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We use Hamiltonian optics to design and analyze beam propagation in two-dimen@Bngberiodic
structures with slowly varying nonuniformities. We extend a conventional Hamiltonian method, adding equa-
tions for calculating the width of a beam propagating in such structures, and quantify the range of validity of
the extended Hamiltonian equations. For calculating the beam width, the equations are more® thiauesl0
faster than finite difference time domaRDTD) simulations. We perform FDTD simulations of beam propa-
gation in large 2D periodic structures with slowly varying nonuniformities to validate our method. Beam path
and beam width calculated using the extended Hamiltonian method show good agreement with FDTD simu-
lations. By contrasting the method with ray tracing of the bundle of rays, we highlight and explain the
limitations of the extended Hamiltonian method. Finally, we use a frequency demultiplexing device optimiza-
tion example to demonstrate the potential applications of the method.
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[. INTRODUCTION the classical optical Hamiltonian equations can be used to
track the beam path for a ray propagating in the nonuniform
Radical dispersion properties of periodic photonic nanostructure. With the beam path known, we can then use the
structureg1,2] has recently generated much research interestxtended Hamiltonian equations that we developed to track
[3]. For applications such as group velocity dispersion comthe beam width for a Gaussian beam propagating in a non-
pensation and frequency demultiplexing, however, periodiginiform structure. The computational cost for calculating the
structures arguably do not offer enough design freedom télispersion relationship is amortized over all designs based on
achieve the desired input/output dispersion relation ovefhe same type of nonuniformities, e.g., all designs based on
large frequency ranges. In such cases, nonperiodic structur8gnuniform distribution of the high index cylinder radius.
could perform much better than periodic structui@s). In- After the dispersion relationships are calculated for each pos-
troducing nonuniformities in two-dimensionaD) and sible type of_IocaI structure, the speed gdvantagg of the ex-
three-dimensional3D) periodic structures, such as high- €nded Hamiltonian method over FDTD is dramatic.
index cylinder/sphere arrays, will also allow more freedom P(ewomljsl work Ion a_lp;]pl)r/]mg F|Ian1||ltpn|anfoEt|cs to periodic
in the design of the device input/output characteristics. Ther%pk?ggass?siigl dH?aertT;[iI)[,(\g:]ia:] rengf;]glé ?stlg?sg uge?‘urla:‘)érpc@a.flﬂéulat-
has, however, been much less study .of 2D aT‘d sD ”°!"”“%hg the time of flight of a ray in nonuniform periodic media
form structures, partly due to the difficulty in analyzing

L . , ) . and the frequency dependency of the ray pgth The
them. Finite difference time doma{®DTD) ;lmulatlong €aN  method has also been used to show that chaotic ray paths can
be used to analyze such structures, but it is very time co

) X 2= COM5e easily achieved in nonuniform periodic me¢#. How-
suming [6]. In this work, we use a Hamiltonian optics eyer, without an understanding of the evolution of the beam
method to design and analyze the beam path in for Gaussiagidth, practical design with such periodic media with non-

beams propagating in 2D periodic structures with slowlyyniformities would be very limited. For example, the beam
varying nonuniformities. Furthermore, we extend the con-yidth is critical for any beam steering device. Therefore, the
ventional Hamiltonian method with equations for calculatingbeam width equation we introduce here is a critical refine-
the beam width in periodic structures. For a beam propagaiment to the Hamiltonian method for analyzing propagation
ing in a nonuniform structure, the extended Hamiltonianin periodic media with nonuniformities.
method can calculate the beam path and the beam width at To the best of our knowledge, there are no previous pub-
least 18 times faster than FDTD simulations. Where slow- lished large-scale FDTD simulations of beam propagation in
ness of the FDTD method restricts it to a tool for analyzingperiodic media with gradual nonuniformity. In this work, we
given structures, the speedup allows the extended Hamiperform FDTD simulations of 2D periodic structures with
tonian method to be used as a design tool for the intentionalonuniformities, with dimensions on the order of 20000
introduction of nonuniformities into periodic photonic struc- lattice constants. These simulations validate the beam path
tures for exciting device functions. and the beam width calculated with the extended Hamil-
The efficiency of the extended Hamiltonian method reliestonian equations. FDTD simulations of structures at this
on the local periodicity of the structure. If the nonuniformity scale are very time consuming, whereas the computational
occurs over many periods, locally the structure is approxicomplexity of the extended Hamiltonian equations is essen-
mately periodic. Therefore, we can define and calculate théally independent of the device size.
Bloch wave dispersion relationship, locally, for each position In Sec. Il we develop the extension to the Hamiltonian
inside the structure. With the dispersion relationship knowngquations in the context of bulk media with slowly varying
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nonuniformities. We explain the applicability of the extendedrespect tor, and substituting Eq(4) into the expression,
Hamiltonian equations to periodic media with nonuniformi- therefore justifying our choice for the effective Hamiltonian
ties in Sec. lll. In Sec. IV, we provide a measure for theof the problem.
range of validity of the extended Hamiltonian method, vali- The widely used dispersion relationshif(k ,x) is ob-
date the method with FDTD simulations, and explain limita-tained by solving Eq(3) for fixed x. We can write Eq(4) in
tions of the method with a comparison to ray bundle tracingterms of thew(x,k) rather thanH(x,k,w). Using the fact
Finally, we use a numerical optimization example in Sec. Vthat, for a solution we must havd(x,k,w(x,k))=0, and
to demonstrate the potential applications of the method.  taking partial derivatives dfi(x, k , o(x,k)) with respect to
andk, we get

