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We present an analysis of the phase and amplitude responses of guided resonances in a photonic crystal slab.
Through this analysis, we obtain the general rules and conditions under which a photonic crystal slab can be
employed as a general elliptical polarization beam splitter, separating an incoming beam equally into its two
orthogonal constituents, so that half the power is reflected in one polarization state, and half the power is
transmitted in the other state. We show that at normal incidence a photonic crystal slab acts as a dual quarter-
wave retarder in which the fast and slow axes are switched for reflection and transmission. We also analyze the
case where such a structure operates at oblique incidences. As a result we show that the effective dielectric
constant of the photonic crystal slab imposes the Brewster angle as a boundary, separating two ranges of
angles with different mechanisms of polarization beam splitting. We show that the diattenuation can be tuned
from zero to one to make the structure a circular or linear polarization beam splitter. We verify our analytical
analysis through finite-difference time-domain simulations and experimental measurements at infrared
wavelengths. © 2008 Optical Society of America
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. INTRODUCTION
he polarized nature of light can be exploited through the
ffects of birefringence, dichroism, and optical activity to
cquire diverse information such as molecular structure
r magnetic field distribution around stars. On the other
and, polarization can be an obstacle in various areas
uch as interferometry or high-data-rate fiber-optic com-
unication. Both the advantages and disadvantages

osed by the polarized nature of light make it essential to
ave optical components that allow us to manipulate the
tates of polarization.

One such optical component of interest is the polarizing
eam splitter (PBS), a key element in various areas of op-
ics, with applications in optical metrology, optical data
torage, optical interconnects, and polarization-based im-
ging systems. The PBS is also a key element in systems
mploying polarization entanglement. Some of the appli-
ations in this field are in quantum information process-
ng [1] and quantum communication [2].

The most widely used PBSs are prism-based. Such tra-
itional PBSs have limitations in that they provide high
olarization extinction ratios only in a narrow range of
avelengths and incidence angles [3]. Form birefringence
rovides alternative configurations that exhibit better
erformance [4]. Form birefringence is a type of birefrin-
ence that appears due to some geometric anisotropy in
n ordinarily nonbirefringent material. If the scale of the
nisotropy, such as the spatial period of a grating, is suf-
ciently small compared to the wavelength, the structure
ehaves as a homogenous material. The amount of the ar-
ificial birefringence can be tuned through several param-
ters such as geometric composition, material type, and
ngle of incidence. As a consequence, incident light in two
1084-7529/08/112680-13/$15.00 © 2
istinct polarizations encounters different effective dielec-
ric constants.

Form birefringence gives the freedom to design diverse
olarization-sensitive devices that otherwise would be
ard to realize, considering the limited number of avail-
ble natural birefringent materials. Aside from PBS ap-
lications [4–10], form birefringence enables various
ther devices, including linear polarizers [11], filters [12],
enses [13], and waveplates [14]. Among waveplates, the
uarter-wave retarder (QWR) is an optical component of
pecial interest in this paper. QWRs are used for polariza-
ion analysis and control, usually employed as a linear-to-
ircular—or vice versa—polarization transformer. Form
irefringence can be employed to create various types of
WRs with advantages over traditional types [7,14–18].
By using a QWR together with a PBS, one can con-

truct a circular PBS. Several circular PBSs utilizing liq-
id crystals were reported in the past, based on chiral me-
ia [19] and polarization diffraction gratings [20]. Azzam
nd Mahmoud demonstrated such a beam splitter based
n conventional thin-film optics [21]. Their structure,
hich is a dual-QWR that induces quarter-wave retarda-

ion of opposite sign for the reflected and transmitted
aves, has as its basis a self-supporting trilayer pellicle.
he limitation of this structure is its operation at a high
ngle of incidence and unequal power in the reflected and
ransmitted beams. These limitations were overcome in a
ater device by Azzam and De by embedding the trilayer
ellicle in a high-index prism and operating it under
rustrated-total-internal-reflection conditions [22].

Here we analyze structures based on photonic-crystal
labs (PCS) that act as unique polarization components.
hotonic-crystal-based polarization elements have been
008 Optical Society of America
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nvestigated in the past, such as bulk 2D-photonic-
rystal-based PBSs [23] and QWRs [24]. Lousse et al. re-
orted simulations of a linear PBS based on a PCS with
ectangular holes [25]. The PCS structure we describe
ere acts as a dual-QWR, where the fast and slow axes
re switched for reflection and transmission. The opera-
ion of the structure relies on the phase and amplitude re-
ponses of guided resonances [26–34]. An incoming wave
inearly, circularly, or elliptically polarized and incident
n such a structure is split into two orthogonal polariza-
ion modes, each sharing half the incident power. The di-
ttenuation, defined as the difference in the transmitted
owers for the two polarizations normalized to the total
ransmitted power, can be tuned from zero to one to make
he structure a circular or linear PBS. By introducing a
mall amount of form birefringence into the photonic
rystal geometry, the structure can perform at normal in-
idence, opening up the novel applications discussed in
ection 6.

. PHASE AND AMPLITUDE RESPONSE OF
IREFRINGENT PCS
or light incident on a PCS (as illustrated in Fig. 1), the
ransmission coefficient t and the reflection coefficient r
an be expressed as [29,30]

t = td − �td ± rd��/�� + j�� − �0��,

r = rd − �rd ± td��/�� + j�� − �0��. �1�

ere the parameters � and �0 are the half-linewidths and
enter frequencies of the guided resonances, respectively
nd � corresponds to even and odd modes with respect to
he mirror plane parallel to the slab. Throughout the text
he upper sign will correspond to even modes and the
ower sign to odd modes.

The parameters td and rd are the direct transmission
nd reflection coefficients. They can be expressed as the
ransmission and reflection coefficients of an equivalent
niform slab of the appropriate effective refractive index.
t normal incidence, they are [35]

td = �cos�kzh� − j
kz0

2 + kz
2

2kz0kz
sin�kzh��−1

,

ig. 1. (Color online) Illustration showing light normally inci-
ent on a PCS.
rd = �j
kz0

2 − kz
2

2kz0kz
sin�kzh��td, �2�

here kz0= �� /c���0 and kz= �� /c��� represent the wave
ector components normal to the slab, and h is the thick-
ess of the slab. The PCS is surrounded by a medium
ith a dielectric constant of �0 (usually air/vacuum with

0=1), while � is the frequency-dependent dielectric con-
tant, found by fitting the above expressions to the
abry–Perot type background of the PCS transmission
nd reflection spectra [29].
For compactness, we introduce the parameters � and �

hat we will refer to as the normalized frequency offset
nd the splitting ratio, respectively:

���� = �� − �0�/�,

���� =
kz0

2 − kz
2

2kz0kz
sin�kzh�. �3�

he splitting ratio �, a real number, is the ratio between
he direct reflection and transmission due to rd= j�td.

