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We present an analysis of the phase and amplitude responses of guided resonances in a photonic crystal slab.
Through this analysis, we obtain the general rules and conditions under which a photonic crystal slab can be
employed as a general elliptical polarization beam splitter, separating an incoming beam equally into its two
orthogonal constituents, so that half the power is reflected in one polarization state, and half the power is
transmitted in the other state. We show that at normal incidence a photonic crystal slab acts as a dual quarter-
wave retarder in which the fast and slow axes are switched for reflection and transmission. We also analyze the
case where such a structure operates at oblique incidences. As a result we show that the effective dielectric
constant of the photonic crystal slab imposes the Brewster angle as a boundary, separating two ranges of
angles with different mechanisms of polarization beam splitting. We show that the diattenuation can be tuned
from zero to one to make the structure a circular or linear polarization beam splitter. We verify our analytical
analysis through finite-difference time-domain simulations and experimental measurements at infrared

wavelengths. © 2008 Optical Society of America
OCIS codes: 230.5750, 230.5298, 230.5440.

1. INTRODUCTION

The polarized nature of light can be exploited through the
effects of birefringence, dichroism, and optical activity to
acquire diverse information such as molecular structure
or magnetic field distribution around stars. On the other
hand, polarization can be an obstacle in various areas
such as interferometry or high-data-rate fiber-optic com-
munication. Both the advantages and disadvantages
posed by the polarized nature of light make it essential to
have optical components that allow us to manipulate the
states of polarization.

One such optical component of interest is the polarizing
beam splitter (PBS), a key element in various areas of op-
tics, with applications in optical metrology, optical data
storage, optical interconnects, and polarization-based im-
aging systems. The PBS is also a key element in systems
employing polarization entanglement. Some of the appli-
cations in this field are in quantum information process-
ing [1] and quantum communication [2].

The most widely used PBSs are prism-based. Such tra-
ditional PBSs have limitations in that they provide high
polarization extinction ratios only in a narrow range of
wavelengths and incidence angles [3]. Form birefringence
provides alternative configurations that exhibit better
performance [4]. Form birefringence is a type of birefrin-
gence that appears due to some geometric anisotropy in
an ordinarily nonbirefringent material. If the scale of the
anisotropy, such as the spatial period of a grating, is suf-
ficiently small compared to the wavelength, the structure
behaves as a homogenous material. The amount of the ar-
tificial birefringence can be tuned through several param-
eters such as geometric composition, material type, and
angle of incidence. As a consequence, incident light in two
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distinct polarizations encounters different effective dielec-
tric constants.

Form birefringence gives the freedom to design diverse
polarization-sensitive devices that otherwise would be
hard to realize, considering the limited number of avail-
able natural birefringent materials. Aside from PBS ap-
plications [4-10], form birefringence enables various
other devices, including linear polarizers [11], filters [12],
lenses [13], and waveplates [14]. Among waveplates, the
quarter-wave retarder (QWR) is an optical component of
special interest in this paper. QWRs are used for polariza-
tion analysis and control, usually employed as a linear-to-
circular—or vice versa—polarization transformer. Form
birefringence can be employed to create various types of
QWRs with advantages over traditional types [7,14-18].

By using a QWR together with a PBS, one can con-
struct a circular PBS. Several circular PBSs utilizing liq-
uid crystals were reported in the past, based on chiral me-
dia [19] and polarization diffraction gratings [20]. Azzam
and Mahmoud demonstrated such a beam splitter based
on conventional thin-film optics [21]. Their structure,
which is a dual-QWR that induces quarter-wave retarda-
tion of opposite sign for the reflected and transmitted
waves, has as its basis a self-supporting trilayer pellicle.
The limitation of this structure is its operation at a high
angle of incidence and unequal power in the reflected and
transmitted beams. These limitations were overcome in a
later device by Azzam and De by embedding the trilayer
pellicle in a high-index prism and operating it under
frustrated-total-internal-reflection conditions [22].