Il. THE HAMILTONIAN EQUATIONS Jdw
AND EXTENSION Ix =

IH o aH
K)—, — = K)—
C(x, )ax’ K C(x, )ak’ (5

A. Hamiltonian optics where the scaling factd®(x,k)=—(dH/ dw)* is the same for

Hamiltonian optics has traditionally been used to describgy| six partial derivatives. TherefordgH/aox,dH/ ok} and

the optical ray path in bulk dielectric media with slowly {4a/x, 9w/ dk} always point in the same direction. Thus Eq.
varying propertie$9]. We will define the characteristic inho- (4 can also be written as

mogeneity length_ as the shortest distance over which the

nonuniformity changes the medium significantly. We assume dr Jdw(x,k) dg d w(X,k)

the field behaves similar to a plane wave locally, and has the dt = ok ' dt =" T ax (6)
form E(x)=a(x)exdis(x)], wherex={x%,x?,x% is a dimen-

sionless coordinate system, scaled from real spatial coordi-

nates{X*, X2, X3 as in {xt,x%,x3={X/L,X?/L,X3/L}. By The curve {r(t),q(t)} describes the same curve as
substituting the assumed form Bfx) into Maxwell's equa- {r(7),q(7)}, but parametrized by the parameténstead ofr.
tions, and using the slowly varying approximatipmg., the  Using the definition of group velocity = dw/dk, dX/dt can
wave amplitudea(x) varies much more slowly than the now be identified with the group velocityycan be identified
phase, and therefore the spatial derivativa(a is ignored, simply as time, and (t), q(t) can be identified with the

we will get a equation foa(x): optical ray path and the wave vector along the ray path,
) respectively.
[(E) (k|21 -kkT) - e(x) | a=0, (1) Because the Hamiltor_ﬂan equatiqd) is_ satisfied for e_zi-
1) ther theH(x, k) obtained in Eq(3) or the dispersion relation

w(x,k), we will refer to both quantities as the Hamiltonian.
We will consistently useH(x,k) in the rest of the paper to

is the transpose df (so thatkk T forms a matrix or tensor denote the Hamlltonlan.. This notation S|gn|f|e§ the.equwa—
lence of Eq.(4) to classical Hamiltonian equations in me-

We assumed the nonuniformity comes from the spatial de han

pendence of the dielectric tensor. Now we define the math® zlafmcs.k H(x.K) or the di . lati t hi

ematical entity that will become the effective Hamiltonian We Know Hix, k) or the dispersion relation at eacn 10-
cation in the bulk dielectric medium, then E@l) can be

for this problem, i.e., we choose ) . : .
integrated to give the ray path for all later times given the
B c\? 2 - initial ray location, and the initial wave vector. For Eg) to
H(xk,w) = de - (k[*=kk) =) |. (2 pe valid,L needs to be large compared to the wavelength
It should be noted that the Hamiltonian equations in op-
In order for a nontrivial solution to exist fa, we must have tics are analogous to the WKB method of quantum mechan-
)2 ics. Both methods start by assuming a field that has an am-
dev{(—) (|k|2| —kkT)—g(x):| =H(x,k,w)=0. (3) plitude that varies much slower than the phase, and that
w scattering can be neglected. Useful approximations of the
For fixedw, we look for the parameterized curfe(7),q(7)} field pattern are then found by substituting into either ng-
in the 6D spacéx, k} such that Eq(3) is satisfied. Herer is well's eq_uatlonS or the Schrbdmger equation as appropriate.
the parameterization variable. If E@) is satisfied, them(7) We wil sh(_)w n _Se_c. ”.I that, if a packet of Bloch waves
describes the path followed by the wave, arid) describes has a Gaussian distribution of the transveksgector, the