Now let us consider the case where we have birefrin-
ence in the PCS, so that for the two orthogonal eigenpo-
arization axes 1 and 2, we have in general different
ransmission coefficients t1� t2. To achieve this, the
uided resonances corresponding to the polarizations 1
nd 2 must be split by � from the center frequency �0 into
he positive and negative frequency directions. We can
nderstand the conditions for the existence of such a pair
f resonances through symmetry considerations. Let us
onsider the case for a square-lattice PCS. At the � point
referring to a zero value of the wave vector component
arallel to the slab), the structure possesses a C4	 point
roup symmetry in the plane of the lattice, together with
he even/odd symmetry with respect to the mirror plane
arallel to the slab (a C1h symmetry). The C4	 point group
upports five classes of eigenmodes belonging to different
rreducible representations and hence possess different
patial symmetry. Among these five classes, one of them is
oubly degenerate. Symmetry matching conditions per-
it only the doubly degenerate modes to couple to outside

lane-wave radiation that is normally incident on the slab
36]. Consequently, for our case of normal incidence, the
uided resonances are always doubly degenerate in a
quare lattice. When we introduce a small form birefrin-
ence into the lattice by either making the holes slightly
lliptical, or by slightly varying the pitch in one direction,
e break the 90° rotational symmetry. As a result the

ymmetry of the lattice is reduced to a C2	 symmetry. The
2	 point group does not support degenerate modes.
herefore the modes that are degenerate in the square

attice split into two different modes when we introduce a
mall form birefringence, with the magnitude of the split-
ing determined by the amount of the asymmetry intro-
uced. The uncoupled modes that are nondegenerate in
he square lattice remain uncoupled for the form-
irefringent case also, so that all guided resonances ap-
ear as a pair of split modes.
As we introduce a small form birefringence into the

CS, the other parameters defining the resonances,
hich are the background and linewidth, can also deviate
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or the two polarizations. A change in these parameters
hat affects both polarizations similarly is not significant
o our analysis. We will see that we can neglect any de-
iation in the background and linewidth for the two po-
arizations, and also can ignore any change in them. The
ackground will not be affected much, since it is mainly a
unction of the effective dielectric constant of the corre-
ponding uniform slab. If we introduce the form birefrin-
ence in such a way that we do not change the average
ielectric constant, then the background will not vary sig-
ificantly for either polarization. (The method is also de-
cribed in Appendix A.) This argument is supported by
he finite-difference time-domain (FDTD) simulations
hown in Fig. 2. The simulations were done for a dielec-
ric slab with a dielectric constant of 12 and a thickness of
.55a, a being the lattice constant of rectangular through
oles on a square lattice. A simulation was first done for
quare-shaped holes of size 0.5a
0.5a. Then we calcu-
ated the splitting ratio � at the frequency �=0.3�2�c /a�,
here it is expected to have a value of 0. Subsequently we
ade a series of calculations in which the widths of the

ectangular holes were gradually increased (along the di-
ection 2) by keeping the area of the holes �0.5a
0.5a�
onstant, so that the holes became increasingly rectangu-
ar. A hole width of 0.5a corresponds to square holes,
hile a hole width of 1.0a corresponds to a 1D grating,

ince the rectangular holes become connected when their
idth is equal to the lattice constant. The � values at the

requency �=0.3�2�c /a� for the two polarizations were
alculated for increasing form birefringence.

The result shows that even for a very large form bire-
ringence, where the structure becomes a 1D grating, the
hange in � is not large. The splitting ratio for polariza-
ion 1 ��1� stays nominally the same, while the splitting

0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

hole width (a)

β

β
1

β
2

ig. 2. FDTD simulations showing that the background is not
ignificantly affected by an introduction of a form birefringence.
he simulations were done for a dielectric slab with a dielectric
onstant of 12 and a thickness of 0.55a, a being the lattice con-
tant of rectangular through holes on a square lattice. A simula-
ion was first done for square-shaped holes of size 0.5a
0.5a.
hen, the � value at the frequency �=0.3�2�c /a� was calculated,
here it has a value of 0. Afterward, the width of the rectangular
oles was gradually increased (along the direction 2) by keeping
he area of the hole �0.5a
0.5a� constant. The horizontal axis
orresponds to the hole width. The hole width of 0.5a corresponds
o square-shaped holes, while the hole width of 1.0a corresponds
o a 1-D grating, since the rectangular holes become connected.
he rectangular and circular data points correspond to the � val-
es at the frequency �=0.3�2�c /a� for the two polarizations.
atio for polarization 2 ��2� changes by 0.2, which is only
.25% of the maximum range of � values for a slab with a
ielectric constant of 12. This supports our argument that
he background does not change significantly for a small
irefringence.
The guided resonances, on the other hand, are strongly

ffected by any geometrical variation such as changing
he radius of the holes or the pitch. Since the introduction
f form birefringence is equivalent to a change in the lat-
ice geometry, we expect both the center frequencies and
he linewidths of the individual resonances to change
hen splitting occurs. Numerical simulations (as pre-

ented in Fig. 3) show that the relative changes for the
esonance frequency and linewidth of a guided resonance
re of the same order, i.e., d� /��d� /�. However, in our
ase we are interested in the changes of center frequency
nd linewidth relative to the linewidth. This is because
e are interested in how far apart the resonances are,
nd how much they overlap in comparison to the line-
idth, irrespective of the center frequency. In that case,

he relative change in the center frequency would be
� /�= �� /��d� /�= �� /��d� /�. This means that the
hange in the center frequency is larger than the change
n the linewidth by a factor of the order of �0 /�. This
umber corresponds to Q, the quality factor of the guided
esonance. Q values for guided resonances typically vary
rom 	100 to 	5000 [29]. This in turn means that the
inewidth does not change significantly when the doubly
egenerate resonances split.
These arguments are supported by the FDTD simula-

ions shown in Fig. 3. The simulations show that the line-
idth does not change significantly when the doubly de-
enerate resonances split. The guided resonances used in
he calculations were isolated from the background spec-
rum by passing the complex field amplitude through a
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ig. 3. FDTD simulations showing that the linewidth does not
hange significantly when the doubly degenerate resonances
plit. The data are from the same simulations that are used in
ig. 2. The graph shows how a guided resonance splits through