Here we analyze structures based on photonic-crystal
slabs (PCS) that act as unique polarization components.
Photonic-crystal-based polarization elements have been
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investigated in the past, such as bulk 2D-photonic-
crystal-based PBSs [23] and QWRs [24]. Lousse et al. re-
ported simulations of a linear PBS based on a PCS with
rectangular holes [25]. The PCS structure we describe
here acts as a dual-QWR, where the fast and slow axes
are switched for reflection and transmission. The opera-
tion of the structure relies on the phase and amplitude re-
sponses of guided resonances [26-34]. An incoming wave
linearly, circularly, or elliptically polarized and incident
on such a structure is split into two orthogonal polariza-
tion modes, each sharing half the incident power. The di-
attenuation, defined as the difference in the transmitted
powers for the two polarizations normalized to the total
transmitted power, can be tuned from zero to one to make
the structure a circular or linear PBS. By introducing a
small amount of form birefringence into the photonic
crystal geometry, the structure can perform at normal in-
cidence, opening up the novel applications discussed in
Section 6.

2. PHASE AND AMPLITUDE RESPONSE OF
BIREFRINGENT PCS

For light incident on a PCS (as illustrated in Fig. 1), the
transmission coefficient ¢ and the reflection coefficient r
can be expressed as [29,30]

t=tg—(tgxrg)yYly+jlo=-w)],

r=rq—(rqxt) vlly+jlw-wy)]. (1)

Here the parameters y and o, are the half-linewidths and
center frequencies of the guided resonances, respectively
and * corresponds to even and odd modes with respect to
the mirror plane parallel to the slab. Throughout the text
the upper sign will correspond to even modes and the
lower sign to odd modes.

The parameters ¢; and r; are the direct transmission
and reflection coefficients. They can be expressed as the
transmission and reflection coefficients of an equivalent
uniform slab of the appropriate effective refractive index.
At normal incidence, they are [35]
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Fig. 1. (Color online) Illustration showing light normally inci-
dent on a PCS.
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where k,o=(w/c)\e and kzz(a)/c)\r’z represent the wave
vector components normal to the slab, and % is the thick-
ness of the slab. The PCS is surrounded by a medium
with a dielectric constant of ¢y (usually air/vacuum with
€y=1), while € is the frequency-dependent dielectric con-
stant, found by fitting the above expressions to the
Fabry—Perot type background of the PCS transmission
and reflection spectra [29].

For compactness, we introduce the parameters « and 8
that we will refer to as the normalized frequency offset
and the splitting ratio, respectively:

a(w) = (0 - wg)/7,
ko= k?
Blo)=——

207z

sin(k h). 3)

The splitting ratio B, a real number, is the ratio between
the direct reflection and transmission due to ry=jBt,.

Now let us consider the case where we have birefrin-
gence in the PCS, so that for the two orthogonal eigenpo-
larization axes 1 and 2, we have in general different
transmission coefficients ¢;#¢y. To achieve this, the
guided resonances corresponding to the polarizations 1
and 2 must be split by A from the center frequency wg into
the positive and negative frequency directions. We can
understand the conditions for the existence of such a pair
of resonances through symmetry considerations. Let us
consider the case for a square-lattice PCS. At the I' point
(referring to a zero value of the wave vector component
parallel to the slab), the structure possesses a C4, point
group symmetry in the plane of the lattice, together with
the even/odd symmetry with respect to the mirror plane
parallel to the slab (a Cyj, symmetry). The Cy4, point group
supports five classes of eigenmodes belonging to different
irreducible representations and hence possess different
spatial symmetry. Among these five classes, one of them is
doubly degenerate. Symmetry matching conditions per-
mit only the doubly degenerate modes to couple to outside
plane-wave radiation that is normally incident on the slab
[36]. Consequently, for our case of normal incidence, the
guided resonances are always doubly degenerate in a
square lattice. When we introduce a small form birefrin-
gence into the lattice by either making the holes slightly
elliptical, or by slightly varying the pitch in one direction,
we break the 90° rotational symmetry. As a result the
symmetry of the lattice is reduced to a Cy, symmetry. The
Cy, point group does not support degenerate modes.
Therefore the modes that are degenerate in the square
lattice split into two different modes when we introduce a
small form birefringence, with the magnitude of the split-
ting determined by the amount of the asymmetry intro-
duced. The uncoupled modes that are nondegenerate in
the square lattice remain uncoupled for the form-
birefringent case also, so that all guided resonances ap-
pear as a pair of split modes.

