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Mode-Coupling Analysis of Multipole
Symmetric Resonant Add/Drop Filters
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Abstract—Time-dependent mode-coupling theory is used to
analyze a type of resonant add/drop filter based on the excitation
of degenerate symmetric and antisymmetric modes. Flat-top
transfer functions are achieved with higher order filters that
utilize multiple resonator pairs, designed to satisfy the degen-
eracy conditions. The resulting analytic expressions lead to an
equivalent circuit and the transfer characteristics of the filter are
related to standard L–C circuit designs.

I. INTRODUCTION

A DD/DROP filters that access one channel of a
wavelength-division-multiplexed (WDM) system with-

out disturbing other channels are very important components
for WDM communications. Filters based on resonators
side coupled to waveguides have been considered for this
application [1]–[4]. Among their advantages is their small
size and the fact that a number of resonators can be combined
to synthesize desirable higher order filter responses within
a small area.

A type of channel dropping filter based on the excitation
of degenerate symmetric and antisymmetric resonant modes
has been first described in [3], [5], and [6]. The analysis has
been recast into coupling of modes in time in [4] and the
conditions for degeneracy for a system employing a pair of
identical single mode standing wave resonators were derived.
The response of these filters was shown to be Lorentzian
(single pole). In order to achieve improved transfer char-
acteristics such as low crosstalk from other channels and
flattened resonance peaks, higher order filters are needed. Here,
the coupling of modes in time is simply extended to the
case of higher order filters consisting of multiple resonator
pairs. The resonators are treated as lumped elements and the
resulting continued fraction expressions provide a one-to-one
correspondence with standard– filter design. An equivalent
circuit is thus derived and a rough layout of the structure is
based on handbook filter designs of circuit theory. A similar
approach has already been used for cascaded resonators in [2]
and [7].
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II. TH–ORDER FILTER

In the case of a symmetric system consisting of two iden-
tical single-mode resonators placed between two waveguides
as shown in the schematic of Fig. 1(a), the symmetric and
antisymmetric modes of the structure are degenerate if the cou-
pling of the two resonators via the signal waveguides exactly
balances their direct coupling. The mode-coupling analysis of
[4] shows that the two conditions to be satisfied are that the
waveguide sections between the two resonator reference planes
must be an odd multiple of a quarter guided wavelength and
that the sum of the inverse decay rates into the two waveguides
must be equal to the direct coupling coefficient. An example
of the filter response when the degeneracy has been achieved
and losses are neglected is shown in Fig. 1(b). Assuming that
the phase planes defining the incoming and outgoing waves
have been appropriately chosen and that the resonators couple
equally to the two waveguides, the response at the drop port
(in this case, port 4 with input from port 1) was found as

(1)

where is the degenerate frequency andis the decay rate,
associated with power lost to either guide, of the symmetric
and antisymmetric modes. Fig. 1(b) also shows the response
at the remaining ports of the device where, , and are
defined as

(2)

(3)

and

(4)

The spectral response of the dropped signal at port 4 is a
Lorentzian. At high frequencies, the roll-off is at best 20
dB/decade, which may not be fast enough to meet the crosstalk
specifications for adjacent channels. In this case, higher order
or multipole filters are needed.

A higher order filter is made by generalizing the scheme
described above. Instead of using one pair of resonators
placed between two waveguides, pairs of resonators are
evanescently coupled to each other, as shown in Fig. 2. The
resulting system behaves as anth-order filter that is capable
of completely transferring the input power from the bus to the
receiver waveguide. Theth-order filter can be described in
terms of coupled symmetric and antisymmetric modes of the
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(a)

(b)

Fig. 1. (a) Symmetric add/drop filter based on two coupled identical single-mode resonators. (b) Filter response when all degeneracy conditions are
satisfied, obtained by coupling of modes in time.

pairs of resonators

(5)

(6)

...

(7)

(8)

(9)

(10)

...

