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We use Hamiltonian optics to design and analyze beam propagation in two-dimensional(2D) periodic
structures with slowly varying nonuniformities. We extend a conventional Hamiltonian method, adding equa-
tions for calculating the width of a beam propagating in such structures, and quantify the range of validity of
the extended Hamiltonian equations. For calculating the beam width, the equations are more than 103 times
faster than finite difference time domain(FDTD) simulations. We perform FDTD simulations of beam propa-
gation in large 2D periodic structures with slowly varying nonuniformities to validate our method. Beam path
and beam width calculated using the extended Hamiltonian method show good agreement with FDTD simu-
lations. By contrasting the method with ray tracing of the bundle of rays, we highlight and explain the
limitations of the extended Hamiltonian method. Finally, we use a frequency demultiplexing device optimiza-
tion example to demonstrate the potential applications of the method.
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I. INTRODUCTION

Radical dispersion properties of periodic photonic nano-
structures[1,2] has recently generated much research interest
[3]. For applications such as group velocity dispersion com-
pensation and frequency demultiplexing, however, periodic
structures arguably do not offer enough design freedom to
achieve the desired input/output dispersion relation over
large frequency ranges. In such cases, nonperiodic structures
could perform much better than periodic structures[4,5]. In-
troducing nonuniformities in two-dimensional(2D) and
three-dimensional(3D) periodic structures, such as high-
index cylinder/sphere arrays, will also allow more freedom
in the design of the device input/output characteristics. There
has, however, been much less study of 2D and 3D nonuni-
form structures, partly due to the difficulty in analyzing
them. Finite difference time domain(FDTD) simulations can
be used to analyze such structures, but it is very time con-
suming [6]. In this work, we use a Hamiltonian optics
method to design and analyze the beam path in for Gaussian
beams propagating in 2D periodic structures with slowly
varying nonuniformities. Furthermore, we extend the con-
ventional Hamiltonian method with equations for calculating
the beam width in periodic structures. For a beam propagat-
ing in a nonuniform structure, the extended Hamiltonian
method can calculate the beam path and the beam width at
least 103 times faster than FDTD simulations. Where slow-
ness of the FDTD method restricts it to a tool for analyzing
given structures, the speedup allows the extended Hamil-
tonian method to be used as a design tool for the intentional
introduction of nonuniformities into periodic photonic struc-
tures for exciting device functions.

The efficiency of the extended Hamiltonian method relies
on the local periodicity of the structure. If the nonuniformity
occurs over many periods, locally the structure is approxi-
mately periodic. Therefore, we can define and calculate the
Bloch wave dispersion relationship, locally, for each position
inside the structure. With the dispersion relationship known,

the classical optical Hamiltonian equations can be used to
track the beam path for a ray propagating in the nonuniform
structure. With the beam path known, we can then use the
extended Hamiltonian equations that we developed to track
the beam width for a Gaussian beam propagating in a non-
uniform structure. The computational cost for calculating the
dispersion relationship is amortized over all designs based on
the same type of nonuniformities, e.g., all designs based on
nonuniform distribution of the high index cylinder radius.
After the dispersion relationships are calculated for each pos-
sible type of local structure, the speed advantage of the ex-
tended Hamiltonian method over FDTD is dramatic.

Previous work on applying Hamiltonian optics to periodic
media solely dealt with the calculation of the ray path[7].
The classical Hamiltonian method is also useful for calculat-
ing the time of flight of a ray in nonuniform periodic media
and the frequency dependency of the ray path[7]. The
method has also been used to show that chaotic ray paths can
be easily achieved in nonuniform periodic media[8]. How-
ever, without an understanding of the evolution of the beam
width, practical design with such periodic media with non-
uniformities would be very limited. For example, the beam
width is critical for any beam steering device. Therefore, the
beam width equation we introduce here is a critical refine-
ment to the Hamiltonian method for analyzing propagation
in periodic media with nonuniformities.

To the best of our knowledge, there are no previous pub-
lished large-scale FDTD simulations of beam propagation in
periodic media with gradual nonuniformity. In this work, we
perform FDTD simulations of 2D periodic structures with
nonuniformities, with dimensions on the order of 1003100
lattice constants. These simulations validate the beam path
and the beam width calculated with the extended Hamil-
tonian equations. FDTD simulations of structures at this
scale are very time consuming, whereas the computational
complexity of the extended Hamiltonian equations is essen-
tially independent of the device size.

In Sec. II we develop the extension to the Hamiltonian
equations in the context of bulk media with slowly varying
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nonuniformities. We explain the applicability of the extended
Hamiltonian equations to periodic media with nonuniformi-
ties in Sec. III. In Sec. IV, we provide a measure for the
range of validity of the extended Hamiltonian method, vali-
date the method with FDTD simulations, and explain limita-
tions of the method with a comparison to ray bundle tracing.
Finally, we use a numerical optimization example in Sec. V
to demonstrate the potential applications of the method.