: envelope of the field will behave like a Gaussian beam field.
the wave vector along the path. We can now find that(By. . : ; )
. e . Therefore, by using the photonic crystal dispersion surface
is satisfied on the curvé (7),q(7)} if the curve obeys the . ! . 4
L . instead of the bulk medium dispersion surface, and Bloch
Hamiltonian equations

waves instead of the plane wave components in a Gaussian
dr  dH(x.k,®) dg IH(X,K, w) beam, we can apply E@) to ray propagation in nonuniform
dr = T ok dr == T ax (4) photonic crystals. The same argument applies to the extended
Hamiltonian equations, which we will develop next, in part
It can be verified that Eq4) is a solution of Eq.(3) by B of this section. For clarity, we will introduce the extended
taking the full derivative of the left-hand side of E&) with Hamiltonian equations for Gaussian beam propagation in

wherew is the frequencyg(x) is the dielectric tensot, is the
identity matrix, we definett = Vs as the wave vector, ard
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bulk nonuniform dielectric media, keeping in mind that ap- exd- ¢'(x)] = exp(— %Pi"(T)Win), (11)
plication to photonic crystals is straightforward. - . .
wherep|; specifies the beam width.

] ] ) It is important to estimate and then keep track the relative
B. Extension to beam width calculations rates of variation for the terms in E@10). The medium
First we introduce some notations. We define a generalproperty changes by a significant percentage over a distance
ized coordinate systerfr (x),w'(x) w’(x)} that is attached of 1 unit (remember the coordinate system is scaled_hy
to the ray pattR. The ray pathR is given by the coordinate Therefore we expec(x) should also change b®(1) (i.e.,
curve (7, wt=0, w?=0). For the derivation of the extended of order unity over unit length. We can express this assump-
Hamiltonian equations, we do not need an explicit exprestion as
sion for the mapping from the Cartesian systed) x?,x%) to val
{r,w!,w?}. But we assume that, in the proximity of the ray — =0(1). (12
path, the mapping fromix*,x?,x3) to {r,w',w?} is unitary. El
To simplify notation, we will use the subscripts to denote The optical phase’, on the other hand, should change by
first and second partial derivatives with respecktpe.g., ~ O(2#L/\) over unit length. Furthermore, we expect the
beam picture to be valid when, perpendicular to the ray path,

af J J . .
fo="7 0,= _ga e = g;. (7 ¢’ causes the field to decay on a distance much shorter than

IX IX IX L, but longer than\. In the interest of keeping track of the
When we treat g as dependentxnwe will use the symbol relative sizes of the terms for later approximations in the
a, to denote the partial derivative with respectd e.g., derivation, we scale the terms in Eq$0) and (11):

gt of _ol
9F(VQ(X),X) = —— + ——Qp. 8 k=——>1

(Vg(x),x) Py agﬂgﬁ (8 c
In Eg. (8) and all subsequent equations, Einstein’s summa- 1
tion convention is adopted. That is, if an index occurs more s= ;S’,

than once in a product of terms, such as the inBeabove,
summation over all values of the index is implied.

When we change coordinates {o,w!,w?}, we will use pij = Epi,ja ¢= lqb’,
the symboldg; to denote the partial derivative with respect to K K
wh
. 1,
af g=s+i¢=-4g". (13

f
AF V(W WA, (r, W w?)) = j—w F G O
B

o o _ _ After the scaling, we will assume thaxs, pj;(x) are of order
a; will similarly be the second derivative with respectwd  the same size aa(x), and €x), #(x), pi;(x) vary at of order

andw!. o _ _ the same rate aa(x). The ansatz for the field becomes
We now extend the Hamiltonian optics method with equa- . .
tions for obtaining the beam width and the radius of curva- E(x) =a(x)exp(— k¢ +iks) =a(x)exp(—ixg). (14)

:_ure i_r|1_ pttar:iodtic S:[trufctureskwithls:jowlyt\)/arying %?r?unifor;ni— By substituting the assumed form &f(x) into Maxwell's
I€s. 10 the best of our knowleage, beam wi equation quation, and keeping only the terms on the ordek%fa

have not previously been applied to the analysis of periOdi?natrix equation for(x) can be obtained:
nanostructures with nonuniformities. We follow the exten- '

sion of Hamiltonian optics developed by Peli al. in Ref. c\? 5 - o

[10] for plasmas. Assume again the nonuniformity is caused ® (Vg1 - VgVg)-e(x)|a=Pa=0, (15
by a slowly varying dielectric tensog(x). Under the as- _ . o _

sumption thatL is much greater than the wavelengtha  Which gives our _d_efmltlon_of the 83 matrix P(Vg,x). In
Gaussian beam traveling in nonuniform media should reorder for a nontrivial solution to exist, we must have
semble a Gaussian beam whose center is following some ~ _ _

path. Therefore, we assume the field has the form H(Vg,x) = de{P(Vg,x)]=0, (16)