(11)

(12)

where and represent the symmetric and antisym-
metric mode amplitude of theth resonator pair normalized
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Fig. 2. Schematic of annth-order filter made ofn pairs of coupled resonators.

to the energy in the mode, respectively. Likewise, and
represent the resonance frequency of theth resonator

pair, are the decay rates associated with the
power lost by the symmetric or antisymmetric modes to the
waveguides adjacent to the first and last pair of resonators,
and is the coupling between the symmetric modes and
the antisymmetric modes, respectively, of theth and th
resonator pair, real by power conservation. We note that the

symmetric modes do not couple to the antisymmetric modes
and vice versa. The coefficients and associated with
the coupling to the bus and the receiver, respectively, are found
by power conservation to have the form

(13)
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The outgoing waves are described by

(14)

(15)

(16)

(17)

In the following analysis, we will assume for simplicity that
the coupling coefficients are real. This can be accomplished by
the proper choice of the reference planes. A detailed analysis
on how the phase of the coupling coefficients affects the filter
response can be found in [4].

For the case in which the system is excited only from one
side of the bus, i.e., and has
a time dependence, we can find the mode amplitudes

using the systems of (5)–(8) and (9)–(12) as shown in
(18)–(21), at the bottom of the page, where is defined
as the denominator associated with the expression for.
Note that the different are continued fractions of different
order. Identical expressions exist for the antisymmetric mode
amplitudes , where the subscript is simply replaced by
the subscript , everything else remaining the same. Using
(18)–(21) and (13) in (14) and (15), we get the reflected and
transmitted waves on the bus guide

(22)

(23)

Solving for and , we find

(24)

(25)

Use of the above yields the following response at the remain-
ing output ports:

(26)

(18)

(19)

(20)

...

(21)
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and

(27)

We consider the case where the resonators are designed such
that the symmetric and antisymmetric modes are all degenerate
at frequency , i.e.,

and the decay rates of the symmetric and antisymmetric modes
of the first and last pair of resonators are the same, i.e.,

and

The degeneracy condition for a pair of resonators adjacent
to a waveguide can be satisfied by balancing the direct
coupling between the resonators with the indirect coupling
via the waveguide and by choosing the distance between
the resonators to be an odd multiple of a quarter guided
wavelength. For the resonator pairs that are not next to a
waveguide (i.e., ), the degeneracy can be
achieved by placing the two resonators of each pair sufficiently
far apart so that they are essentially uncoupled. The coupling
between the symmetric modes and antisymmetric modes of
adjacent pairs of resonators can also be made equal, i.e.,

This is possible if there is no cross coupling between res-
onators on either side of the symmetry plane that belong to
different pairs. The above relationships imply that

For this highly degenerate case, it is obvious, using (22) and
(26), that the signal reflected on the bus and that dropped in
port 3 of the receiver guide are identically zero over the entire
bandwidth of the resonance, i.e.,

(28)

Also,

(29)

and

(30)

We note that the leading frequency term in the product
is . Thus, for high

frequencies, the magnitude of rolls off approximately as

as expected for anth-order filter. It is possible to design the
system to transfer the signal completely to the receiver guide
on resonance. Moreover, it is possible to shape the frequency
response of higher order filters. In this case, the spectral re-
sponse can be engineered by choosing the appropriate coupling
between adjacent resonators and the decay rates of the pairs
of resonators next to the bus and receiver guides. In general,
the selection of the appropriate amount of couplings between
resonators for a higher order filter, with , to achieve
a desired spectral response is a tedious and nontrivial task
and becomes increasingly harder as the order increases. If we
are somehow able to map the coupled resonator system to a
standard circuit used for implementing higher order filters, this
task is reduced to looking up tabulated values of impedances
to figure out the appropriate optical couplings and decay rates.

III. EQUIVALENT CIRCUIT

An equivalent circuit attempting to model the behavior
correctly at all four ports of the coupled resonator system
must be a four-port device. Such a circuit description would
be difficult to work with. Instead, we concentrate on the port
of primary interest, namely the receiver port and derive
a partial “equivalent” circuit which models the behavior of
this port correctly. We are justified in following this approach
as, in the degenerate case which is the case of interest, we
already know the response at two ports, and to be
identically zero over the bandwidth of interest and are really
only interested in engineering the spectral response of.