II. THE HAMILTONIAN EQUATIONS
AND EXTENSION

A. Hamiltonian optics

Hamiltonian optics has traditionally been used to describe
the optical ray path in bulk dielectric media with slowly
varying properties[9]. We will define the characteristic inho-
mogeneity lengthL as the shortest distance over which the
nonuniformity changes the medium significantly. We assume
the field behaves similar to a plane wave locally, and has the
form Esxd=asxdexpfissxdg, wherex=hx1,x2,x3j is a dimen-
sionless coordinate system, scaled from real spatial coordi-
nateshX1,X2,X3j as in hx1,x2,x3j=hX1/L ,X2/L ,X3/Lj. By
substituting the assumed form ofEsxd into Maxwell’s equa-
tions, and using the slowly varying approximation[e.g., the
wave amplitudeasxd varies much more slowly than the
phase, and therefore the spatial derivative ofasxd is ignored],
we will get a equation forasxd:

FS c

v
D2

suk u2I − kk Td − «sxdG a = 0, s1d

wherev is the frequency,«sxd is the dielectric tensor,I is the
identity matrix, we definedk = =s as the wave vector, andkT

is the transpose ofk (so thatkk T forms a matrix or tensor).
We assumed the nonuniformity comes from the spatial de-
pendence of the dielectric tensor. Now we define the math-
ematical entity that will become the effective Hamiltonian
for this problem, i.e., we choose

Hsx,k,vd ; detFS c

v
D2

suk u2I − kk Td − «sxdG . s2d

In order for a nontrivial solution to exist fora, we must have

detFS c

v
D2

suk u2I − kk Td − «sxdG ; Hsx,k,vd = 0. s3d

For fixedv, we look for the parameterized curvehr std ,qstdj
in the 6D spacehx ,kj such that Eq.(3) is satisfied. Heret is
the parameterization variable. If Eq.(3) is satisfied, thenr std
describes the path followed by the wave, andqstd describes
the wave vector along the path. We can now find that Eq.(3)
is satisfied on the curvehr std ,qstdj if the curve obeys the
Hamiltonian equations

dr

dt
=

] Hsx,k,vd
] k

,
dq

dt
= −

] Hsx,k,vd
] x

. s4d

It can be verified that Eq.(4) is a solution of Eq.(3) by
taking the full derivative of the left-hand side of Eq.(3) with

respect tot, and substituting Eq.(4) into the expression,
therefore justifying our choice for the effective Hamiltonian
of the problem.

The widely used dispersion relationshipvsk ,xd is ob-
tained by solving Eq.(3) for fixed x. We can write Eq.(4) in
terms of thevsx ,kd rather thanHsx ,k ,vd. Using the fact
that, for a solution we must haveH(x ,k ,vsx ,kd)=0, and
taking partial derivatives ofH(x ,k ,vsx ,kd) with respect tox
andk, we get

] v

] x
= Csx,kd

] H

] x
,

] v

] k
= Csx,kd

] H

] k
, s5d

where the scaling factorCsx ,kd=−s]H /]vd−1 is the same for
all six partial derivatives. Therefore,h]H /]x ,]H /]kj and
h]v /]x ,]v /]kj always point in the same direction. Thus Eq.
(4) can also be written as

dr

dt
=

] vsx,kd
] k

,
dq

dt
= −

] vsx,kd
] x

. s6d

.
The curve hr std ,qstdj describes the same curve as

hr std ,qstdj, but parametrized by the parametert instead oft.
Using the definition of group velocityVg=]v /]k, dX /dt can
now be identified with the group velocity,t can be identified
simply as time, andr std, qstd can be identified with the
optical ray path and the wave vector along the ray path,
respectively.

Because the Hamiltonian equation,(4) is satisfied for ei-
ther theHsx ,kd obtained in Eq.(3) or the dispersion relation
vsx ,kd, we will refer to both quantities as the Hamiltonian.
We will consistently useHsx ,kd in the rest of the paper to
denote the Hamiltonian. This notation signifies the equiva-
lence of Eq.(4) to classical Hamiltonian equations in me-
chanics.

If we know Hsx ,kd or the dispersion relation at each lo-
cation in the bulk dielectric medium, then Eq.(4) can be
integrated to give the ray path for all later times given the
initial ray location, and the initial wave vector. For Eq.(4) to
be valid,L needs to be large compared to the wavelengthl.