orm birefringence. The solid curve corresponds to a doubly de-
enerate resonance for a hole width of 0.5a, which is a square
ole. By introducing birefringence through making the holes
ectangular, the doubly degenerate resonance splits into two. The
ashed curves correspond to split resonances for a hole width of
.55a, and the dotted curves correspond to split resonances for a
ole width of 0.63a. The guided resonances used in the calcula-
ions were isolated from the background spectrum by passing the
omplex field amplitude through a high-pass filter.
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igh-pass filter. The data are from the same simulations
sed to calculate the background change in Fig. 2. The
raph shows how a guided resonance splits through form
irefringence. First there is a doubly degenerate reso-
ance for a hole width of 0.5a, i.e., a square hole. By in-
roducing birefringence (by making the holes rectangular
nd keeping their area constant as described before), the
oubly degenerate resonance splits into two.
The simulations were done for form-birefringent PCS

tructures where hole widths were 0.55a and 0.63a. The
atio of the center frequency difference to the linewidth
ifference is �� /��=34 and 24 for the hole widths 0.55a
nd 0.63a, respectively. These numbers show that the
hange in frequency is larger than the change in line-
idth by more than an order of magnitude. For a small
irefringence, this number would be closer to the Q value
f the original PCS resonance, which is 222. This example
hows that even for such a small Q, our argument that
he frequency changes faster than the linewidth holds.

We have to note that these statements are not valid for
ery small hole radii. In the limit where the hole radius
pproaches zero the Q values for the resonances diverge,
ince the resonances become true guided modes in a uni-
orm slab [29]. The normalized frequency offsets for the
wo polarizations can be written symmetrically as

�1��� = �� − ��0 − ���/�,

�2��� = �� − ��0 + ���/�, �4�

here �0 corresponds now to the mean of the center fre-
uencies of the two guided resonances. The transmission
oefficients are then simply

t1,2 = td − �td ± rd�/�1 + j�1,2�. �5�

By writing the direct reflection coefficient in the form
d= j�td, the transmission coefficient can be put into the
ompact form

t = td�j + ���� � ��/�1 + �2�. �6�

he induced phase difference [37] between the transmit-
ed polarizations 1 and 2, namely the retardance, will
hen be, using Eq. (6),

�t = arg�t2/t1� = arg
 j + �2

j + �1
� + arg
�2 � �

�1 � �
� . �7�

e will use the abbreviation arg��j+�2� / �j+�1��=0 to de-
ote the retardance due to the guided resonance splitting.
e see that the total retardance �t can have an addi-

ional phase contribution of � due to interference with the
ackground, when the phase parameter ��2�����1���
�t is negative. In fact, we will exploit this additional
hase to make a PBS out of a PCS. We are going to use
he phase parameter �, together with the normalized fre-
uency offset � and the splitting ratio �, to determine all
he relevant PBS properties of a PCS.

By rewriting the retardance with those abbreviations
e obtain the compact form
�t = �0 �t � 0

0 + � �t � 0 . �8�

imilarly for the reflected wave, where the phase param-
ter is �r= �1±��2��1±��1�, we get the retardance as

�r = �0 �r � 0

0 + � �r � 0 . �9�

Having found the phase responses for a birefringent
CS, let us now find the amplitude responses for the po-

arizations 1 and 2. Using the expression �td�2+ �rd�2=1, to-
ether with Eq. (6), we get the transmittance in the ex-
licit form

�t1,2�2 = ��1,2 � ��2/��1 + �2��1 + �1,2
2 ��. �10�

ombining this result with �t�2+ �r�2=1, we find the reflec-
ance in the explicit form

�r1,2�2 = �1 ± ��1,2�2/��1 + �2��1 + �1,2
2 ��. �11�

e are using the energy conservation expressions �td�2
�rd�2=1, and �t�2+ �r�2=1 under the assumption that there

s no absorption in the PCS. This is a good assumption for
ost PCS types, such as silicon-based ones operating at

nfrared wavelengths.
Equations (10) and (11) provide expressions for the

ransmittance and reflectance in terms of the normalized
requency offset � and the splitting ratio �. We are going
o employ these expressions in Section 3 to analyze the
onditions under which a PCS acts as a PBS that sepa-
ates an incoming elliptical beam equally into its orthogo-
al constituents.

. POLARIZATION BEAM SPLITTING AT
ORMAL INCIDENCE

n this section we will analyze how we can employ a PCS
s a PBS at normal incidence. The Jones formalism offers
ractical advantages when analyzing polarization proper-
ies. Omitting arbitrary phases, the Jones matrices for
ransmission and reflection can be written as

Jt = ��t1� 0

0 �t2�ej�t�, Jr = ��r1� 0

0 �r2�ej�r� . �12�

or an incident wave �i� the transmitted and reflected
aves will be �t�=Jt�i� and �r�=Jr�i�, respectively. By

hoosing an appropriate coordinate system (i.e., choosing
n appropriate relative orientation between the eigenpo-
arization axes of the PCS and the incident wave), any
ave with a definite polarization can be put into the form

�i� =
1

�2
� 1

ej�� . �13�

his denotes a general elliptical polarized wave (E state)
ith a polarization phase � that defines the ellipticity.
he special polarization states for this choice of coordi-
ate system are plane-polarized at ±45° (±45° P state),
ircular-right polarized (R state), and circular-left polar-
zed (L state).
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For the PCS to be capable of separating an incoming
eam equally into two orthogonal constituents (any two
rthogonal elliptical polarization states, such as two lin-
ar ones, or circularly polarized states) the first condi-
ions for a PBS are the amplitude conditions �t � t�
�i�Jt

†Jt�i�=1/2 and �r �r�= �i�Jr
†Jr�i�=1/2, which we can ex-

ress through a trace (denoted with the symbol Tr) simply
s

Tr�Jt
†Jt� = Tr�Jr

†Jr� = 1. �14�

his means that for a general E state, the incoming wave
s separated into two equal parts, so that half the power is
eflected in one state and half the power is transmitted in
he other state. To satisfy Eq. (14), we need to have �t1�2
�t2�2= �r1�2+ �r2�2=1. Using the energy conservation �t�2
�r�2=1, this can be expressed as �t1�= �r2� and �t2�= �r1�,
hich means that the phase parameters for reflection and

ransmission are related through

�r
2

�t
2 =

�r1�2

�t2�2
�r2�2

�t1�2
= 1, �15�

eading us to the two solutions

�r = − �t, �r = + �t. �16�

The second condition for a PBS is that the reflected and
ransmitted parts have orthogonal polarizations �t �r�
�i�Jt