As we introduce a small form birefringence into the
PCS, the other parameters defining the resonances,
which are the background and linewidth, can also deviate
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for the two polarizations. A change in these parameters
that affects both polarizations similarly is not significant
to our analysis. We will see that we can neglect any de-
viation in the background and linewidth for the two po-
larizations, and also can ignore any change in them. The
background will not be affected much, since it is mainly a
function of the effective dielectric constant of the corre-
sponding uniform slab. If we introduce the form birefrin-
gence in such a way that we do not change the average
dielectric constant, then the background will not vary sig-
nificantly for either polarization. (The method is also de-
scribed in Appendix A.) This argument is supported by
the finite-difference time-domain (FDTD) simulations
shown in Fig. 2. The simulations were done for a dielec-
tric slab with a dielectric constant of 12 and a thickness of
0.55a, a being the lattice constant of rectangular through
holes on a square lattice. A simulation was first done for
square-shaped holes of size 0.5a X0.5a. Then we calcu-
lated the splitting ratio B at the frequency w=0.3(2mc/a),
where it is expected to have a value of 0. Subsequently we
made a series of calculations in which the widths of the
rectangular holes were gradually increased (along the di-
rection 2) by keeping the area of the holes (0.5a X 0.5a)
constant, so that the holes became increasingly rectangu-
lar. A hole width of 0.5a corresponds to square holes,
while a hole width of 1.0a corresponds to a 1D grating,
since the rectangular holes become connected when their
width is equal to the lattice constant. The B values at the
frequency w=0.3(2mc/a) for the two polarizations were
calculated for increasing form birefringence.

The result shows that even for a very large form bire-
fringence, where the structure becomes a 1D grating, the
change in B is not large. The splitting ratio for polariza-
tion 1 (B;) stays nominally the same, while the splitting
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Fig. 2. FDTD simulations showing that the background is not
significantly affected by an introduction of a form birefringence.
The simulations were done for a dielectric slab with a dielectric
constant of 12 and a thickness of 0.55a, a being the lattice con-
stant of rectangular through holes on a square lattice. A simula-
tion was first done for square-shaped holes of size 0.5a X 0.5a.
Then, the B value at the frequency w=0.3(27c/a) was calculated,
where it has a value of 0. Afterward, the width of the rectangular
holes was gradually increased (along the direction 2) by keeping
the area of the hole (0.5a X 0.5a) constant. The horizontal axis
corresponds to the hole width. The hole width of 0.5a corresponds
to square-shaped holes, while the hole width of 1.0a corresponds
to a 1-D grating, since the rectangular holes become connected.
The rectangular and circular data points correspond to the g val-
ues at the frequency w=0.3(2mc/a) for the two polarizations.
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ratio for polarization 2 (By) changes by 0.2, which is only
6.25% of the maximum range of B8 values for a slab with a
dielectric constant of 12. This supports our argument that
the background does not change significantly for a small
birefringence.

The guided resonances, on the other hand, are strongly
affected by any geometrical variation such as changing
the radius of the holes or the pitch. Since the introduction
of form birefringence is equivalent to a change in the lat-
tice geometry, we expect both the center frequencies and
the linewidths of the individual resonances to change
when splitting occurs. Numerical simulations (as pre-
sented in Fig. 3) show that the relative changes for the
resonance frequency and linewidth of a guided resonance
are of the same order, i.e., do/w=d7y/y. However, in our
case we are interested in the changes of center frequency
and linewidth relative to the linewidth. This is because
we are interested in how far apart the resonances are,
and how much they overlap in comparison to the line-
width, irrespective of the center frequency. In that case,
the relative change in the center frequency would be
do/y=(w/y)dw/w=(w/y)dy/y. This means that the
change in the center frequency is larger than the change
in the linewidth by a factor of the order of wy/7y. This
number corresponds to @, the quality factor of the guided
resonance. @ values for guided resonances typically vary
from ~100 to ~5000 [29]. This in turn means that the
linewidth does not change significantly when the doubly
degenerate resonances split.

These arguments are supported by the FDTD simula-
tions shown in Fig. 3. The simulations show that the line-
width does not change significantly when the doubly de-
generate resonances split. The guided resonances used in
the calculations were isolated from the background spec-
trum by passing the complex field amplitude through a
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Fig. 3. FDTD simulations showing that the linewidth does not
change significantly when the doubly degenerate resonances
split. The data are from the same simulations that are used in
Fig. 2. The graph shows how a guided resonance splits through
form birefringence. The solid curve corresponds to a doubly de-
generate resonance for a hole width of 0.5a, which is a square
hole. By introducing birefringence through making the holes
rectangular, the doubly degenerate resonance splits into two. The
dashed curves correspond to split resonances for a hole width of
0.55a, and the dotted curves correspond to split resonances for a
hole width of 0.63a. The guided resonances used in the calcula-
tions were isolated from the background spectrum by passing the
complex field amplitude through a high-pass filter.
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high-pass filter. The data are from the same simulations
used to calculate the background change in Fig. 2. The
graph shows how a guided resonance splits through form
birefringence. First there is a doubly degenerate reso-
nance for a hole width of 0.5a, i.e., a square hole. By in-
troducing birefringence (by making the holes rectangular
and keeping their area constant as described before), the
doubly degenerate resonance splits into two.