It should be noted that the Hamiltonian equations in op-
tics are analogous to the WKB method of quantum mechan-
ics. Both methods start by assuming a field that has an am-
plitude that varies much slower than the phase, and that
scattering can be neglected. Useful approximations of the
field pattern are then found by substituting into either Max-
well’s equations or the Schrödinger equation as appropriate.

We will show in Sec. III that, if a packet of Bloch waves
has a Gaussian distribution of the transversek vector, the
envelope of the field will behave like a Gaussian beam field.
Therefore, by using the photonic crystal dispersion surface
instead of the bulk medium dispersion surface, and Bloch
waves instead of the plane wave components in a Gaussian
beam, we can apply Eq.(4) to ray propagation in nonuniform
photonic crystals. The same argument applies to the extended
Hamiltonian equations, which we will develop next, in part
B of this section. For clarity, we will introduce the extended
Hamiltonian equations for Gaussian beam propagation in
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bulk nonuniform dielectric media, keeping in mind that ap-
plication to photonic crystals is straightforward.

B. Extension to beam width calculations

First we introduce some notations. We define a general-
ized coordinate systemht sxd ,w1sxd w2sxdj that is attached
to the ray pathR. The ray pathR is given by the coordinate
curve (t, w1=0, w2=0). For the derivation of the extended
Hamiltonian equations, we do not need an explicit expres-
sion for the mapping from the Cartesian systemsx1,x2,x3d to
ht ,w1,w2j. But we assume that, in the proximity of the ray
path, the mapping fromsx1,x2,x3d to ht ,w1,w2j is unitary.

To simplify notation, we will use the subscripts to denote
first and second partial derivatives with respect toxa, e.g.,

fa ;
] f

] xa , ga ;
] g

] xa , gba ;
] ga

] xb . s7d

When we treat g as dependent onx, we will use the symbol
]a to denote the partial derivative with respect toxa, e.g.,

]af„=gsxd,x… =
] f

] xa +
] f

] gb

gba. s8d

In Eq. (8) and all subsequent equations, Einstein’s summa-
tion convention is adopted. That is, if an index occurs more
than once in a product of terms, such as the indexb above,
summation over all values of the index is implied.

When we change coordinates toht ,w1,w2j, we will use
the symbol]i to denote the partial derivative with respect to
wi:

]i f„¹gst,w1,w2d,st,w1,w2d… =
] f

] wi +
] f

] gb

gib. s9d

]i j will similarly be the second derivative with respect towi

andwj.
We now extend the Hamiltonian optics method with equa-

tions for obtaining the beam width and the radius of curva-
ture in periodic structures with slowly varying nonuniformi-
ties. To the best of our knowledge, beam width equations
have not previously been applied to the analysis of periodic
nanostructures with nonuniformities. We follow the exten-
sion of Hamiltonian optics developed by Poliet al. in Ref.
[10] for plasmas. Assume again the nonuniformity is caused
by a slowly varying dielectric tensor«sxd. Under the as-
sumption thatL is much greater than the wavelengthl, a
Gaussian beam traveling in nonuniform media should re-
semble a Gaussian beam whose center is following some
path. Therefore, we assume the field has the form

Esxd = asxdexpf− f8sxd + is8sxdg = asxdexpf− ig8sxdg,

s10d

whereasxd is the amplitude of the beam,s8sxd is the phase of
the beam, expf−f8sxdg describes a Gaussian profile perpen-
dicular to a central ray path, andg8=s8+ if8 defines a com-
plex phase for this problem. Since we assume a Gaussian
transverse beam profile, we have, in the coordinate system
ht ,w1,w2j:

expf− f8sxdg = exps− 1
2ri j8 stdwiwjd , s11d

whereri j8 specifies the beam width.
It is important to estimate and then keep track the relative

rates of variation for the terms in Eq.(10). The medium
property changes by a significant percentage over a distance
of 1 unit (remember the coordinate system is scaled byL).
Therefore we expectasxd should also change byOs1d (i.e.,
of order unity) over unit length. We can express this assump-
tion as

u¹au
uau

= Os1d. s12d

The optical phases8, on the other hand, should change by
Os2pL /ld over unit length. Furthermore, we expect the
beam picture to be valid when, perpendicular to the ray path,
f8 causes the field to decay on a distance much shorter than
L, but longer thanl. In the interest of keeping track of the
relative sizes of the terms for later approximations in the
derivation, we scale the terms in Eqs.(10) and (11):

k =
vL

c
@ 1,

s=
1

k
s8,

ri j =
1

k
ri j8 , f =

1

k
f8,

g = s+ if =
1

k
g8. s13d

After the scaling, we will assume that ssxd, ri jsxd are of order
the same size asasxd, and ssxd, fsxd, ri jsxd vary at of order
the same rate asasxd. The ansatz for the field becomes