— — b (x) +is’ — —in’ where we have introduced a “complex Hamiltonidh"Note
E(x) =algexd~ ¢'(0) +is'()]=alx)jexi g (X)]'(lo) defP]=0 is just Eq.(3) with k replaced byVg. Along R,
¢=0, andH reduces to the real Hamiltonidt given in Eq.
wherea(x) is the amplitude of the bears/(x) is the phase of (2). Therefore, Eq(16) is satisfied alondR. We seek a solu-
the beam, eXp-¢’(x)] describes a Gaussian profile perpen-tion to Eq.(16) in the neighborhood oR, when ¢+ 0. By
dicular to a central ray path, amfd=s'+i¢’ defines a com- expanding Eq(15) in w!, w? aroundR, and keeping track of
plex phase for this problem. Since we assume a Gaussighe size of the terms, it can be shown that 8d) is satisfied
transverse beam profile, we have, in the coordinate systemo sufficient accuracy in the neighborhoodpff the follow-
{r,w!,w?}: ing expressions holfL0]:
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i:”R:O, (178)
4H|r=0, (17b)
d;H|r=0. (170

Because of Eq(17a), and the fact that is measured along

R, all derivatives oH with respect tor are zero. We can now
rewrite these expressions in
(x4, %2,%3):

- o oH
(QQH|R:\NIaaiH+'Ta -
arT

R

= WHr + Ta%_( [
=w.gH|g. (18)
Similarly, taking one more derivative,
A
BH|R ww eI (19
Using EQ.(17) in Egs.(18) and(19) , we have
Hlr=0, (203
3,H[r=0, (20)
OapHlr=0. (200

This statement is trivial if we replad% with the real Hamil-

the coordinate system

PHYSICAL REVIEW E 70, 036612(2004)

dg dx” JH
e kb 2 22
dr Gapy dr ga’Byo"Sy' (22)

Equation(21) is a system of ordinary differential equations
governing the evolution of,,; along the ray patiR. We will

write the real and imaginary parts separately, and refer to
these equations as the system of extended Hamiltonian equa-
tions

ds #H #H #H
—2 = - - Say ™ Sgy
dr X IXg  IXg K, X, K,
#H . #H P,
dk, ks S dk,aks 7P
de, #H #H
B:_( + Sa6 ¢By
dT &Xaﬁk.y 0k,},0"k5
_( PH O, PH )¢> 23
Ixgak, ak,dks )

Note the physical significance of the equations. The second
derivative of(x) will give the beam width measured along
each spatial coordinate. The second derivative(rf gives

the radius of curvature of the phase fronts along each spatial
coordinate

A (24
o CRa’ aa — VV[ZI .
The beam width is then given by
W, W,
W(7) = —=—=. (25
VWS + W2

y

tonianH. But, here we are claiming that the imaginary part,o e we used the definition of the beam width as the distance

of H also has a zero second derivative aléhdexpansion of

from the center of the beam where the field amplitude has

Eq. (20) using Eq.(8) will give the equations governing the fallen to 1/e of the maximum.

evolution of the beam width along.

We can expand Eq20c¢) by applying Eq.(8) twice. Be-
causeH is equal to the real Hamiltoniaf alongR, and ¢(x)
has zero first derivative alorig, we can simplify the expan-

Equation(23) is exact for a beam propagating in homog-
enous medium, and a good approximation in an inhomoge-
neous medium wheh/W=>1, wherelL is the characteristic
inhomogeneity length. For homogenous media, 8) re-

sion to the following expression. The expression involvesduces to equations for the beam width and the radius of

only derivatives of the real Hamiltonid# with respect to the
real part of the phase:

'?BH|R:<9,8<£+£9 )Z H + o g
“ ax ag, ") T ax¥axP  ax s,
, oH #H IH
asyaxﬁgm ds,dss s, a5, 29" as, s, e
#H PH #H
:ax“axﬁ+ax"‘asgg‘sﬁ+asyaxﬁgya
2
a.j lz-?'s gy“g‘w)rd?gié
y 0 Ss
=0. (21

curvature of a freely propagating Gaussian beam. As we dis-
cuss in the next section, for a periodic medium with nonuni-
formity, Eq. (23) still describes the beam width, and can be
easily integrated numerically since it is a system of linear
ordinary differential equations.