The simulations were done for form-birefringent PCS
structures where hole widths were 0.55a and 0.63a. The
ratio of the center frequency difference to the linewidth
difference is Aw/Ay=34 and 24 for the hole widths 0.55a
and 0.63a, respectively. These numbers show that the
change in frequency is larger than the change in line-
width by more than an order of magnitude. For a small
birefringence, this number would be closer to the @ value
of the original PCS resonance, which is 222. This example
shows that even for such a small @, our argument that
the frequency changes faster than the linewidth holds.

We have to note that these statements are not valid for
very small hole radii. In the limit where the hole radius
approaches zero the @ values for the resonances diverge,
since the resonances become true guided modes in a uni-
form slab [29]. The normalized frequency offsets for the
two polarizations can be written symmetrically as

ay(w) =[w = (g = A))y,

ay(w) =[w—(wg+A)]y, (4)

where wq corresponds now to the mean of the center fre-
quencies of the two guided resonances. The transmission
coefficients are then simply

tie=ta—(taxry/(1+jay ). (5)

By writing the direct reflection coefficient in the form
rq=jpBty, the transmission coefficient can be put into the
compact form

t=t;(G+a)a¥ B +dd). (6)
The induced phase difference [37] between the transmit-

ted polarizations 1 and 2, namely the retardance, will
then be, using Eq. (6),

Jt+as ag + B
AD, = arg(to/t,) = arg| - + arg — . (7
J+a a+ B

We will use the abbreviation arg[(j+ ag)/(j+ a;)]=® to de-
note the retardance due to the guided resonance splitting.
We see that the total retardance Ad, can have an addi-
tional phase contribution of 7 due to interference with the
background, when the phase parameter (ag= B)(a;+ B)
=p; is negative. In fact, we will exploit this additional
phase to make a PBS out of a PCS. We are going to use
the phase parameter p, together with the normalized fre-
quency offset « and the splitting ratio B, to determine all
the relevant PBS properties of a PCS.

By rewriting the retardance with those abbreviations
we obtain the compact form
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D pe=0
AD, = .
t {@0+7T pe <0 ®)

Similarly for the reflected wave, where the phase param-
eter is p,=(1+Bay)(1+Bay), we get the retardance as

(DO prBO
AD, = . 9
r {(DO+7T pr <0 ©

Having found the phase responses for a birefringent
PCS, let us now find the amplitude responses for the po-
larizations 1 and 2. Using the expression |t;|>+|ry>=1, to-
gether with Eq. (6), we get the transmittance in the ex-
plicit form

lt10% = (a1 7 B(L+ B (1 +ai,)]. (10)

Combining this result with |¢|2+|r|?=1, we find the reflec-
tance in the explicit form

r1al? = (1 £ Bay o)[(1 + B + af p)]. (11)

We are using the energy conservation expressions |¢;]2
+|rg?=1, and |¢[>+|r|?=1 under the assumption that there
is no absorption in the PCS. This is a good assumption for
most PCS types, such as silicon-based ones operating at
infrared wavelengths.

Equations (10) and (11) provide expressions for the
transmittance and reflectance in terms of the normalized
frequency offset a and the splitting ratio 8. We are going
to employ these expressions in Section 3 to analyze the
conditions under which a PCS acts as a PBS that sepa-
rates an incoming elliptical beam equally into its orthogo-
nal constituents.