†Jr�i�=0, which can be expressed as

Tr�Jt
†Jr� = 0. �17�

sing �t1�= �r2� and �t2�= �r1� in Eq. (17), we see that for or-
hogonality we just need to have �r−�t=arg��r /�t�=�.
his means that the orthogonality condition is �t /�r�0.
ence, the solution in Eq. (16) that satisfies both the am-
litude and orthogonality conditions is �t=−�r. This con-
ition is satisfied for �1=−1/�2, so the PCS operates as a
BS at normal incidence if �1�2=−1. When we solve
1�2=−1 for the frequency �, we obtain the two results
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ig. 4. Calculated spectra of the phase and amplitude responses
irefringent PCS structures (a), (b), and (c). The circle-marked, sq
olarization 1, polarization 2, and both polarizations, respective
tructure has a dielectric constant of 12 with a thickness of 0.55
=0.064�2�c /a�, are separated by �=�, and have ��1�=��2�=�0 va
nd (c), respectively. (a) corresponds to a linear PBS with �=−1,
he same way as it is illustrated in Fig. 5.
��1� = �0 − ��2 − �2,

��2� = �0 + ��2 − �2. �18�

At these frequencies, the reflected and transmitted
eams will have orthogonal polarizations and equal
ower. We first note the interesting result that the PBS
requencies are independent of the background and de-
end solely on the normalized frequency offsets. We also
bserve that the splitting has to be at least a linewidth
ide ��� to enable PBS operation. There are also trivial

olutions to the two PBS conditions—either �t1�= �r2�=0 or
t2�= �r1�=0—which correspond to a linear PBS for which
e have no power in one eigenpolarization for reflection
nd transmission. In that case the retardances �t and
r are undefined, hence have no physical meaning.
owever, if we look at frequencies slightly smaller and

arger than �0 we have nonvanishing power in both polar-
zations, and hence definite retardances. In fact, we have
r−�t=� for the limiting cases of �→�0

+ and �→�0
−,

s can be seen from the retardances shown in Fig. 4.
The retardance due to the guided resonance splitting

0 will have the value of � /2 for �1�2=−1. Since the re-
ation between the phase parameters for transmission
nd reflection in this case will be �t /�r=−1, the retar-
ances will be �t= +� /2 and �r=−� /2 for a positive
hase parameter �t�0. Similarly for �t�0, we will have
t=−� /2, and �r= +� /2. The Jones matrices for trans-
ission and reflection will then be (for concreteness we

how the �t�0 case; for the �t�0 case, replace j by −j)

Jt = ��t1� 0

0 j�t2��, Jr = �j�t2� 0

0 �t1�� . �19�

These matrices emphasize an interesting feature: the
tructure acts as a retarder for which the fast and slow
xes are switched for transmission and reflection. This
eans that for a general E state, the incoming wave is

0.55 0.6
/a)

|t
1
|2

|t
2
|2

|t|2

∆Φ
t
(π units)

0.5 0.55 0.6 0.65
0

0.5

1

1.5

frequency (c/a)

|t
1
|2

|t
2
|2

|t|2

∆Φ
t
(π units)

0.55 0.6
/a)

|r
1
|2

|r
2
|2

|r|2

∆Φ
r
(π units)

0.5 0.55 0.6 0.65
0

0.5

1

1.5

frequency (c/a)

|r
1
|2

|r
2
|2

|r|2

∆Φ
r
(π units)

(c)

ansmission (top) and reflection (bottom) for three different form-
arked, and solid curves correspond to the normalized powers in

e dashed line corresponds to the retardance in units of �. The
ing the pitch. The guided resonances possess a half-linewidth of
f 0.47�2�c /a�, 0.53�2�c /a�, and 0.58�2�c /a� for the cases (a), (b),
a circular PBS with �=0, and (c) to a linear PBS with �= +1, in
equency (c

equency (c

for tr
uare-m
ly. Th

a, a be
lues o
(b) to



s
o
h
p
t
o
=
T

a
s
t
w
E
t
e
p
t
t
c
s
h
�
o
s
t
l

m
i
�

q
u
s
s
a
p

4
O
I
a
t
l
a
w
s
p
p
r
e
i
f
P
v
t
c
c
T
p
g
d
f
n
o
i
d
i
i
T
t
g
d
v
c

a
f
t

k

F
P

Kilic et al. Vol. 25, No. 11 /November 2008 /J. Opt. Soc. Am. A 2685
eparated into its two orthogonal constituents at �=��1�

r ��2�, so that half the power is reflected in one state, and
alf the power is transmitted in the other state. The com-
osition of the Jones matrix is dependent on the ampli-
udes �t1� and �t2�, which because of Eq. (10) is dependent
n the splitting ratio � at the operation frequency of �

��1� or ��2�. The cases for special � values are listed in
able 1 corresponding to different diattenuation values.
The implication of Table 1 is illustrated in the ex-

mples in Fig. 5. Calculated transmission and reflection
pectra corresponding to those examples, together with
he retardances, are shown in Fig. 4. The calculations
ere carried out by directly using the basic expressions in
qs. (1) and (2) for the case when the splitting is equal to

he linewidth �=�, so that we have ��1�=��2�=�0. The di-
lectric constant in the calculations is fixed at 12 for sim-
licity, so that it does not vary with frequency. The slab
hickness is chosen as h=0.55a. The resonances are due
o even modes for concreteness. The half-linewidth for all
ases is �=0.064 �2�c /a�. The center frequency �0 is cho-
en to be 0.47, 0.53, and 0.58 �2�c /a�, so that at �=�0 we
ave the three interesting cases of �=−1, �=0, and
= +1, respectively. The calculated spectra clearly verify
ur analysis of the amplitude and phase responses. We
ee that the incident power is equally separated through
ransmission and reflection into orthogonally polarized
ight.

Table 1. Special Values of the Splitting Ratio �
and the Corresponding Values of the Amplitudes

�t1� and �t2�a

Even Modes Odd Modes

� −1 0 1 −1 0 1

�t1� 0 1/�2 1 1 1/�2 0
�t2� 1 1/�2 0 0 1/�2 1

aThese numbers determine whether the PCS acts as a linear, circular, or any other
ind of elliptical PBS.