Ill. GAUSSIAN BEAM IN A LOCALLY PERIODIC
MEDIUM

In the discussion above of the extended Hamiltonian
equations, we introduced the Hamiltonian equations and the
extended Hamiltonian equations in the context of Gaussian
beams propagating in slowly varying, anisotropic, bulk me-
dia. The application to slowly varying, locally periodic me-
dia, in which the properties of the unit cell change slowly

In the third step above we used the original Hamiltonianfrom cell to cell, is straightforward by using the Bloch wave

equation to write

dispersion relation instead of the Hamiltonian for bulk me-
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dia. Eigenstates in a periodic medium for a given wave vec- 1 ([ ) )
tor k can be written in the Bloch form Ypui(X) = o f f Ak, ky)expl jkx + jkyy
— aikx k2+ 2
i = U (), (26) . j<k_ x2k5£)z] dcel, 30

where gy is either thek field or the H field, u(x) is a After expressing the incident Gaussian beam in its plane

periodic function with the same period as the lattice, arsl way mponents. w n how th mpoNnents frans-
the position. The dispersion relatiarik) for the Bloch wave ave components, we can see no €s€ components trans
form when they enter the periodic medium.

can be obtained using various methods. For such periodic When a Gaussian beam traveling in a bulk medium im-

media, the dispersion relation corresponds to a band struc- L : ; .
ture, very similar to the band structures found for theP!N9es on a periodic medium, phase matching requires that

Schrédinger equation for electrons in a periodic lattice, an ach incident plane wave component only transfers energy to

the calculation of such band structures is a core part of thehe Bloch wave with the same transverse wave vector com-

study of periodic optical medigé.e., photonic crystajs A ponent_kx and_ ky (aSS“rT"”g the wave vectors are concen-
X ! . trated in the first Brillouin zong

key point about the present work is that, if we have calcu-

lated that band structure or dispersion relation for each dif- 1 (" ("

ferent possible locally periodic region, we may take all the Ppdr) = ;rf f T(ke k) Ak ky) i dkdk,  (31)

results considered above for slowly varying bulk media, and o

apply those now to the case of media that are locally periwhen T(k,,k,) is the transmission coefficient from a plane

odic. We merely have to substitute the local dispersion relawave to its corresponding Bloch wave aAtk,,k,) is given

tion of the locally periodic medium for the local dispersion by Eq.(28). If the incident beam is wide, thek, k, spans a

relation of the material in the bulk case; no other change i$mall range, and we can assume that the transmission coef-

necessary for analyzing the propagation in locally periodidicient T is not a function ok, k,. We can then express the

media, at least within the approximations of the method. field inside the periodic medium as

We still need to show that, when a Gaussian beam travel- o

ing in free space enters a periodic medium, the transmitted W dr) = iTJ f Ak, k) s dk,dk,

wave form inside the periodic medium can still be described P o ) )Y

by a Gaussian beam equation. A solution of the scalar wave

equation can be written in its plane wave components = iu(r)wa fe Ak, k)e**dkdk,.  (32)
2m o T

E ifc foc Ak, kyexd jk - x]dkdk,, (27) In the last step above, we assumgdr ) is constant indepen-
2m) ) Y dent ofk, again because the Gaussian beam spans a small

angle ink space. In order for the integral term to match the
where k=k,,ky,k;} is the wave vector and(k,,k,) is the equation for a Gaussian beam, we need to be able to express
amplitude of the plane wave components. A Gaussian beatf @S @ quadratic function d§ andk, as in Eq.(30). From
can be described by a field in this form. If we assume thdhe Bloch wave dispersion relatian(k) = wo, we can findk,
Gaussian beam travels along thaxis, it is possible to find in the form k,=f(k,k, k), which is not in general in the

a equation forA(k,, k,): form k,=(k?~K;=Kk)*2. But, if the angular spread df is
small, we can always approximaték, k,,k,) around the av-
1 W2 eragek vector (ky,Kyo,K,0) as
Ak k) = Wexp{— T(kx +k,) ] , (28) oy
v fkkoky) = kot 2 (ko = Keo)
a:x,ya ka

Where_W is the beam width. If th&V is large,A decays to 1 25
negligible values wherk, approachesk|. In other words, +2 D (ke Kao) (kg —Kgo).
the plane wave components only span a small angl& in 2 oy yamxy I Ka IKg
space. Equatio(28) is only valid in the paraxial approxima- (33)

tion
Using this approximation in Eq32), we can expresk, as a
k>2< + !52 quaq_ratic function'okX a'ndky asin Eq.(_30). Except fqr the
k,~ k- , (290  addition of terms linear ik, andk,, the integral term in Eq.
2k (32) then corresponds exactly with the equation of a Gauss-
ian beam. Just as in an anisotropic medium, the linear terms
Wherek=(k)2<+k)2,+k§)1’2 is the magnitude of the wave vector. corresponds to changes in beam propagation angle, which
In particular, in order for the plane waves described by Eqdoes not alter the Gaussian beam shape. This shows that,
(29) to combine as to a Gaussian beam, we must use th&hen the incident Gaussian beam is wide, the envelope of
paraxial approximation to express in Eq. (27) as a qua- W ,; behaves as a Gaussian beam. Therefore, we can use the
dratic function ofk, andk, [11]: extended Hamiltonian equations developed for the bulk me-
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dium directly for a locally periodic medium, simply by re- 120,
placing the bulk medium dispersion relatiak)=f(Hpyy) i -
with the Bloch wave dispersion relation. 109 L.

