first consider a per-
turbation to one unit cell in the vicinity of the resonator cavity.
If parameterizes the perturbation , then the master
equation for the eigenfrequency, (11), becomes

(35)
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We can directly solve (35) as a generalized eigenvalue equa-
tion for the new resonator eigenmodes. If is an nondegen-
erate generalized eigenvalue, we have shown in Appendix C that
the sensitivity of is given by

(36)

where is a left eigenvector associated with such that

(37)

If we assume that the structure before perturbation is lossless,
then . Using the definition of from (26), and
the fact that , we get

(38)

This is the same result as derived from perturbation theory [16].
However, in contrast to (38), (36) is a computationally trivial
matrix multiplication, involving and a few parame-
ters that are independent of the perturbation and easily obtained
when we calculated the eigenfrequency using (11). All the ad-
vantages from calculating first and reusing it, men-
tioned in the previous section, still apply here. As a result this
method possesses significant speed savings over doing field in-
tegrals every time using (38). We will refer to both (36) and (25)
as the WBG method for sensitivity analysis.

For sensitivity analysis involving shifts in the dielectric
boundary, we again use (31) to calculate . Using (36)
and the fact that , it is straightforward to show
that this method of finding resolves any ambiguity
due to field discontinuities.

V. SYSTEMATIC DEVICE DESIGN WITH WANNIER BASIS

LOCAL OPTIMIZATION

We envision a typical design process where we use either the
Wannier basis discrete global search or some other means to
obtain a device design that is close to meeting the design spec-
ification. Normally, we can improve the device performance by
fine-tuning parameters such as the dielectric constant or the di-
mension of a geometrical feature of each unit cell in the opti-
mization region. In this section we present the design algorithm
that fine tunes PC device designs systematically in computa-
tionally practical time. The algorithm uses the WBG sensitivity
analysis and the small rank adjustment discrete update [(20)] as
building blocks, applies the two blocks in a repeated leapfrog
fashion, and efficiently reuses intermediate calculations from
one block to the next.

We start by calculating gradient vectors
, where represents the transmission on the desired

output for output channel , and
parameterizes the fine-tuning for each of the unit cells. To
make the fine-tuning computationally efficient, we fine-tune
the same parameter for each unit cell. An element in the vector
for the rod at is calculated using (23). Because the same
type of perturbation is applied to all unit cells, we only
need to calculate the matrix for a single unit cell,

and the remaining matrices are related to by trivial
shifts as described in Section II.B. For devices of typical sizes,
calculating the gradient vectors with a total of 100 elements
only takes a few minutes on a Pentium III computer.

To fine-tune the design for better performance, we try to min-
imize the cost function

where is the desired transmission for output channel . The
gradient of this cost function with respect to the fine-tuning pa-
rameters can be found using the transmission gradients, found in
the first step, and the chain rule. Of course, there could be more
complicated design specifications, such as controlling the phase
of the transmission, or controlling the field strength on specific
locations of the device. Because the Wannier basis analysis is
a rigorous method for calculating the field, the gradients of all
such parameters w.r.t. fine-tuning parameters can be obtained
through WBG sensitivity analysis.

Using the WBG method to find the gradient efficiently, we
can then apply any gradient-based local optimization algorithm
to search for a local optimal in the design. Such methods in-
clude steepest descent and conjugate gradients .[17]. In each
iteration, after the optimization algorithm chooses a direction
and distance to go in the design space, we need to evaluate the
performance of the new trial design. The small rank adjustment
method described in Section III-B is used again. The modifica-
tion to the device given by the local optimization algorithm can
be treated as a small rank adjustment to the system, and new
transmission coefficients can be found very quickly using (20).
For typical device sizes, it only takes a few minutes to find the
new transmission coefficients on a Pentium III computer.

From (20), we also obtain the inverse of the new system ma-
trix. For the next iteration in the optimization, the new inverse is
then used in (23) to find the gradient for the modified structure.
After the gradient is found, the process repeats until we have
found the local design optimum. As we can see, this process is
very efficient because the update and gradient calculation of the
local optimization can be both done in the Wannier basis, al-
lowing the gradient calculation to benefit from the intermediate
result of the update calculation.