3. POLARIZATION BEAM SPLITTING AT
NORMAL INCIDENCE

In this section we will analyze how we can employ a PCS
as a PBS at normal incidence. The Jones formalism offers
practical advantages when analyzing polarization proper-
ties. Omitting arbitrary phases, the Jones matrices for
transmission and reflection can be written as

J- [t4] 0 J - | 0 (12)
E71 00 [t TTT| 0 gl |

For an incident wave |i) the transmitted and reflected
waves will be [t)=J,]i) and |r)=d,|i), respectively. By
choosing an appropriate coordinate system (i.e., choosing
an appropriate relative orientation between the eigenpo-
larization axes of the PCS and the incident wave), any
wave with a definite polarization can be put into the form

11
|l>=v—§ i (13)

This denotes a general elliptical polarized wave (£ state)
with a polarization phase & that defines the ellipticity.
The special polarization states for this choice of coordi-
nate system are plane-polarized at +45° (+45° P state),
circular-right polarized (R state), and circular-left polar-
ized (L state).
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For the PCS to be capable of separating an incoming
beam equally into two orthogonal constituents (any two
orthogonal elliptical polarization states, such as two lin-
ear ones, or circularly polarized states) the first condi-
tions for a PBS are the amplitude conditions (¢|¢)
=<i|JZJt|i)= 1/2 and (r|r>=(i|J:Jr|i)= 1/2, which we can ex-
press through a trace (denoted with the symbol Tr) simply
as

Tr(J}J,) = Tr(JJ,) = 1. (14)

This means that for a general £ state, the incoming wave
is separated into two equal parts, so that half the power is
reflected in one state and half the power is transmitted in
the other state. To satisfy Eq. (14), we need to have |¢;|?
+|to2=|r1|?+|ry/?=1. Using the energy conservation |¢|?
+|r?=1, this can be expressed as [|t;|=|ro| and |to=|r],
which means that the phase parameters for reflection and
transmission are related through

S=rmrE=l (15)
pr ol [t4f?
leading us to the two solutions
Pr==pt Pr=+p; (16)

The second condition for a PBS is that the reflected and
transmitted parts have orthogonal polarizations (¢|r)
=(i|J}J,|i)=0, which can be expressed as

Tr(J}J,) = 0. (17)

Using [t1|=|ro| and |to|=|r;| in Eq. (17), we see that for or-
thogonality we just need to have A®D,— Ad,=arg(p,/p,) = .
This means that the orthogonality condition is p;/p,<0.
Hence, the solution in Eq. (16) that satisfies both the am-
plitude and orthogonality conditions is p,=—p,. This con-
dition is satisfied for a;=-1/ay, so the PCS operates as a
PBS at normal incidence if ajap=-1. When we solve
ajag=-1 for the frequency w, we obtain the two results
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oV = g - (F7= 7,
0@ = wy+ (A2 - 2. (18)

At these frequencies, the reflected and transmitted
beams will have orthogonal polarizations and equal
power. We first note the interesting result that the PBS
frequencies are independent of the background and de-
pend solely on the normalized frequency offsets. We also
observe that the splitting has to be at least a linewidth
wide A=y to enable PBS operation. There are also trivial
solutions to the two PBS conditions—either [t;|=|rs|=0 or
|to|=|r1]=0—which correspond to a linear PBS for which
we have no power in one eigenpolarization for reflection
and transmission. In that case the retardances A®, and
A®, are undefined, hence have no physical meaning.
However, if we look at frequencies slightly smaller and
larger than wy we have nonvanishing power in both polar-
izations, and hence definite retardances. In fact, we have
AD,—Ad;=7 for the limiting cases of w— wj and w— wy,
as can be seen from the retardances shown in Fig. 4.

The retardance due to the guided resonance splitting
&, will have the value of #/2 for ajay=-1. Since the re-
lation between the phase parameters for transmission
and reflection in this case will be p;/p,=-1, the retar-
dances will be A®,=+7/2 and A®,=—7/2 for a positive
phase parameter p,>0. Similarly for p;<0, we will have
AD,=—7/2, and AD,= +7/2. The Jones matrices for trans-
mission and reflection will then be (for concreteness we
show the p;,>0 case; for the p;<0 case, replace j by —)