IV. VALIDITY OF THE EXTENDED HAMILTONIAN
EQUATIONS

A. Measure of validity

y (lattice constants)

In Eqg. (14), we made an assumption on the relative sizes
and the relative rates of change of the terms, and tracked the =
order of the corresponding approximations through the pa- 5
rameterk. Recall that the parametee=L/\>1 describes 0 20 40 60 80 100 120
the fact that the structure varies slowly over many wave-
lengths of the field. It can be shown that the assumed orders
of the terms in Eq(14) are equivalent to the following state- FIG. 1. (Color onling Comparison of the extended Hamiltonian
ment on the comparison of orders of terms: method with FDTD simulation. The center dotted line is the beam

2 path, the dots on each side show the beam width calculated using

WIN ~ LIW~ 2> 1, (34) Eq. (23). The underlying shading shows the intensity of Ehéield
whereW is the beam width. In other words, in the derivation om FDTD.
of the extended Hamiltonian equations, starting with Eq. )
(14), we assumed that the beam width is much larger than thi" to the structure boundary. We consider only the TM po-
wavelength, and the medium inhomogeneity length is mudl‘arl;atl_on, that is, th& field points out _of the plane of the 2D
larger than the beam width. The extended Hamiltonian equd?eriodicity. A 2-D FDTD method with perfectly matched
tions are only valid whenc? is much greater than 1. layer bqundary cond|t|<_)n[§L_2] is used in th(_a S|mulat|(_)n. _

We have not quantitatively defined the characteristic in-_ '€ instantaneous field in steady state is plotted in Fig. 1.
homogeneity length., which is needed if we would like to The hyperbo!lc variation of the rod radius causes the beam to
evaluate the validity of the extended Hamiltonian equationsb_end and exit on the bottom boundary of the ¥2P0 lat-

In deriving the extended Hamiltonian equations, we specifiedice- The fine structure of the field is strongly affected by the
that the field amplitude(x) varied significantly ovet. [Eq. perlod|0|ty pf the medium, and can be attributed to the peri-
(12)]. In order fora(x) to change at the rate given by Eq. dic term in the Bloch wavegsee Sec. I). Because the
(12), the determinant of the matrix multiplying(x) in Eq input beam is fr?urly wide, the env.elope' of the field approxi-
(1), i.e.,H, must change at the same rate. Therefooan be mates a Gaussian beam as predicted in Sec. Ill.

decccccca®

X (lattice constants)

estimated as _ Some features of the Gaussi_an beam e_nvelope can be at-
tributed to phenomena known in bulk optics. For example,

. H(k,X) even though the input beam has a flat phase front, the beams
L= n;<|n|VH(k x|’ (35 narrows halfway into the structure. This is due to the hyper-

bolic distribution of the nonuniformity, which acts as a lens.
where the spatial divergendeH(k,x) is taken withk as a  The lensing effect is opposed by the diffraction of the beam,
independent variable and evaluated in the real spatial coowhich dominates before the beam exits the structure and the
dinate systemiX} rather than the normalized coordinate sys-beam widens.
tem{x}. The validity of the extended Hamiltonian equations The beam path and beam width calculated with E4s.
can be checked by finding using Eq.(35) and comparing it and(23) are plotted over the FDTD simulation results in Fig.
to W and \. For example, if the wavelength is 1:6n, the 1. The two methods are in good agreement. In particular, the
structure should vary slowly over several hundredguofin -~ extended Hamiltonian method is successful in predicting the

order to havex!’? much greater than 1. lensing effect of the nonuniformity. This is accomplished by
the terms in Eq(23) that involve partial derivatives of the
B. Comparison with FDTD dispersion relatiotd with respect to spatial coordinates. The