The fine-tuning involves modifying the structure in iterations.
The matrix only has to be calculated once if we only
scale the dielectric constant of a feature in each unit cell. Tuning
the geometry of the feature, however, needs to be done dis-
cretely, because the perturbation matrix for geom-
etry change may not scale linearly with the change. To solve
this problem, we can discretize the range of geometrical vari-
ation into a discrete set. For example, if we are changing the
rod radius in a PC of high index rods, we can approximate the
continuous radius change by a set of discrete values. Practically
speaking, a set with 50 radius change steps would be more than
sufficient, because the resolution would exceed today’s fabrica-
tion error tolerances, and the step size would be much smaller
than a wavelength. We would then proceed to calculate 50 per-
turbation matrices and their derivatives once for
all, one for each step in the rod radius increase. In each step
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Fig. 2. (a) Initial guess at the mode separator structure. The PC parameters are given in the text. Arrows shows the input and output ports. The dashed rectangle
shows the optimization region of the structure that is altered in the search process. (b) Device before enlargement. The numbered boxes represent the regions and
the order to which the optimization is applied. The existing device region is not changed in the optimization. (c) Final device after increasing device size.

of the optimization, the perturbation matrices will be chosen
based on the current value of the fine-tuning parameters. The
desired modification would be approximated using the allow-
able radii in the discretized set, and the procedure would be re-
peated. Additional constraints, such as minimum radius that can
be fabricated, can be included in the design process by using
a sequential quadratic programming optimization method [18]
rather than conjugate gradient.

The number of steps needed to converge to the local optimum
depends on the initial design, i.e., the design obtained using the
discrete Wannier basis global search. The number of steps also
depends on the number of fine-tuning parameters and the opti-
mization algorithm used. For the numerical examples in the next
section, the number of steps necessary is typically in the range
of hundreds.

Finally, we must stress that the small rank adjustment is vital
to enabling a local optimization algorithm. Until now, pertur-
bative methods have been the only computationally practically
way for repeatedly calculating the device characteristics when
many design parameters are perturbed. However, a local opti-
mization process can take hundreds or thousands of steps to
converge. The cumulative error of a perturbative method for cal-
culating performance numbers can render the local optimiza-
tion useless. Our low rank update method, however, is an exact
process for updating the performance figure in each local opti-
mization step, with a computational complexity comparable to
perturbative methods. This is the key to enabling a viable local
optimization algorithm for PC device design.

VI. NUMERICAL EXAMPLE

We demonstrate our small rank adjustment design method
using a mode separator design example. We wish to design a
device that separates three guiding modes of a multimode wave-
guide around an operating wavelength of 1503 nm. Previous
mode separator designs either use adiabatic mode transforma-
tion [19], which makes the devices very long, or they rely on the
symmetry of the modes [20], which limits the separation to odd
and even modes. Our design does not have either of these short-
comings. We start with a 2-D PC made of high index cylinders

in air.
The initial guess for the design is shown in Fig. 2(a). The input
waveguide made of three rows of missing rods supports three

Fig. 3. Power transmission spectra at the intended output ports for 3 input
modes. The original and the optimized spectra correspond to structures shown
in Fig. 2(a) and (b) respectively. The peak transmission is improved in the
optimized structure without significant degradation to the bandwidth.

modes. The three output single mode waveguides are made of
single rows of missing rods. The final design will take the three
modes of the input guide and separate them into the three output
waveguides. The initial guess shown is quite arbitrary, however,
and the initial structure does not act like a mode separator at all.

Next we search for a better design by removing or adding rods
to the optimization region outlined in Fig. 2(a). Using the small
rank adjustment global optimization described in Section III-B,
we obtain the mode separator design shown in Fig. 2(b), with
transfer functions shown by the dashed curves in Fig. 3. For all
three input modes, the contrast ratio of the intended output to the
unwanted output is greater than 15 dB. The contrast ratio between
the intended output and the reflection is greater than 10 dB. The
devicesize is13 21 latticeconstants.For1.5- moperation, this
meansadevicesizeof8.2 13.3 m. Incomparison,modefilters
using multimode interference couplers are 100 m in length
[20]. It should be noted that the device size we quote is the area
with nonnegligible field, not just the area with defects. This is the
most compact mode separator/converter known to the authors.
We now show different Wannier finetuning methods for greatly
improving the performance of this design.