It 0} {jlta 0]
J, = R R } (19)
! [0 Jlts| 0 [t

These matrices emphasize an interesting feature: the
structure acts as a retarder for which the fast and slow
axes are switched for transmission and reflection. This
means that for a general £ state, the incoming wave is
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Fig. 4. Calculated spectra of the phase and amplitude responses for transmission (top) and reflection (bottom) for three different form-
birefringent PCS structures (a), (b), and (c). The circle-marked, square-marked, and solid curves correspond to the normalized powers in
polarization 1, polarization 2, and both polarizations, respectively. The dashed line corresponds to the retardance in units of 7. The
structure has a dielectric constant of 12 with a thickness of 0.55a, a being the pitch. The guided resonances possess a half-linewidth of
y=0.064(27c/a), are separated by A=7, and have 0V=w'®=w, values of 0.47(27c/a), 0.53(2mc/a), and 0.58(27c/a) for the cases (a), (b),
and (c), respectively. (a) corresponds to a linear PBS with 8=-1, (b) to a circular PBS with =0, and (c) to a linear PBS with g=+1, in

the same way as it is illustrated in Fig. 5.
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Table 1. Special Values of the Splitting Ratio g
and the Corresponding Values of the Amplitudes
[#:] and [£,[*

Even Modes Odd Modes
B -1 0 1 -1 0 1
It4] 0 1/y2 1 1 1/42 0
It 1 1/y2 0 0 1/42 1

“These numbers determine whether the PCS acts as a linear, circular, or any other
kind of elliptical PBS.

separated into its two orthogonal constituents at w= oV
or w'?, so that half the power is reflected in one state, and
half the power is transmitted in the other state. The com-
position of the Jones matrix is dependent on the ampli-
tudes |¢1] and |¢5|, which because of Eq. (10) is dependent
on the splitting ratio B at the operation frequency of
=M or w?. The cases for special B values are listed in
Table 1 corresponding to different diattenuation values.

The implication of Table 1 is illustrated in the ex-
amples in Fig. 5. Calculated transmission and reflection
spectra corresponding to those examples, together with
the retardances, are shown in Fig. 4. The calculations
were carried out by directly using the basic expressions in
Egs. (1) and (2) for the case when the splitting is equal to
the linewidth A=y, so that we have o¥=w® = w. The di-
electric constant in the calculations is fixed at 12 for sim-
plicity, so that it does not vary with frequency. The slab
thickness is chosen as 2=0.55a. The resonances are due
to even modes for concreteness. The half-linewidth for all
cases is y=0.064 (2mc/a). The center frequency w, is cho-
sen to be 0.47, 0.53, and 0.58 (27c/a), so that at w=w, we
have the three interesting cases of B=-1, =0, and
B=+1, respectively. The calculated spectra clearly verify
our analysis of the amplitude and phase responses. We
see that the incident power is equally separated through
transmission and reflection into orthogonally polarized
light.

) by

""
He—m— || — =V
)
. B=-1
i)
),.'
_jL'+45°P £<—O—- ;::: — R
)
B=0
),.'
W_If ) —a=—>1
)
B

Fig. 5. (Color online) Illustration showing how the PCS-based
PBS operates for several special g values.
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The least dispersive solution, which is desirable for
most applications where chromaticity is a disadvantage,
is for the case when the splitting is equal to the linewidth,
A=v. In such a case, the PBS operates at a single fre-
quency oV=w®=w,, which is the center frequency. Fig-
ure 6 shows the operation of the PBS on the Poincaré
sphere for several cases, such as a gradual change in the
splitting ratio or the incident polarization, including situ-
ations when the incident beam is not aligned to the eigen-
polarization axes of the PBS.

4. POLARIZATION BEAM SPLITTING AT
OBLIQUE INCIDENCE

In the previous section, we demonstrated that a PCS can
act as a PBS if two guided resonances corresponding to or-
thogonal polarizations are separated by more than the
linewidth. Besides introducing a small form birefringence
and striking with light at a normal angle, there is another
way to separate two guided resonances and hence con-
struct a PBS out of a PCS. When we move out of the I
point (so that we have a nonvanishing wave vector com-
ponent parallel to the slab), the symmetry of the lattice is
reduced. Consequently, the modes that are doubly degen-
erate at normal incidence appear to be split at an oblique
incidence angle, as in the case of introducing form bire-
fringence to reduce the Cy, symmetry to a Cqg, symmetry.
Particularly, the symmetry in the case of a finite wave
vector component parallel to the slab is in general lower
than Cy,. As a result, nondegenerate modes that are un-
coupled in the I' point begin to become coupled to the in-
cident radiation for increasing incidence angles. [25,36]
These additional modes can contribute to more complex
polarization effects at oblique incidences that we are not
going to discuss in this paper. In the case of oblique inci-
dence (as illustrated in Fig. 7), we then do not need any
form birefringence to split the resonances. We need to
note that any presence of a form birefringence is not an
obstruction, though; it is only not a requirement, and can,
in fact, be used to control the splitting at oblique inci-
dences. The fact that the backgrounds for the two polar-
izations have a different behavior for increasing angles of
incidence is taken into account in the following analysis.
This is in contrast with the normal-incidence case where
there is no significant difference between the back-
grounds for the two polarizations. The statement that
dwy/ vy is in general significantly larger than dy/y is also
valid for splitting through increasing incidence angles (as
can be seen, e.g., from the FDTD simulations in [25]).