+45°P

VH

1−=β

RL

0=β

HV

1+=β

i

tr

ig. 5. (Color online) Illustration showing how the PCS-based
BS operates for several special � values.
The least dispersive solution, which is desirable for
ost applications where chromaticity is a disadvantage,

s for the case when the splitting is equal to the linewidth,
=�. In such a case, the PBS operates at a single fre-
uency ��1�=��2�=�0, which is the center frequency. Fig-
re 6 shows the operation of the PBS on the Poincaré
phere for several cases, such as a gradual change in the
plitting ratio or the incident polarization, including situ-
tions when the incident beam is not aligned to the eigen-
olarization axes of the PBS.

. POLARIZATION BEAM SPLITTING AT
BLIQUE INCIDENCE

n the previous section, we demonstrated that a PCS can
ct as a PBS if two guided resonances corresponding to or-
hogonal polarizations are separated by more than the
inewidth. Besides introducing a small form birefringence
nd striking with light at a normal angle, there is another
ay to separate two guided resonances and hence con-

truct a PBS out of a PCS. When we move out of the �
oint (so that we have a nonvanishing wave vector com-
onent parallel to the slab), the symmetry of the lattice is
educed. Consequently, the modes that are doubly degen-
rate at normal incidence appear to be split at an oblique
ncidence angle, as in the case of introducing form bire-
ringence to reduce the C4v symmetry to a C2v symmetry.
articularly, the symmetry in the case of a finite wave
ector component parallel to the slab is in general lower
han C2v. As a result, nondegenerate modes that are un-
oupled in the � point begin to become coupled to the in-
ident radiation for increasing incidence angles. [25,36]
hese additional modes can contribute to more complex
olarization effects at oblique incidences that we are not
oing to discuss in this paper. In the case of oblique inci-
ence (as illustrated in Fig. 7), we then do not need any
orm birefringence to split the resonances. We need to
ote that any presence of a form birefringence is not an
bstruction, though; it is only not a requirement, and can,
n fact, be used to control the splitting at oblique inci-
ences. The fact that the backgrounds for the two polar-
zations have a different behavior for increasing angles of
ncidence is taken into account in the following analysis.
his is in contrast with the normal-incidence case where

here is no significant difference between the back-
rounds for the two polarizations. The statement that
�0 /� is in general significantly larger than d� /� is also
alid for splitting through increasing incidence angles (as
an be seen, e.g., from the FDTD simulations in [25]).

For the more general case of incidence at an oblique
ngle, the direct transmission and reflection coefficients
or the s and p polarizations (which we will denote with
he indices 1 and 2 for consistency) are [35]

td1 = �cos�kzh� − j
kz0

2 + kz
2

2kz0kz
sin�kzh��−1

,

td2 = �cos�kzh� − j
�2kz0

2 + �0
2kz

2

2��0kz0kz
sin�kzh��−1

,
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rd1 = �j
kz0

2 − kz
2

2kz0kz
sin�kzh��td1,

rd2 = �j
− �2kz0

2 + �0
2kz

2

2��0kz0kz
sin�kzh��td2, �20�

here kz0=��0�2 /c2−k�
2 and kz=���2 /c2−k�

2 represent
he wave vector components normal to the slab and k�
epresents the wave vector component parallel to the
lab. The other conditions are the same as in Sections 2
nd 3: the PCS is surrounded by a medium with a dielec-
ric constant of �0 (usually air/vacuum with �0=1), and �
s the frequency-dependent dielectric constant fitted to
he background.

Since the direct transmission and reflection coefficients
orresponding to the polarizations 1 and 2 are in general
ifferent, the amplitude and phase responses will have a
ore complex form. More specifically, we will have two

H

-45°

(e)

(d)

(d)

ig. 6. (Color online) Illustration of the PCS device on the Poin
enotes the incident polarization, while the two arrows pointing
he circle passing through P +45°, L, P −45°, and R shows the
ase when the incident polarization is aligned to the PBS, the ar
ntiparallel to each other and orthogonal to the arrow depicting
eparated into its two orthogonal constituents. The paths show w
arizing the operation of this type of PBS. (a) � changes from 0

zation changes from L to elliptical to P +45°, for � fixed at 1.
+45°. (d) Incidence polarization changes from P +45° to ellipt

otating between the P +45° and H polarizations, and then betw
+45°

V

L

R

(a)

(b)

(c)

caré sphere. The arrow with its head just at the center of the sphere
away from the center show the reflected and transmitted polarizations.
polarizations aligned to the PBS axes, as in Eq. (13). Note that for the
rows denoting the transmission and reflection polarizations are always

the incidence polarization, showing that the incident polarization is
hat happens when some of the parameters are changed gradually, sum-
to 1

2 to 1 for the incidence polarization fixed at L. (b) Incidence polar-
(c) � changes from 1 to 1

2 to 0 for the incidence polarization fixed at
ical to L for � fixed at 0. (e) The incident polarization is misaligned,
ig. 7. (Color online) Illustration showing light incident on a
CS at an oblique angle. The azimuthal orientation of the inci-
ence plane is irrelevant.
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plitting ratios �1 and �2, defined as before through rd1,2
j�1,2td1,2. We can reduce this complexity by noting

�2

�1
= 1 −

k�
2

�2/c2

� + �0

��0
. �21�

y substituting k�=��0�� /c�sin �, where � is the incidence
ngle, and �� / ��+�0�=sin �br, where �br is the Brewster
ngle [38], this ratio becomes

�2

�1
= 1 −

sin2 �

sin2 �br
= f. �22�

or notational simplicity and clarity in further calcula-
ions, we will therefore write �1=� and �2= f�, so that in-
tead of two different splitting ratios, we have a single
plitting ratio � and a simple function f dependent only on
he angle of incidence.