partial derivatives of the dispersion relatiblnwith respect to

We can verify the validity of the proposed extendedk-space coordinates describe all diffraction effects. By ac-
Hamiltonian method with a specific FDTD simulation. The counting for both diffraction and spatial lensing, E&3)
basic structure is a 120 by 120 square lattice of high indexjives the beam width in quantitative agreement with FDTD,
rods(n=2.54 in a low index backgrounth=1.56. The rod  put with significantly less computional cost. The FDTD
radius p(x) is varied as a hyperbolic function in the spatial simulation took 2 days to run on a Sun SPARC Ultra-4 work-
coordinates p(x)=a(x’+y?)+p, Where py=0.28, «=8  station.
X 1076, andx,y are measured in lattice consta@ts\We set The Hamiltonian method does require preliminary calcu-
the frequency to be=0.282=c/a). A Gaussian beam with lations to evaluate the dispersion relation for each possible
a flat phase front enters the structure near the upper left hanhit cell structure. Here, we calculated the dispersion relation
corner. The beam widtiV as defined in Eq(23) is set to 12  w(k) for 50 rod radius values spaced evenly fromeDt
lattice constants, and the incident phase front is perpendic.5a (wherea is the lattice constaptand used sixth order
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polynomials to interpolate between the rod radius values for 12
eachk. This calculation took 1 day to run on the same work-
station. Having performed these preliminary calculations, the 10G7
subsequent calculation for any specific nonuniform structure % —
is very rapid. For the structure in Fig. 1, the extended Hamil- § 80woocoooes
tonian equations were solved in 2 s in a poorly optimized é
Matlab code on a similar workstation. 8 60
The extended Hamiltonian method has its limitations. The k]
situation we have chosen to model here is deliberately ex- > 40
treme, and pushes the limits of validity of the approxima-
tions underlying the Hamiltonian approach. In the FDTD re- 20-
sult shown in Fig. 1, the transverse beam profile is deviating

from a Gaussian profile. Equatiof23) cannot model any 0 : —
deviation from a Gaussian profile, because the beam width o 2 ‘,t%amcf‘lmfn?s) 100 120
calculation only uses the second order derivative of the non-

uniformity along the beam path. The slight breakup of the FIG. 2. (Color onling Comparison of the extended Hamiltonian
beam can be attributed to the magnitude of the nonuniformethod with ray family tracing. The thick solid line is the reference
mity of this structure. As defined in the Sec. IV, the charac-ay path. Thinner lines are the ray paths with initial transvérse
teristic inhomogeneity |ength for th|s structure is around spanninq—1/24a, 1/243,) Circles illustrate the width of the beam
100 lattice constants, while the beam width reaches 20 latticedlculated with the extended Hamiltonian equations.

constants at places. This challenges the slowly varying ap- . . .
proximation, which requiresc’2=L/Ws1. It may be pos- the spacing between the rays becomes skewed, with a higher

sible to include higher order terms to increase the tolerancgoncentrat_lon of the rays on_the right hand .S'de O.f the beam
of the extended Hamiltonian method to large non-center. This matches well with the FDTD simulation in the

uniformities. This is left as a topic for future research. previous section. Th.e SkeW‘?d field originates from the highly
skewed nonuniformity relative to the beam center. The ex-
tended Hamiltonian method does not model the beam skew-
ing, because the extended Hamiltonian equations only de-
_ _ pend on the medium propertthe second derivatives &f)
Another method for tracking the evolution of an electro- along the beam center. Each ray in the ray family, on the
magnetic field through an inhomogeneous medium is byiher hand, probes parts of the structure away from the beam
tracing a family of rays. Decomposing an initial transversecenter, and therefore models the effect of the skew.
field distribution into its plane-wave components, we get an  compared to the extended Hamiltonian method, a set of
initial _k-vector distribution. For example, we see that theppe's needs to be solved for tracing the ray bundle, one for
Gaussian field is composed of planewaves with a Gaussiggach ray. This greatly increases the computational cost. Also,
distribution in the transversk vector [Eq. (28)]. We can  compared to tracing a ray bundle, if the transverse field is
define a set of rays with an initial transvels@ector distri- approximately Gaussian, it is much easier to use the ex-
bution matching the initiak-vector distribution. Then, each tended Hamiltonian methofthrough Eq.(23)] to estimate
ray in this set can be traced independently, using the convene heam width and the radius of curvature. Nevertheless,
tional Hamiltonian equationf=q. (4)]. It can be shown that, tracing the ray bundle is a viable tool for checking the results
away from where the rays intersect, i.e., the caustic pointsy the extended Hamiltonian method. For extreme structures,

properties of the field can be approximated well by the rayracing the ray bundle helps to assess of breakdown of the
family. Furthermore, it can be shown that even near caustigytended Hamiltonian method.

points such as the beam waist, the field can be reconstructed
from the ray family by associating a Gaussian field contribu-
tion to each ray and summing over the ray fanjily3]. Be-
cause tracing a ray family solves a set of ordinary differential
equations(ODEg9 that takes into consideration of the me-
dium nonuniformity over many ray paths, it can be used to
highlight and explain the limitations of the extended Hamil-
tonian method.