Esxd = asxdexps− kf + iksd = asxdexps− ikgd. s14d

By substituting the assumed form ofEsxd into Maxwell’s
equation, and keeping only the terms on the order ofk2, a
matrix equation forasxd can be obtained:

FS c

v
D2

su=gu2I − = g = gTd − «sxdGa ; Pa= 0, s15d

which gives our definition of the 333 matrix Ps=g,xd. In
order for a nontrivial solution to exist, we must have

H̃s=g,xd ; detfPs=g,xdg = 0, s16d

where we have introduced a “complex Hamiltonian”H̃. Note
detfPg=0 is just Eq.(3) with k replaced by=g. Along R,

f=0, andH̃ reduces to the real HamiltonianH given in Eq.
(2). Therefore, Eq.(16) is satisfied alongR. We seek a solu-
tion to Eq. (16) in the neighborhood ofR, whenfÞ0. By
expanding Eq.(15) in w1, w2 aroundR, and keeping track of
the size of the terms, it can be shown that Eq.(16) is satisfied
to sufficient accuracy in the neighborhood ofR if the follow-
ing expressions hold[10]:
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uH̃uR = 0, s17ad

u]iH̃uR = 0, s17bd

u]i j H̃uR = 0. s17cd

Because of Eq.(17a), and the fact thatt is measured along

R, all derivatives ofH̃ with respect tot are zero. We can now
rewrite these expressions in the coordinate system
sx1,x2,x3d:

u]aH̃uR = wa
i ]iH̃ + taU ] H̃

] t
U

R

=uwi]iH̃uR + ta

]

] t
suH̃uRd

=uwa
i ]iH̃uR. s18d

Similarly, taking one more derivative,

u]abH̃uR = wa
i wa

j U ]2H̃

] wi ] wjU
R

. s19d

Using Eq.(17) in Eqs.(18) and (19) , we have

uH̃uR = 0, s20ad

u]aH̃uR = 0, s20bd

u]abH̃uR = 0. s20cd

This statement is trivial if we replaceH̃ with the real Hamil-
tonianH. But, here we are claiming that the imaginary part

of H̃ also has a zero second derivative alongR. Expansion of
Eq. (20) using Eq.(8) will give the equations governing the
evolution of the beam width alongR.

We can expand Eq.(20c) by applying Eq.(8) twice. Be-

causeH̃ is equal to the real HamiltonianH alongR, andfsxd
has zero first derivative alongR, we can simplify the expan-
sion to the following expression. The expression involves
only derivatives of the real HamiltonianH with respect to the
real part of the phase:

u]abHuR = ]bS ] H̃

] xa +
] H̃

] gg

ggaD =
]2H

] xa ] xb +
]2H

] xa ] sd

gdb

+
]2H

] sg ] xbgga +
]2H

] sg ] sd

ggagdb +
] H

] sg

ggab

=
]2H

] xa ] xb +
]2H

] xa ] sd

gdb +
]2H

] sg ] xbgga

+
]2H

] sg ] sd

ggagdb +
dgab

dt

= 0. s21d

In the third step above we used the original Hamiltonian
equation to write

dgab

dt
= gabg

dxg

dt
= gabg

] H

] sg

. s22d

Equation(21) is a system of ordinary differential equations
governing the evolution ofgab along the ray pathR. We will
write the real and imaginary parts separately, and refer to
these equations as the system of extended Hamiltonian equa-
tions

dsab

dt
= −

]2H

] xa ] xb

−
]2H

] xb ] kg

sag −
]2H

] xa ] kg

sbg

−
]2H

] kg ] kd

sagsbd +
]2H

] kg ] kd

fagfbd,

dfab

dt
= − S ]2H

] xa ] kg

+
]2H

] kg ] kd

sadDfbg

− S ]2H

] xb ] kg

+
]2H

] kg ] kd

sbdDfag. s23d

Note the physical significance of the equations. The second
derivative offsxd will give the beam width measured along
each spatial coordinate. The second derivative ofssxd gives
the radius of curvature of the phase fronts along each spatial
coordinate

saa =
v

cRa

, faa =
2

Wa
2 . s24d

The beam width is then given by

Wstd =
WxWy

ÎWx
2 + Wy

2
. s25d

Here we used the definition of the beam width as the distance
from the center of the beam where the field amplitude has
fallen to 1/e of the maximum.

Equation(23) is exact for a beam propagating in homog-
enous medium, and a good approximation in an inhomoge-
neous medium whenL /W@1, whereL is the characteristic
inhomogeneity length. For homogenous media, Eq.(23) re-
duces to equations for the beam width and the radius of
curvature of a freely propagating Gaussian beam. As we dis-
cuss in the next section, for a periodic medium with nonuni-
formity, Eq. (23) still describes the beam width, and can be
easily integrated numerically since it is a system of linear
ordinary differential equations.