The purpose of deriving the equivalent circuit of the stacked
resonator system is to facilitate filter design by utilizing the
extensive work already done on– ladder circuits [8]–[10].
Consider the ladder circuit shown in Fig. 3, consisting of
alternating sections of series and parallel– circuits. This
is a standard circuit used for designing higher order filters.

is the impedance of the circuit looking into the ladder
and is the admittance of the ladder circuit beyond the first
series – subcircuit. Likewise, is the impedance looking
beyond the first parallel – subcircuit. In a similar fashion,
we define additional impedances and admittances,and
with diminishing number of elements in them. The choice of
this notation will become clear shortly. Near resonance, we
obtain (31)–(34), shown at the bottom of the next page. For
definiteness, we have assumed that the order of the filteris
an even number. We would follow similar procedures in the
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Fig. 3. Postulated equivalent circuit for annth-order filter made ofn pairs
of coupled resonators.

case of odd . Moreover, the impedances and admittances are
expanded near the resonance frequencies of the– circuits
which are assumed to be equal, i.e., for all . The
power dissipated in the conductanceof the last parallel

– branch is given by

where and are the voltage and current, respectively,
across the conductance. may be found using the voltage
divider relationship repeatedly. We find

(35)

and

(36)

Hence,

(37)

which can be normalized to

(38)

so that each factor in the fraction is dimensionless. The power
captured by the receiver guide is given by

(39)

which can be rewritten as (40), shown at the bottom of the
page, again so that each factor in the fraction is dimensionless.
Comparing the above expressions for and , we see
that they are similar in form provided we draw the following
correspondence:

(41)

(42)

(31)

(32)

(33)

...

(34)

(40)
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(43)

...

(44)

(45)

It appears that there are too many constraints present for
a mapping between and to exist, but we will see
that the mapping enforced by the first equation encompasses
the others and the remaining equations are redundant. This
is obvious if we consider the special relationship that exists
between and and between and . Specifically,
we note that

(46)

(47)

as is obvious from (30)–(32). It follows that

(48)

(49)

Thus, the correspondence in (42) is satisfied

Similar reasoning can be used to show that the correspondence
expressed by (43) is contained in (42). By extension, it follows
that all other correspondences are contained in (42). For an
equivalence to exist, the form of must be the same
as that of . We note that (50), shown at the
bottom of the page, has a continued fraction form identical
to (51), shown at the bottom of the page. In fact, there is
a term-by-term correspondence between the two expressions
which provides a mapping between the circuit and the optical
resonator parameters. This proves that the postulated circuit
of Fig. 3 is indeed the equivalent circuit representation of the
receiver port of the coupled resonator system. Consider (40);

on resonance, , it is obvious that

Complete power transfer is then possible on resonance if

(52)

or equivalently if we use the correspondence implied by (45)
when . This should be obvious if we consider the
equivalent circuit. On resonance, the series– branches are
shorted and the parallel – branches are open. The load

is directly connected to the source and perfect transfer is
only possible for a matched load. For odd, the condition for
complete power transfer on resonance would be

(53)

In the following section, we will design a fourth-order But-
terworth filter using mappings provided by the equivalent
circuit.

IV. EXAMPLE: FOURTH-ORDER FILTER

As an example of a higher order filter, we consider the
coupled resonator system shown in Fig. 4 consisting of four
pairs of resonators side-coupled to their nearest neighbors. All
the pairs are designed so that their respective symmetric and
antisymmetric modes are degenerate at frequency, and the
decay rates and coupling coefficients are assumed to be
the same for the symmetric and antisymmetric modes, i.e.,

For , (50) and (51) yield (54) and (55), shown at the
bottom of the next page.

Using the correspondence given by (42), we find the follow-
ing mapping between the circuit parameters and the optical

(50)

(51)
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Fig. 4. Fourth-order filter.

parameters:

(56)

(57)

(58)

(59)

(60)

These mappings can be rewritten as

(61)

(54)

(55)
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Fig. 5. Response of the fourth-order Butterworth filter shown in Fig. 4.

(62)

(63)

(64)

(65)

For the th-order filter, the couplings between the resonators
are given by

odd (66)

even (67)

with . To design a higher order filter, we look
up filter design tables which give the values of inductances and
capacitances needed to obtain the desired spectral response.
Using the above mappings, we obtain the coupling and decay
parameters needed. Note that the coupling coefficients can be
found by inspection from the equivalent circuit once its induc-
tances and capacitances have been chosen. This technique was
used to design a fourth-order Butterworth filter. The response
at the various output ports of the coupled resonator system
is shown in Fig. 5. The receiver port is maximally flat as
expected for a Butterworth filter.

V. CONCLUSION

Using coupling of modes in time, we have extended the
analysis of [4] to higher order filters produced by coupling

among a number of resonator pairs. The advantage of this
approach is that the filter response can be brought to a one-
to-one correspondence with a standard– filter design,
providing a rough layout of the structure and the optical
parameters needed to achieve desirable transfer characteristics.
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