A. Fine-Tuning by Trading Off Device Size for Performance

We see from Fig. 3 that the peak transmission for the original
design is 90%. We achieved this in a binary design space with
105 rods (removal or addition of each rod). We could improve
the performance further by solving several much smaller opti-
mization problems at the expense of enlarging the device area.
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More specifically, in the first optimization step, we will remove
or add the high index rods forming the PC, in the boxed region 1
shown in Fig. 2(a). We use (20) to calculate the new transmis-
sion/reflection. In the second step, we optimize the rods in box 2.
Repeating the process, the device performance is improved by
successively stacking layers of perturbation to the output of the
device. The performance measure is the sum of the square of
all unwanted reflections and transmissions for all three input
modes.

In the Wannier basis global optimization to obtain the design
in Fig. 2(b), the search was done using simulated annealing.
A systematic search was impractical because there were 2
possible designs. In the six device enlargement steps, however,
we only consider designs at each step. With the
efficiency of the Wannier basis update, a through search can be
done.

It is true that a better design may exist if we optimize the six
enlargement regions together in one step. However, intuitively
the step-by-step approach has a good chance of finding a good
design. At each enlargement step, the tuning region is always
perturbing the previous design and field pattern from one side
only. Imagine moving the current tuning slice to the right away
from the device region, then each enlargement step would be a
isolated filter tuning the output of the mode separator. Stacks
such filters (from the 6 tuning steps) are strong and commonly
used modalities for tuning the output of a device, and we ex-
pect that the stacking of the filters close together will only do
better. This close stacking is not explored before, because only
the Wannier basis update approach can efficiently handle the
strong interaction between the closely stacked filters.

Fig. 2(b) shows the device after optimization. On a 1-GHz
Pentium III computer each update took about 3 s to compute.
The final design is found in 24 hours of computer time, after
searching through all 24 576 possible designs. We would like to
emphasize the dramatic reduction in computational complexity
of the method. If FDTD simulations are used, roughly 10 h
would be needed on the same computer to find the change in the
transmission for the addition or removal of one rod. Finding the
optimized device, where we calculated the effect of tens of hus-
bands of possible perturbation scenarios, would be extremely
computationally expensive for FDTD. It should be pointed out
that, before starting the optimization, we needed roughly 10 min
of computation time to calculate the perturbation matrix for
perturbation to a single unit cell. This matrix, however, only
needs to be calculated once as we discussed in Section III-B.

Fig. 3 compares the device performance before and after op-
timization. We can see that the device characteristics, especially
the transmission into the desired output at 1500 nm, are greatly
improved compared to the initial design. Note that we have re-
stricted our design space to the complete removal or addition
of high index rods to the device region. The rods all have the
same index and radius. Although arbitrary transmission charac-
teristics are not always achievable, Fig. 3 shows that very good
transmission characteristics can be obtained. Furthermore, the
simple geometry makes the design much easier to fabricate.

Fig. 3 is obtained using the FDTD calculations. The FDTD
result validated our Wannier basis analysis. At the design
frequency, the transmission/reflection coefficients found using

Fig. 4. Sensitivity of the transmission coefficients to dielectric perturbation of
each individual rod. Darker shading around each rod represents a larger change
to the sum of the squares of the wanted transmissions for the corresponding rod.

FDTD agree well with the Wannier basis calculations. Most
importantly, the FDTD spectra show that even though we have
optimized the transmission for a single frequency using our
method, the resulting device has a working bandwidth of about
5 nm. This is because we have chosen the device enlargement
regions to be next to each other, and made all defects in the
device enlargement regions weakly confined. The fact that
none of the defects will introduce sharp unwanted spectra fea-
tures ensures our design will have a usable bandwidth. This is
confirmed by the smooth spectra in Fig. 3. In other words, this
method of enlarging the device could be controlled to generate
designs without unwanted high- cavities, which potentially
makes the designs more tolerant to fabrication errors.