For the more general case of incidence at an oblique
angle, the direct transmission and reflection coefficients
for the s and p polarizations (which we will denote with
the indices 1 and 2 for consistency) are [35]

2 2
20 z

-1
tg1=| cos(k,h)—j sin(kzh)} ,

2202

[ ERZ, + Ek?
tyg= kh) - j—— =
a2 = | cos(k,h) —j Seechdk,

-1
sin(kzh)] ,
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Fig. 6. (Color online) Illustration of the PCS device on the Poincaré sphere. The arrow with its head just at the center of the sphere
denotes the incident polarization, while the two arrows pointing away from the center show the reflected and transmitted polarizations.
The circle passing through P +45°, £, P -45°, and R shows the polarizations aligned to the PBS axes, as in Eq. (13). Note that for the
case when the incident polarization is aligned to the PBS, the arrows denoting the transmission and reflection polarizations are always
antiparallel to each other and orthogonal to the arrow depicting the incidence polarization, showing that the incident polarization is
separated into its two orthogonal constituents. The paths show what happens when some of the parameters are changed gradually, sum-
marizing the operation of this type of PBS. (a) B8 changes from 0 to % to 1 for the incidence polarization fixed at £. (b) Incidence polar-
ization changes from L to elliptical to P +45°, for g fixed at 1. (¢) B changes from 1 to % to 0 for the incidence polarization fixed at
P +45°. (d) Incidence polarization changes from P +45° to elliptical to £ for B fixed at 0. (e) The incident polarization is misaligned,
rotating between the P +45° and H polarizations, and then between H and £ polarizations.

20 _ k2
rq1= ‘]m Sln(kzh):| a1,
L 207vz

[~ &%)+ Ek?

r =
2=1J 2e€pk ok,

sin(kzh)j|td2, (20)

where k,q= eow2/c2—kﬁ and k,= V’ew2/c2—k% represent
the wave vector components normal to the slab and k|
represents the wave vector component parallel to the
slab. The other conditions are the same as in Sections 2
and 3: the PCS is surrounded by a medium with a dielec-
tric constant of ¢, (usually air/vacuum with €,=1), and €
is the frequency-dependent dielectric constant fitted to
the background.

Since the direct transmission and reflection coefficients
corresponding to the polarizations 1 and 2 are in general
different, the amplitude and phase responses will have a
more complex form. More specifically, we will have two

e
——
- = 3
. R 3
Fig. 7. (Color online) Illustration showing light incident on a

PCS at an oblique angle. The azimuthal orientation of the inci-
dence plane is irrelevant.
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splitting ratios 8; and B, defined as before through r4; o

=jB1,2tq1,2- We can reduce this complexity by noting
Ba kf €+ € @y
B 0¥c? ey

By substituting %= \s“:o(w/ c¢)sin 6, where 6 is the incidence
angle, and \e/(e+€y)=sin 6, where 6, is the Brewster
angle [38], this ratio becomes

B2 Sil’l2 7]

Bl Sin2 Hbr =f‘ (22)

For notational simplicity and clarity in further calcula-
tions, we will therefore write 8;=8 and By,=/8, so that in-
stead of two different splitting ratios, we have a single
splitting ratio B and a simple function f dependent only on
the angle of incidence.

We will now look for solutions satisfying the amplitude
and orthogonality conditions as in Section 3, so that the
PCS operates as a PBS under oblique incidence. The re-
tardance for transmission will be, using Eq. (6),

A®, = arg(tgeltsy) + Oy + arg(p,). (23)

The phase parameter in this case is p,=(ag *[B)(a; + B).
Because of the different direct transmission coefficients
for the two polarizations, the retardance contains the ad-
ditional phase contribution arg(tys/¢,;1). Similarly for the
reflected wave, we have an additional phase contribution
arg(rqe/rq1). Hence, the retardance for reflection is

AD, = arg(rgo/rar) + P + arg(p,). (24)

The phase parameter for reflection in this case is p,
=(1£fBay)(1%Bay).