III. GAUSSIAN BEAM IN A LOCALLY PERIODIC
MEDIUM

In the discussion above of the extended Hamiltonian
equations, we introduced the Hamiltonian equations and the
extended Hamiltonian equations in the context of Gaussian
beams propagating in slowly varying, anisotropic, bulk me-
dia. The application to slowly varying, locally periodic me-
dia, in which the properties of the unit cell change slowly
from cell to cell, is straightforward by using the Bloch wave
dispersion relation instead of the Hamiltonian for bulk me-
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dia. Eigenstates in a periodic medium for a given wave vec-
tor k can be written in the Bloch form

ck = ejk·xuksxd, s26d

where ck is either theE field or the H field, uksxd is a
periodic function with the same period as the lattice, andx is
the position. The dispersion relationvskd for the Bloch wave
can be obtained using various methods. For such periodic
media, the dispersion relation corresponds to a band struc-
ture, very similar to the band structures found for the
Schrödinger equation for electrons in a periodic lattice, and
the calculation of such band structures is a core part of the
study of periodic optical media(i.e., photonic crystals). A
key point about the present work is that, if we have calcu-
lated that band structure or dispersion relation for each dif-
ferent possible locally periodic region, we may take all the
results considered above for slowly varying bulk media, and
apply those now to the case of media that are locally peri-
odic. We merely have to substitute the local dispersion rela-
tion of the locally periodic medium for the local dispersion
relation of the material in the bulk case; no other change is
necessary for analyzing the propagation in locally periodic
media, at least within the approximations of the method.

We still need to show that, when a Gaussian beam travel-
ing in free space enters a periodic medium, the transmitted
wave form inside the periodic medium can still be described
by a Gaussian beam equation. A solution of the scalar wave
equation can be written in its plane wave components

cbulksxd =
1

2p
E

−`

` E
−`

`

Askx,kydexpf jk ·xgdkxdky, s27d

where k=hkx,ky,kzj is the wave vector andAskx ,kyd is the
amplitude of the plane wave components. A Gaussian beam
can be described by a field in this form. If we assume the
Gaussian beam travels along thez axis, it is possible to find
a equation forAskx ,kyd:

Askx,kyd =
1

ÎpW2
expF−

W2

4
skx + kyd2G , s28d

whereW is the beam width. If theW is large,A decays to
negligible values whenk' approachesuk u. In other words,
the plane wave components only span a small angle ink
space. Equation(28) is only valid in the paraxial approxima-
tion

kz < k −
kx

2 + ky
2

2k
, s29d

wherek=skx
2+ky

2+kz
2d1/2 is the magnitude of the wave vector.

In particular, in order for the plane waves described by Eq.
(29) to combine as to a Gaussian beam, we must use the
paraxial approximation to expresskz in Eq. (27) as a qua-
dratic function ofkx andky [11]:

cbulksxd =
1

2p
E

−`

` E
−`

`

Askx,kydexpF jkxx + jkyy

+ jSk −
kx

2 + ky
2

2k
DzGdkxdky. s30d

After expressing the incident Gaussian beam in its plane
wave components, we can see how these components trans-
form when they enter the periodic medium.

When a Gaussian beam traveling in a bulk medium im-
pinges on a periodic medium, phase matching requires that
each incident plane wave component only transfers energy to
the Bloch wave with the same transverse wave vector com-
ponentkx and ky (assuming the wave vectors are concen-
trated in the first Brillouin zone):

cpcsr d =
1

2p
E

−`

` E
−`

`

Tskx,kydAskx,kydckdkxdky, s31d

when Tskx ,kxd is the transmission coefficient from a plane
wave to its corresponding Bloch wave andAskx ,kyd is given
by Eq. (28). If the incident beam is wide, thenkx, ky spans a
small range, and we can assume that the transmission coef-
ficient T is not a function ofkx, ky. We can then express the
field inside the periodic medium as

cpcsr d =
1

2p
TE

−`

` E
−`

`

Askx,kydckdkxdky

=
1

2p
usr dTE

−`

` E
−`

`

Askx,kydejk·xdkxdky. s32d

In the last step above, we assumeduksr d is constant indepen-
dent of k, again because the Gaussian beam spans a small
angle ink space. In order for the integral term to match the
equation for a Gaussian beam, we need to be able to express
kz as a quadratic function ofkx andky as in Eq.(30). From
the Bloch wave dispersion relationvskd=v0, we can findkz

in the form kz= fsk,kx ,kyd, which is not in general in the
form kz=sk2−kx

2−ky
2d1/2. But, if the angular spread ofk is

small, we can always approximatefsk,kx ,kyd around the av-
eragek vector skx0,ky0,kz0d as

fsk,kx,kyd < kz0 + o
a=x,y

] f

] ka

ska − ka0d

+
1

2 o
b=x,y

o
a=x,y

]2f

] ka ] kb

ska − ka0dskb − kb0d.