We will now look for solutions satisfying the amplitude
nd orthogonality conditions as in Section 3, so that the
CS operates as a PBS under oblique incidence. The re-
ardance for transmission will be, using Eq. (6),

�t = arg�td2/td1� + 0 + arg��t�. �23�

he phase parameter in this case is �t= ��2� f����1���.
ecause of the different direct transmission coefficients

or the two polarizations, the retardance contains the ad-
itional phase contribution arg�td2 / td1�. Similarly for the
eflected wave, we have an additional phase contribution
rg�rd2 /rd1�. Hence, the retardance for reflection is

�r = arg�rd2/rd1� + 0 + arg��r�. �24�

he phase parameter for reflection in this case is �r
�1± f��2��1±��1�.
The amplitude condition for this oblique case is satis-

ed by these newly defined parameters in the same way
s presented in the analysis leading from Eqs. (14) and
16) in Section 3, so that we obtain the two solutions pre-
ented in Eq. (16) for the oblique incidence case also,
amely �r=−�t and �r= +�t.
To satisfy the orthogonality condition in Eq. (17), we

eed to have �r−�t=arg�f� /��+arg��r /�t�=�. Since

arg�f� = arg
1 −
sin2 �

sin2 �br
� = �0 � � �br

� � � �br
 , �25�

e should have �r=−�t for ���br and �r= +�t for ���br.
olving �r=−�t, which corresponds to the case of ���br,
e obtain the result

��1� = �0 −��2 − �2 � 2���
1 − f

1 + f�2 ,

��2� = �0 +��2 − �2 � 2���
1 − f

1 + f�2 . �26�

Compared to the solution for normal incidence Eq. (18),
his result is more general and includes an additional
erm that accounts for the effects of oblique incidence.
he additional term is dependent on the background, in
ontrast to the normal incidence case. However, when
here is a transmission peak in the Fabry–Perot type
ackground spectrum at �0, i.e., no direct reflection corre-
ponding to �=0, our result reduces to

��1� = �0 − ��2 − �2,

��2� = �0 + ��2 − �2. �27�

his is the same result as the normal incidence case Eq.
18), independent of the angle of incidence.

Another implication of the additional term in Eq. (26) is
hat the splitting can be smaller than the linewidth, i.e.,
e can have ���, depending on the angle of incidence
nd splitting ratio �. The effect of this additional param-
ter is insignificant for small angles, but can be more pro-
ounced for angles close to the Brewster angle ����br�. At
hese angles, the splitting is allowed to be particularly
mall compared to the linewidth. If we then solve Eq. (26)
t ���br for the minimum splitting that will allow PBS
peration, we obtain

�min = ����2 + 1 ± ��. �28�

We need to note that according to Eq. (26), we can have
splitting smaller than the linewidth only for the case of
�0 for even modes and ��0 for odd modes. For large ���
q. (28) becomes �min= 1

2� / ���.
This means the two guided resonances do not have to

e separated by as much compared to the normal inci-
ence case, the amount of the splitting depending on how
arge the splitting ratio ��� is, i.e., how high the direct re-
ection is. For a silicon PCS, however, the maximum ��� is
ot very large. The highest theoretical reflection from a
ilicon mirror (half-wave thickness) is 72%. This corre-
ponds to ���=1.6. Hence, the maximum ��� possible for a
ilicon PCS is lower than 1.6. This means [Eq. (28)] that
min=0.29�. Hence, for angles of incidence not larger than

he Brewster angle ����br�, a splitting of at least 0.29� is
ecessary in a silicon PCS to use it as a PBS. For inci-
ence angles larger than the Brewster angle ����br�, the
equirements for the minimum splitting are quite differ-
nt.

When we solve �r= +�t, which corresponds to the case of
��br, we obtain the result

��1� = �0 ± ��
1 + f

1 − f�2 −��2 + �2 + 
��
1 + f

1 − f�2�2

,

��2� = �0 ± ��
1 + f

1 − f�2 +��2 + �2 + 
��
1 + f

1 − f�2�2

.

�29�

imilar to the previous case, when there is a transmission
eak in the background spectrum at �0—i.e., no direct re-
ection, which corresponds to �=0—our result reduces to
he simple

��1� = �0 − ��2 + �2,

��2� = �0 + ��2 + �2. �30�

his result is very interesting, in that it allows solutions
or �=0. In that case, the solutions are ��1�=�0−� and
�2�=� +�. For this case, at either side slope of a guided
0
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esonance, the PCS will act as a PBS. Note that we can
lso have �=0 for other � values, as long as ���br. A plot
erifying Eq. (30) for �=0 is shown in Fig. 8. The calcu-
ations were carried out by directly using the basic ex-
ressions in Eqs. (1) and (20).
It is interesting how the Brewster angle is involved in

he mechanisms behind PBS operation of a PCS. The
rewster angle in this case serves as a boundary, merely
eparating two ranges of angles (���br and ���br) that
ffect the PCS differently in separating an incoming
eam into its orthogonal constituents. This is in contrast
o standard PBS or polarizer applications, where the
rewster angle itself is directly relevant ��=�br� to the
echanism of polarizing and beam splitting.

. RESULTS
ere we present results of an FDTD simulation for a cir-

ular PBS device (Fig. 9) and some experimental data on
fabricated structure [scanning-electron-microscope im-

ge (SEM) shown in Fig. 10)].
Figure 9 shows FDTD results for a PCS structure act-

ng as a circular PBS. The simulations were done for a
lane wave that was linearly polarized at 45° incident on
form-birefringent PCS. The spectra are normalized with

espect to an incident wave spectrum calculated in an
dentical simulation without the PCS present. To obtain
he normalized reflection spectrum, the incident wave
ata are subtracted from the reflected wave before nor-
alization. The phase is calculated directly from the com-

lex wave amplitude. The simulated PCS structure was
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ig. 8. Calculated spectra of the phase and amplitude responses
or transmission (top) and reflection (bottom) for an oblique inci-
ence angle larger than the Brewster angle, ���br (�=80° and
br�74°) for the case of �=0. The structural parameters of the
CS are the same as the ones used for Fig. 4. The guided reso-
ances possess a half-linewidth of �=0.040�2�c /a�. The PBS fre-
uencies are ��1�=0.51�2�c /a� and ��2�=0.59�2�c /a�,
espectively.
esigned through the method described in Appendix A.
his particular structure has a dielectric constant of 12

which roughly corresponds to the dielectric constant of Si
r GaAs at optical wavelengths) and a thickness of h
0.85a. The form birefringence is due to the capsule-
haped holes illustrated in Fig. 11. We prefer this shape
n generating form birefringence over elliptical holes (or
ifferent lattice constants in the two directions) because
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ig. 9. FDTD simulations showing (a) transmission results and
b) reflection results for a circular PBS.

ig. 10. SEM image of a fabricated sample with capsule shaped
oles on a silicon slab.
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f its simplicity in simulations and fabrication. The cap-
ule shape is built up of a rectangle with semicircles on
ach end, hence is defined by two parameters, the rect-
ngle width w and semicircle radius u. The parameters
or the holes used in the simulation are w=0.35a and u
0.1a. The �0 frequency for these split guided resonances

s 0.3485 �2�c /a� with a linewidth of 0.0010 �2�c /a�. We
learly see that the phase and amplitude responses have
he behavior predicted by our analysis in Section 2. Such
imulation results provide parameters for real devices
hat we can fabricate. The single-dielectric nature of such
structure makes it relatively easy to fabricate through

ithography techniques. Below we describe how we fabri-
ate some simple structures on silicon.