B. WBG Sensitivity Analysis

WBG provides a powerful and efficient means of performing
sensitivity analysis for the mode separator designed in the pre-
vious section. Identifying the more sensitive regions in the de-
vice is of interest for understanding both device operation and
fabrication. For the sake of demonstrating the analysis tech-
nique, we assume the dielectric constant of each rod is per-
turbed. We can now use (33) to calculate the derivative of the
sum of the intended transmission power w.r.t. the index of each
rod. Fig. 4 shows the result of the sensitivity calculation. From
the figure we can readily identify regions of the device that are
most sensitive to perturbations. By examining the field distribu-
tion, we can see that the most sensitive regions roughly match
the regions with the highest field concentration. This provides
an intuitive verification of our sensitivity analysis, and also sug-
gests that, in design of photonic nanostructures for minimum
sensitivity to variations in the structure, regions of high field
concentration should be avoided if possible.

It should be pointed out that, if FDTD simulations are used,
roughly 10 h would be needed on a Pentium III computer to find
the change in the transmission for perturbation to just one single
unit cell. Generating the sensitivity map in Fig. 2(a), where we
calculated the effect of perturbing 33 individual rods, would
be extremely computationally expensive for FDTD. In contrast,
our WBG method took roughly 10 s to compute the whole sen-
sitivity map. We also verified the WBG sensitivity calculation
for resonators using the PWM method. The agreement is to three
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Fig. 5. FDTD transmission and reflection spectra before and after fine tuning using a combination of optimization based on sensitivity analysis and optimization
based on small rank adjustment. The spectra are for the second-order input waveguide mode. Ports 1, 2, and 3 refer to the three output waveguides.

significant figures, with similar 1000 calculation speed gain.
If we need to search through a large number of designs for a
given sensitivity criterion, using the WBG approach is the only
available practical method known to the authors.

C. Systematic Device Design With Wannier Basis Local
Optimization

We will again use the mode multiplexer to demonstrate the
device design process with Wannier basis local optimization.
As we can see from Fig. 3, the peak transmission through the
original mode separator is around 90%. Ideally we would like to
increase this figure to 100%. In this section, to further improve
the transmission, we will fine-tune a large number of design
parameters simultaneously. For the sake of this demonstration,
we will try to fine-tune the dielectric constant of the remaining
high index rods in the optimization region [see Fig. 2(a)]. There
are 33 rods remaining in this region.

To find the sensitivity of the transmission w.r.t.
the rod indices, we calculate three gradient vectors

, where represents the trans-
mission on the desired output for input mode , and

parameterizes the index change
in the 33 rods. The fine-tuning involves modifying the structure
in repeated steps, but because for all steps and for each
rod, we will be only scaling the rod’s dielectric constant,

only has to be calculated once. For this
specific structure, can be calculated
on a Pentium III computer in roughly 3 min. Our goal is to
maximize . In this example, after
finding the gradient of , we use steepest descent to choose
the modification to the 33 rods in each iteration. Each iteration
takes roughly 3 min on a Pentium III computer, including
the time to find the new transmission coefficients. The local
optimum was found in roughly 500 iterations.

Fig. 5 shows the transmission spectrum before and after the
optimization for the second-order mode. The spectrum is found
using FDTD simulation in order to verify the result obtained
using our Wannier based methods. Similar results are obtained
for the other two modes. From Fig. 5 we can see that the peak
transmission increased from 90% to nearly unity after the opti-
mization. This example demonstrates that combining sensitivity

analysis with small rank adjustment is a powerful tool for de-
signing realistic functional devices.

Physically, changing the index of each rod poses a challenge
to today’s fabrication techniques. Changing the radius of the 33
rods in the optimization region may be easier from a fabrication
standpoint. In our optimization, we presumed that we could tune
the index continuously. We did not choose to modify the rod
radii in this example for two reasons. First, changing the index
is sufficient to demonstrate the idea of combining sensitivity
analysis with low rank inverse adjustment. Second, fine-tuning
the rod radius is a trivial task in the Wannier formulation, but
simulating the resulting structure in FDTD would require ex-
tremely high-resolution computational grids. This would have
made the verification of our final design much more trouble-
some. We expect changing the rod radius will achieve similar
results as changing the index.