s33d

Using this approximation in Eq.(32), we can expresskz as a
quadratic function ofkx andky as in Eq.(30). Except for the
addition of terms linear inkx andky, the integral term in Eq.
(32) then corresponds exactly with the equation of a Gauss-
ian beam. Just as in an anisotropic medium, the linear terms
corresponds to changes in beam propagation angle, which
does not alter the Gaussian beam shape. This shows that,
when the incident Gaussian beam is wide, the envelope of
Cpc behaves as a Gaussian beam. Therefore, we can use the
extended Hamiltonian equations developed for the bulk me-
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dium directly for a locally periodic medium, simply by re-
placing the bulk medium dispersion relationvskd= fsHbulkd
with the Bloch wave dispersion relation.

IV. VALIDITY OF THE EXTENDED HAMILTONIAN
EQUATIONS

A. Measure of validity

In Eq. (14), we made an assumption on the relative sizes
and the relative rates of change of the terms, and tracked the
order of the corresponding approximations through the pa-
rameterk. Recall that the parameterk=L /l@1 describes
the fact that the structure varies slowly over many wave-
lengths of the field. It can be shown that the assumed orders
of the terms in Eq.(14) are equivalent to the following state-
ment on the comparison of orders of terms:

W/l , L/W, k1/2 @ 1, s34d

whereW is the beam width. In other words, in the derivation
of the extended Hamiltonian equations, starting with Eq.
(14), we assumed that the beam width is much larger than the
wavelength, and the medium inhomogeneity length is much
larger than the beam width. The extended Hamiltonian equa-
tions are only valid whenk1/2 is much greater than 1.

We have not quantitatively defined the characteristic in-
homogeneity lengthL, which is needed if we would like to
evaluate the validity of the extended Hamiltonian equations.
In deriving the extended Hamiltonian equations, we specified
that the field amplitudeasxd varied significantly overL [Eq.
(12)]. In order for asxd to change at the rate given by Eq.
(12), the determinant of the matrix multiplyingasxd in Eq
(1), i.e.,H, must change at the same rate. ThereforeL can be
estimated as

L = min
X

Hsk,Xd
u=Hsk,Xdu

, s35d

where the spatial divergence=Hsk ,xd is taken withk as a
independent variable and evaluated in the real spatial coor-
dinate systemhXj rather than the normalized coordinate sys-
tem hxj. The validity of the extended Hamiltonian equations
can be checked by findingL using Eq.(35) and comparing it
to W and l. For example, if the wavelength is 1.5mm, the
structure should vary slowly over several hundreds ofmm in
order to havek1/2 much greater than 1.

B. Comparison with FDTD

We can verify the validity of the proposed extended
Hamiltonian method with a specific FDTD simulation. The
basic structure is a 120 by 120 square lattice of high index
rodssn=2.54d in a low index backgroundsn=1.56d. The rod
radiusrsxd is varied as a hyperbolic function in the spatial
coordinates rsxd=asx2+y2d+r0, where r0=0.28, a=8
310−6, andx,y are measured in lattice constantsa. We set
the frequency to bev=0.28s2pc/ad. A Gaussian beam with
a flat phase front enters the structure near the upper left hand
corner. The beam widthW as defined in Eq.(23) is set to 12
lattice constants, and the incident phase front is perpendicu-

lar to the structure boundary. We consider only the TM po-
larization, that is, theE field points out of the plane of the 2D
periodicity. A 2-D FDTD method with perfectly matched
layer boundary conditions[12] is used in the simulation.

The instantaneous field in steady state is plotted in Fig. 1.
The hyperbolic variation of the rod radius causes the beam to
bend and exit on the bottom boundary of the 1203120 lat-
tice. The fine structure of the field is strongly affected by the
periodicity of the medium, and can be attributed to the peri-
odic term in the Bloch waves(see Sec. III). Because the
input beam is fairly wide, the envelope of the field approxi-
mates a Gaussian beam as predicted in Sec. III.

Some features of the Gaussian beam envelope can be at-
tributed to phenomena known in bulk optics. For example,
even though the input beam has a flat phase front, the beams
narrows halfway into the structure. This is due to the hyper-
bolic distribution of the nonuniformity, which acts as a lens.
The lensing effect is opposed by the diffraction of the beam,
which dominates before the beam exits the structure and the
beam widens.