The starting material for fabrication of the PCS device
hown in Fig. 10 is silicon-on-insulator wafers with (100)
rystal orientation. To create 100 �m
100 �m free-
tanding silicon membranes, we patterned 808 �m wide
quare apertures on the back of the wafers and used 30%
OH in water to etch through the 500 �m thick sub-

trate. For defining the holes, we employ an electron-
eam lithography tool and plasma etching. The size of in-
ividual crystals is 100 �m
100 �m, matching the size
f the KOH etched diaphragms. The final PCS structure
as a slab thickness of 450 nm. The capsule-shaped holes
ave the parameters w=125 nm and u=250 nm and are
n a square lattice with a lattice constant of a=1000 nm.

After fabrication, the devices are characterized in a
imple measurement setup. To measure the transmission
pectrum of the structures, we use a broadband light
ource that emits spatially coherent light through

single-mode fiber in the wavelength range
300–1600 nm. A linear rotating polarizer is placed in
ront of the fiber output, which illuminates the PCS. The
ore of the fiber is imaged by a microscope objective with a
agnification of 5 onto the PCS, giving an illumination

pot with a diameter equal to 50 �m, 5 times the 10 �m
ber mode diameter. The microscope objective used in the
etup has a numerical aperture of 0.1 and a rear conju-
ate at 160 mm, where the PCS is placed and illuminated
t normal incidence. The transmitted light is picked up by
n identical microscope objective that demagnifies the
pot onto a single-mode fiber, which is connected to an op-
ical spectrum analyzer. The diameter of the spot on the
CS that is captured by the single-mode fiber is �50 �m,
times the 10 �m fiber mode diameter; hence it falls well
ithin the area of the PCS.
Figure 12(a) shows the measured transmission for the

wo polarizations for a structure with ��0 at �=� . We

u
w

a

a

ig. 11. Capsule-shaped holes. The shape defined by two pa-
ameters, the rectangle width w and semicircle radius u, is re-
ponsible for the form birefringence in the PCS.
0

ee that the two resonances are separated by one line-
idth. To test the quarter-wave retardation [Fig. 12(b)] in

he vicinity of the center frequency, we first measure the
pectrum of the PCS structure by illuminating it with lin-
arly polarized light (polarization plane at 45°), obtaining
he average of the spectra of Fig. 12(a). Then we place a
uarter-wave plate followed by a linear polarizer (polar-
zation plane at 45°) after the PCS structure with the fast
nd slow axes aligned to the PCS. For ideal conditions,
he drop in transmission at the center frequency with the
uarter-wave plate present should be 100%. We observe a
0% drop in transmission instead, suggesting some ellip-
icity in the polarization, but showing the principle of op-
ration that by splitting the guided resonances through
n introduction of form birefringence turns the PCS into a
etarder. We also have characterized a sample with
�−1 at �=� that acts as a linear PBS (Fig. 13).
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ig. 12. (a) Experimental results showing two guided reso-
ances corresponding to two different polarizations that are
eparated by one linewidth. This corresponds to ��0. (b) Experi-
ental results showing the transmission spectrum for the PCS

hat is illuminated with linearly polarized light at 45° (solid
urve). As expected, the spectrum is the average of the two spec-
ra in (a). When we put a quarter-wave plate followed by a linear
olarizer at 45° after the PCS, we observe a drop in the trans-
ission (dashed curve). For ideal conditions, the drop in the

ransmission at the center frequency should be 100%. Here, how-
ver, we observe a 60% drop in transmission, suggesting some el-
ipticity in the polarization. The inset shows the polarization
tate of the transmitted light calculated from these measurement
ata. Compared with the ideal case, a circular polarization state
shown as a dotted circle in the inset), we clearly see that there is
significant amount of ellipticity in the transmitted light.
0
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. DISCUSSIONS
he analysis we have provided in Sections 2–4, together
ith the results consistent with this analysis that we
ave presented in Section 5, show that the PCS structure
e describe is feasible for real applications. Besides regu-

ar PBS applications, this structure can be employed in
olarization control in vertical cavity surface-emitting la-
ers, and can be used as a key element in various optical
nterconnection schemes. The PCS-based PBS is espe-
ially suitable for the latter applications due to the single
ielectric nature of the structure and its tunability
hrough simple geometrical parameters that can be arbi-
rarily defined in a single lithography step.

There are several limitations of such PBS structures
hat can constitute obstacles depending on the applica-
ion. Let us analyze the limitations of the structures that
ere reported in [3] for this type of PBS application.
irst, the structure possesses chromaticity. The wave-

ength range �� where the PCS structure acts as a PBS is
etermined mainly by �, i.e., the linewidth of the guided
esonance. For a typical Q value range for guided reso-
ances of �100 to �5000 [29], the operation bandwidth
anges from 0.3 nm to 15 nm at telecom wavelengths
�1500 nm�. Note, however, that the diattenuation varies
aster (see, e.g., Fig. 4). That means, although in the
andwidth ��=� the incoming light is separated into two
rthogonal polarizations, the respective powers in the two
olarizations vary over that frequency range. This means
hat the reflected and transmitted waves remain orthogo-
al over that range, but the polarization varies, such as
rom linear to circular.

For a large bandwidth, a large linewidth is preferred.
owever, a large linewidth corresponds to a small Q fac-

or. And as we discussed in Section 3, we made our analy-
is with the assumption that the Q factors of guided reso-
ances are typically large. At this point we need to ask
he question, How small can Q be to have an efficient PBS
peration? To find an answer to this, we need to consider
he relative changes in the linewidths when two reso-
ances are split by the order of one linewidth. When the
wo resonances split, their linewidths will change by a
mall amount �� so that the resonance with the lower fre-
uency acquires a linewidth decreased by this amount,
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ig. 13. Experimental results showing two guided resonances
orresponding to two different polarizations that are separated
y one linewidth. This corresponds to a linear PBS with ��−1.
nd that with the higher frequency acquires a linewidth
ncreased by this amount. We showed that �� /� is of the
rder of 1/Q, which was the reason that we considered it
nsignificant for high-Q resonances. Using the expres-
ions provided by the analysis in Section 3, we find the in-
eresting result that the equal-power condition Tr�Jt

†Jt�
Tr�Jr

†Jr� and the orthogonality condition Tr�Jt
†Jr�=0 are

till satisfied to the first order of �� /�. Further analysis
ields the result that there is a higher-order dependence
n �� /�, so that we have approximately Tr�Jt

†Jt�
Tr�Jr

†Jr��1/Q2 and Tr�Jt
†Jr��1/Q3.