Figure 2 shows the ray paths for a family of rays through
the same structure explained in Sec. V. If the input beam is
Gaussian withWw=12a, then the initial transversk-vector FIG. 3. (Color onling Effect of input beam width on output
distribution (in unit of 27/a) is Gaussian with a width of peam separation. Calculated using the extended Hamiltonian
1/2W=1/24a. The ray family traced in Fig. 2 haskavector  method. The dotted curves denote the beam width At
distribution that is angularly evenly spaced, with transvérse =0.2g2#c/a). The fence line shows the beam width at
spanning(-1/24a, 1/24a). The spacing between the rays, =0.2852wc/a). (a) Wide input beams will cause the output beams
away from the caustic points, becomes a function of the into overlap.(b) If input beams are too narrow, diffraction dominates
tensity of the field. At the exit plane of the structure in Fig. 2, and output beams still overlap.

C. Comparison with tracing ray bundles

8

y (lattice constants) ,_,
(9.3
3

(=4

50 100 0 50 100
X (lattice constants) X (lattice constants)

(=]
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FIG. 4. (Color onling Dependency of output beam overlap on x (lattice constants)

input beam widtha=lattice constant. ) ) ) ) )
FIG. 5. (Color onling Beam profile with optimal input beam

width. The dotted curves outline the beam widthest0.28. The

V. NUMERICAL OPTIMIZATION fence line shows the beam width @at=0.285.

The extended Hamiltonian method is not only an analysis
tool similar to FDTD. The low computational cost of the (X;—X3)—(W;+W,), whereW; andW, are the widths of the
method, once the underlying dispersion relations have beepmeams. Figure 4 shows the exit beam overlap as a function of
calculated for the range of unit cells of interest, enables théhe input beam width. For each input beam width, the ex-
design and optimization of the photonic crystal nonunifor-tended Hamiltonian equations were used to calculate the
mity for device functions. We demonstrate this with an ex-beam width and beam location at the output for each fre-
ample of optimizing the beam width separation. The basiquency. The maximum beam separation occurs when the in-
structure is the same as in the FDTD experiment, with theut beam half width is around 12.5 lattice constants. Figure 5
same rod radius distributiop(x)=(x?+Yy?)+p,. For a fixed shows the beam profiles with the optimal input beam width.
rod radius distribution, the exit beam location on the bottomThe output beams from the two different frequencies are
boundary depends on the frequency, and the exit beam widteparated by two lattice constants at theig”Lintensity
depends on both the frequency and the beam width at thgoints. The nonuniformity makes it difficult to find analytical
input. In this example, we would like to maximize the sepa-solutions for the optimal beam width. This illustrates the
ration of two beams ab=0.282nc/a) and 0.28%27c/a) by  importance of numerical optimization even for such rela-
optimizing the input beam width. It is possible to optimize tively simple structures. Without an analysis method much
more properties of the device simultaneously, such as thtaster than FDTD, design by numerical optimization would
parameters of the hyperbolic function and the input beamhave been impossible.
But this single parameter optimization example is sufficient
to demonstrate the use of the extended Hamiltonian equa- VI. CONCLUSION

tions to d_eS|gn_ desired funct!ons. . . We have introduced a set of equations for tracking the
An optimal input beam width exists. As the input beam N S . : -
beam width in periodic nanostructures with nonuniformities,

‘.N'(.jth approache_s zero t_h? output beam W'dt.h approacheasnd confirmed the validity of the equations with FDTD simu-
infinity due to diffraction; if, conversely, the input beam

width is very large, then the output beam width will also belauons. We have demoanstraled the use of the extended

large (Fig. 3). Intuitively, in order to maximize the beam Hamiltonian method to design a frequency demultiplexing
separation forw=0.2827c/a) and 0.2862c/a), the input device and optimize the beam separation. We believe this

. . extension will supplement the Hamiltonian equations to en-
beam width should be chosen so that the Rayleigh length 'Sble more quantitative design and analysis of useful devices

close to _the beam path lengths in the dewce_. Because WQich as frequency demultiplexers, beam steering devices,
frequencies are involved, and the structure is nonuniform

ical optimization i ded to find th imal b and other photonic nanostructures, especially those deliber-
numerical optimization 1S needed 1o fin € optimal beéam tely exploiting non-uniform structures, without resorting to
width quantitatively. Such an optimization requires repeate DTD simulations

calculation of the exit beam width, which is practically im-
possible by FDTD but straightforward by the extended
Hamiltonian method.

Assuming the two beams exit the structureyat0 at lo- Y.J. gratefully acknowledges the support of the NSFGRF
cationsx; andx,, we define the overlap of the two beams asand NSF support under Grant No. ECS-02-00445.
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