The beam path and beam width calculated with Eqs.(4)
and(23) are plotted over the FDTD simulation results in Fig.
1. The two methods are in good agreement. In particular, the
extended Hamiltonian method is successful in predicting the
lensing effect of the nonuniformity. This is accomplished by
the terms in Eq.(23) that involve partial derivatives of the
dispersion relationH with respect to spatial coordinates. The
partial derivatives of the dispersion relationH with respect to
k-space coordinates describe all diffraction effects. By ac-
counting for both diffraction and spatial lensing, Eq.(23)
gives the beam width in quantitative agreement with FDTD,
but with significantly less computional cost. The FDTD
simulation took 2 days to run on a Sun SPARC Ultra-4 work-
station.

The Hamiltonian method does require preliminary calcu-
lations to evaluate the dispersion relation for each possible
unit cell structure. Here, we calculated the dispersion relation
vskd for 50 rod radius values spaced evenly from 0.1a to
0.5a (wherea is the lattice constant), and used sixth order

FIG. 1. (Color online) Comparison of the extended Hamiltonian
method with FDTD simulation. The center dotted line is the beam
path, the dots on each side show the beam width calculated using
Eq. (23). The underlying shading shows the intensity of theE field
from FDTD.
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polynomials to interpolate between the rod radius values for
eachk. This calculation took 1 day to run on the same work-
station. Having performed these preliminary calculations, the
subsequent calculation for any specific nonuniform structure
is very rapid. For the structure in Fig. 1, the extended Hamil-
tonian equations were solved in 2 s in a poorly optimized
Matlab code on a similar workstation.

The extended Hamiltonian method has its limitations. The
situation we have chosen to model here is deliberately ex-
treme, and pushes the limits of validity of the approxima-
tions underlying the Hamiltonian approach. In the FDTD re-
sult shown in Fig. 1, the transverse beam profile is deviating
from a Gaussian profile. Equation(23) cannot model any
deviation from a Gaussian profile, because the beam width
calculation only uses the second order derivative of the non-
uniformity along the beam path. The slight breakup of the
beam can be attributed to the magnitude of the nonunifor-
mity of this structure. As defined in the Sec. IV, the charac-
teristic inhomogeneity lengthL for this structure is around
100 lattice constants, while the beam width reaches 20 lattice
constants at places. This challenges the slowly varying ap-
proximation, which requiresk1/2=L /W@1. It may be pos-
sible to include higher order terms to increase the tolerance
of the extended Hamiltonian method to large non-
uniformities. This is left as a topic for future research.

C. Comparison with tracing ray bundles

Another method for tracking the evolution of an electro-
magnetic field through an inhomogeneous medium is by
tracing a family of rays. Decomposing an initial transverse
field distribution into its plane-wave components, we get an
initial k-vector distribution. For example, we see that the
Gaussian field is composed of planewaves with a Gaussian
distribution in the transversek vector [Eq. (28)]. We can
define a set of rays with an initial transversek-vector distri-
bution matching the initialk-vector distribution. Then, each
ray in this set can be traced independently, using the conven-
tional Hamiltonian equations[Eq. (4)]. It can be shown that,
away from where the rays intersect, i.e., the caustic points,
properties of the field can be approximated well by the ray
family. Furthermore, it can be shown that even near caustic
points such as the beam waist, the field can be reconstructed
from the ray family by associating a Gaussian field contribu-
tion to each ray and summing over the ray family[13]. Be-
cause tracing a ray family solves a set of ordinary differential
equations(ODEs) that takes into consideration of the me-
dium nonuniformity over many ray paths, it can be used to
highlight and explain the limitations of the extended Hamil-
tonian method.

Figure 2 shows the ray paths for a family of rays through
the same structure explained in Sec. V. If the input beam is
Gaussian withW=12a, then the initial transversek-vector
distribution (in unit of 2p /a) is Gaussian with a width of
1/2W=1/24a. The ray family traced in Fig. 2 has ak-vector
distribution that is angularly evenly spaced, with transversek
spanning(−1/24a, 1 /24a). The spacing between the rays,
away from the caustic points, becomes a function of the in-
tensity of the field. At the exit plane of the structure in Fig. 2,

the spacing between the rays becomes skewed, with a higher
concentration of the rays on the right hand side of the beam
center. This matches well with the FDTD simulation in the
previous section. The skewed field originates from the highly
skewed nonuniformity relative to the beam center. The ex-
tended Hamiltonian method does not model the beam skew-
ing, because the extended Hamiltonian equations only de-
pend on the medium property(the second derivatives ofH)
along the beam center. Each ray in the ray family, on the
other hand, probes parts of the structure away from the beam
center, and therefore models the effect of the skew.