Therefore, the conditions for attainment of a PBS even
old for Q values that are smaller than we assumed in the
rst place. Hence, the orthogonal and equal-power split-
ing properties of the structure are robust to first-order
ariations in the linewidth. The diattenuation D, on the
ther hand, can change by amounts of this order. It turns
ut that D=�� /� for �=0, and D=1 for �= ±1. Therefore,
circular PBS becomes slightly elliptical, while a linear
BS is not affected to this order. These effects on the di-
ttenuation, however, can be compensated for by chang-
ng �0 slightly during design, so that the resonances re-
ide on slightly different background values.

Some simple applications employing a PCS-based PBS
t normal incidence and oblique incidence are illustrated
n Fig. 14. The first illustration [Fig. 14(a)] shows a
ires–Tournois configuration [39]. By changing the dis-

ance between the mirror and the PCS, it is possible to
ontrol the polarization state of the output beam. In fact,
his configuration allows a full phase difference between 0
nd �. Such a device can be used as a mirror in a laser
avity enabling dynamic polarization control. The second
llustration [Fig. 14(b)] shows how to use a PCS-PBS for
ensor applications. The PCS-based QWR can be designed
o be highly chromatic, normally a disadvantage for a
WR, by employing high-Q guided resonances. In such a

ase, a slight change in the PCS background, such as
hrough heat, mechanical stress, etc., will destroy the or-
hogonality in the polarizations of the transmitted and re-
ected waves. For the configuration shown, one would
hen see interference in the output beam for any small ef-
ect on the PCS.

Another feature of such a detection scheme is that
here is no cumbersome alignment requirement, even
hough it is based on two-beam interferometry. Also, in
ertain cases, sharp variation of polarization properties
s a function of frequency can be advantageous. Employ-
ng a high-Q resonance may result in its utility for appli-
ations such as polarization mode dispersion.

PPENDIX A
ere we briefly present the design rules for a PBS based

n a form-birefringent PCS operating at normal inci-
ence, and which may also be used to design a PBS at ob-
ique incidence. We demonstrated in Section 3 that the
nly condition for constructing such a PBS is to have a
mall amount of form birefringence so that two guided
esonances corresponding to two different eigenpolariza-
ions are separated by larger than one linewidth. We will
onsider the least dispersive solution, when the splitting
quals the linewidth.
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The form birefringence can be introduced into the lat-
ice through, e.g., elliptical holes, or through different lat-
ice constants in two directions. In such a case, guided
esonances that are doubly degenerate for a symmetric
rystal split into two, so that there are two distinct reso-
ances for the two eigenpolarizations. The splitting can
e controlled by the degree of ellipticity of the holes, or by
he asymmetry of the lattice constants in two directions.
hat way the one-linewidth-separation condition can be
atisfied at normal incidence. The design for such a struc-
ure can be done in the following steps.

First the design, i.e., the simulation, is done for a sym-
etric PCS. In the first step we decide on the type of

eam splitter, i.e., on the value of � (at �=�0). At normal
ncidence then, a guided resonance has to have one of the
ollowing frequencies, which are found through the defi-
ition of the splitting ratio ���� in Eq. (3):

�m =
1

� �sin−1
 2��

1 − �
�� + m��

out

Mirror PCS

in

(a)

Mirror Beam Splitter

MirrorPCS

in

out

out

(b)

ig. 14. (Color online) Some applications of the PCS structure.
a) The PCS-PBS structure in a Gires–Tournois configuration. By
hanging the distance between the mirror and the PCS, it is pos-
ible to control the polarization state of the output beam. Such a
evice can be used as a mirror in a laser cavity enabling dynamic
olarization control. (b) The PCS can be designed to be highly
hromatic, normally a disadvantage for QWRs. In such a case, a
light change in the PCS background, such as through heat, me-
hanical stress, etc., will destroy the orthogonality in the polar-
zations of the transmitted and reflected waves. For the configu-
ation shown, one would then see interference in the output
eam for any small effect on the PCS. The nice feature of such a
etection scheme is that there is no cumbersome alignment re-
uirement even though it is based on two-beam interferometry.
2�h �
m = . . . − 2,− 1,0,1,2, . . . , �A1�

here we take only the positive frequency solutions. Here
is in units of 2��c /a�, a being the lattice constant and c

he speed of light; h is in units of a. If we want to con-
truct a circular polarizer, for instance, we need to have
=0, so that

�m =
m

2h��
m = 1,2,3, . . . . �A2�

his actually means that for �=0, a guided resonance
hould be centered at a point where the background re-
ectivity vanishes, i.e., �rd�2=0. Similarly, for �= ±1, a
uided resonance should be centered at a point where

rd�2= �td�2=1/2.
In the second step, we do a simulation for a chosen h

nd u (radius of a circular hole). If a guided resonance is
ot at one of the �m frequencies, we change the u value.
ncreasing or decreasing u shifts the center frequency of a
uided resonance into the positive or negative direction,
espectively. (As we demonstrated, the center frequency
hanges faster than the linewidth and background.) We
hange u gradually until we have a resonance centered at
�m (i.e., a resonance where �rd�2=0 for a �=0 design).
In the final step, we split the doubly degenerate guided

esonance (centered now at a �m) in two by breaking the
0° rotational symmetry. We can do it by introducing ei-
her elliptical holes or different lattice constants in two
irections. We should change �u1 ,u2� for an ellipse, or
a1 ,a2� for an asymmetric pitch, in such a way that we
eep the average dielectric constant the same. Therefore,
or elliptical holes we should have u1
u2=u2 (or for a
mall difference �u, u1=u−�u and u2=u+�u). Similarly,
or an asymmetric pitch we should have a1
a2=a2 (or for

small difference �a, a1=a−�a and a2=a+�a). The de-
ree of asymmetry should be increased or decreased to
chieve the one-linewidth-separation condition. This fin-
shes the design, and due to the scalability of the system
n terms of a, the design frequency can be translated into
ny physical frequency with an appropriate choice of a.
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