VII. SUMMARY

We have presented a powerful general framework for de-
signing PC devices by utilizing efficient optimization and
sensitivity analysis techniques. We demonstrated that our Wan-
nier-function-based global optimization can be used to design
extremely compact PC devices with complex functionalities. In
the design process, we analyze perturbed device characteristics
exactly, without linearization approximations. Our optimization
method probes large sets of discrete changes to a device with
unprecedented speed and accuracy. This allows us to design
useful devices even when there is little physical intuition to
guide the initial guess of the device structure. Furthermore,
we have shown that our sensitivity analysis method, due to
its computational speed, can be used with our discrete update
method to fine-tune the PC device designs.

Our sensitivity analysis of the mode separator empirically
confirms the intuition that the areas with higher field concentra-
tion are the ones that lead to the highest sensitivity to fabrication
variations. In future research, the objective function in our de-
sign optimization can be chosen to favor designs with relatively
uniform field concentration throughout the structure, which will
make the device designed using our method less sensitive to fab-
rication variations. The numerical examples here are presented
in 2-D. The Wannier based design formalism, both the Wannier
basis analysis and the optimization methods, can be generalized
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to 3-D. For 2-D structures with finite thickness, such as high
index slabs with air holes, the Wannier based design formalism
can be applied easily when the radiation loss is negligible. With
further research, we believe radiation loss can also be included
in the Wannier basis device optimization as well, possibly using
a matrix renormalization technique. We believe the methods in
this paper will enable researchers to design compact PC devices
with novel and complex functionalities.

APPENDIX

A. Vector Wave Equation in the Wannier Basis With Both
Permittivity and Permeability Defects

We can further simplify the left-hand side of (3). For the pe-
riodic part, we get

(39)

where we used (1) for the last line. The integral in (39) can be
written as

where we have defined the matrix elements , in the last
line. Putting this back into (39), we get

(40)

Multiplying (40) by and integrating

(41)

where we have used the orthogonality of the Wannier functions.
The defect term in (2) for the permeability leads to

where we used the vector identity
. Using Gauss’s theorem on the second term in the

integral, and the fact that the Wannier functions approach zero
quickly enough at infinity, the second term vanishes. Defining
the rest of the integral as the permeability defect matrix element

we get

(42)

The right-hand side of (3) is somewhat simpler to expand in
the Wannier basis

where we used the orthogonality of the Wannier basis functions
in the last step. Defining the integral term as the permittivity
defect matrix element

(43)
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we get

(44)

where is the Kronecker delta. Combining (44), (42), and
(41), we get the Wannier basis system equation

(45)

To simplify notation, we will write the set of Wannier basis
coefficients in vector form: . Now (45) can be
written in the form

(46)

where is the identity matrix, and each dimension of the ma-
trices are indexed by both and .

B. Small Rank Adjustment to the Inverse

The small rank adjustment to the inverse is also known as Ma-
trix Inversion Lemma or the Sherman–Morrison–Woodbury for-
mula. A derivation is provided below for reference. For square
matrices and , assume can be written as ,
where is a skinny (a rectangular matrix with a longer vertical
dimension), is square, is fat (longer horizontal dimension),
and is full rank. Given , we wish to find . Let

, we have

(47)

Multipling the third line of (47) by , we have

(48)

Now substitute (48) into the last line of (47); we have

(49)

Now if we substitute with and with in (49),
we get (20).

C. Sensitivity for Generalized Eigenvalue

Reference [15] has given a sensitivity equation for classical
eigenvalues; here we generalize it to generalized eigenvalues.
Let be an nondegenerate generalized eigenvalue of any two
matrices , then the generalized eigenvalue equations are

(50)

where and are the right and left eigenvectors of asso-
ciated with . Multiplying the first equation by , we get

Equivalently, we can write as

Taking the derivative of the above expression w.r.t , we get

(51)

Substituting (50) into (51), we get

(52)

Replacing by and by , and using
the fact that we assume do not change with (i.e., no
magnetic defects), we get the WBG resonator sensitivity equa-
tion.
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