Compared to the extended Hamiltonian method, a set of
ODE’s needs to be solved for tracing the ray bundle, one for
each ray. This greatly increases the computational cost. Also,
compared to tracing a ray bundle, if the transverse field is
approximately Gaussian, it is much easier to use the ex-
tended Hamiltonian method[through Eq.(23)] to estimate
the beam width and the radius of curvature. Nevertheless,
tracing the ray bundle is a viable tool for checking the results
of the extended Hamiltonian method. For extreme structures,
tracing the ray bundle helps to assess of breakdown of the
extended Hamiltonian method.

FIG. 3. (Color online) Effect of input beam width on output
beam separation. Calculated using the extended Hamiltonian
method. The dotted curves denote the beam width atv
=0.28s2pc/ad. The fence line shows the beam width atv
=0.285s2pc/ad. (a) Wide input beams will cause the output beams
to overlap.(b) If input beams are too narrow, diffraction dominates
and output beams still overlap.

FIG. 2. (Color online) Comparison of the extended Hamiltonian
method with ray family tracing. The thick solid line is the reference
ray path. Thinner lines are the ray paths with initial transversek
spanning(−1/24a, 1 /24a). Circles illustrate the width of the beam
calculated with the extended Hamiltonian equations.
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V. NUMERICAL OPTIMIZATION

The extended Hamiltonian method is not only an analysis
tool similar to FDTD. The low computational cost of the
method, once the underlying dispersion relations have been
calculated for the range of unit cells of interest, enables the
design and optimization of the photonic crystal nonunifor-
mity for device functions. We demonstrate this with an ex-
ample of optimizing the beam width separation. The basic
structure is the same as in the FDTD experiment, with the
same rod radius distributionrsxd=sx2+y2d+r0. For a fixed
rod radius distribution, the exit beam location on the bottom
boundary depends on the frequency, and the exit beam width
depends on both the frequency and the beam width at the
input. In this example, we would like to maximize the sepa-
ration of two beams atv=0.28s2pc/ad and 0.285s2pc/ad by
optimizing the input beam width. It is possible to optimize
more properties of the device simultaneously, such as the
parameters of the hyperbolic function and the input beam.
But this single parameter optimization example is sufficient
to demonstrate the use of the extended Hamiltonian equa-
tions to design desired functions.

An optimal input beam width exists. As the input beam
width approaches zero the output beam width approaches
infinity due to diffraction; if, conversely, the input beam
width is very large, then the output beam width will also be
large (Fig. 3). Intuitively, in order to maximize the beam
separation forv=0.28s2pc/ad and 0.285s2pc/ad, the input
beam width should be chosen so that the Rayleigh length is
close to the beam path lengths in the device. Because two
frequencies are involved, and the structure is nonuniform,
numerical optimization is needed to find the optimal beam
width quantitatively. Such an optimization requires repeated
calculation of the exit beam width, which is practically im-
possible by FDTD but straightforward by the extended
Hamiltonian method.

Assuming the two beams exit the structure aty=0 at lo-
cationsx1 andx2, we define the overlap of the two beams as

sx2−x1d−sW1+W2d, whereW1 andW2 are the widths of the
beams. Figure 4 shows the exit beam overlap as a function of
the input beam width. For each input beam width, the ex-
tended Hamiltonian equations were used to calculate the
beam width and beam location at the output for each fre-
quency. The maximum beam separation occurs when the in-
put beam half width is around 12.5 lattice constants. Figure 5
shows the beam profiles with the optimal input beam width.
The output beams from the two different frequencies are
separated by two lattice constants at their 1 /e2 intensity
points. The nonuniformity makes it difficult to find analytical
solutions for the optimal beam width. This illustrates the
importance of numerical optimization even for such rela-
tively simple structures. Without an analysis method much
faster than FDTD, design by numerical optimization would
have been impossible.

VI. CONCLUSION

We have introduced a set of equations for tracking the
beam width in periodic nanostructures with nonuniformities,
and confirmed the validity of the equations with FDTD simu-
lations. We have demonstrated the use of the extended
Hamiltonian method to design a frequency demultiplexing
device and optimize the beam separation. We believe this
extension will supplement the Hamiltonian equations to en-
able more quantitative design and analysis of useful devices
such as frequency demultiplexers, beam steering devices,
and other photonic nanostructures, especially those deliber-
ately exploiting non-uniform structures, without resorting to
FDTD simulations.
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FIG. 4. (Color online) Dependency of output beam overlap on
input beam width.a=lattice constant.

FIG. 5. (Color online) Beam profile with optimal input beam
width. The dotted curves outline the beam width atv=0.28. The
fence line shows the beam width atv=0.285.
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