The amplitude condition for this oblique case is satis-
fied by these newly defined parameters in the same way
as presented in the analysis leading from Eqs. (14) and
(16) in Section 3, so that we obtain the two solutions pre-
sented in Eq. (16) for the oblique incidence case also,
namely p,=—p; and p,=+p;.

To satisfy the orthogonality condition in Eq. (17), we
need to have A®, - Ad,=arg(fB/B)+arg(p,/p;) =m. Since

sin? ¢ 0 <6,
arg()=arg|1- ——— | = , (25)

sin? (/. T 0> Oy,

we should have p,=—p; for <6, and p,=+p, for 6> 6,,.
Solving p,=-p;, which corresponds to the case of <6,
we obtain the result

1) 2 _ 1-f
0V =wy— /A —y2+2BAnyIBz,

-7

0 = wy + \/A2 -7 2BA'nyB2. (26)

Compared to the solution for normal incidence Eq. (18),
this result is more general and includes an additional
term that accounts for the effects of oblique incidence.
The additional term is dependent on the background, in
contrast to the normal incidence case. However, when
there is a transmission peak in the Fabry—Perot type
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background spectrum at wy, i.e., no direct reflection corre-
sponding to B=0, our result reduces to

uees
o1 = 0y — BT= 7,

0? = wy+ (A2 - 2. (27)

This is the same result as the normal incidence case Eq.
(18), independent of the angle of incidence.

Another implication of the additional term in Eq. (26) is
that the splitting can be smaller than the linewidth, i.e.,
we can have A<+, depending on the angle of incidence
and splitting ratio B. The effect of this additional param-
eter is insignificant for small angles, but can be more pro-
nounced for angles close to the Brewster angle (6= 6,,). At
these angles, the splitting is allowed to be particularly
small compared to the linewidth. If we then solve Eq. (26)
at 6= 6, for the minimum splitting that will allow PBS
operation, we obtain

Amin = 7( \3”182 +1=+ B) (28)

We need to note that according to Eq. (26), we can have
a splitting smaller than the linewidth only for the case of
B<0 for even modes and 8> 0 for odd modes. For large |g|
Eq. (28) becomes Apin=37v/|8-

This means the two guided resonances do not have to
be separated by as much compared to the normal inci-
dence case, the amount of the splitting depending on how
large the splitting ratio |8] is, i.e., how high the direct re-
flection is. For a silicon PCS, however, the maximum |g| is
not very large. The highest theoretical reflection from a
silicon mirror (half-wave thickness) is 72%. This corre-
sponds to |8|=1.6. Hence, the maximum |g| possible for a
silicon PCS is lower than 1.6. This means [Eq. (28)] that
A,,;n=0.29y. Hence, for angles of incidence not larger than
the Brewster angle (6< 6,,), a splitting of at least 0.29y is
necessary in a silicon PCS to use it as a PBS. For inci-
dence angles larger than the Brewster angle (6> 6,), the
requirements for the minimum splitting are quite differ-
ent.

When we solve p,= +p;, which corresponds to the case of
6> 6,,, we obtain the result

W 1+f A2 1+7F\2
w —woiﬁyl_fﬂ2— +yv + 'Byl—fﬂz >

. 1+f ) 1+ \?
® =w01,371_fﬁz+ A2+ 2+ By—l—fﬁz

(29)

Similar to the previous case, when there is a transmission
peak in the background spectrum at wy—i.e., no direct re-
flection, which corresponds to 8=0—our result reduces to
the simple

o = oy~ \BT% 7,

w(2)= wq + VA2+ )/2 (30)

This result is very interesting, in that it allows solutions
for A=0. In that case, the solutions are w¥=wy—vy and
w'?=wy+v. For this case, at either side slope of a guided
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Fig. 8. Calculated spectra of the phase and amplitude responses
for transmission (top) and reflection (bottom) for an oblique inci-
dence angle larger than the Brewster angle, 6> 6,, (#=80° and
60,,~74°) for the case of B=0. The structural parameters of the
PCS are the same as the ones used for Fig. 4. The guided reso-
nances possess a half-linewidth of y=0.040(2mc/a). The PBS fre-
quencies are ©Y=0.512mc/a) and ©?=0.59(27c/a),
respectively.

resonance, the PCS will act as a PBS. Note that we can
also have A=0 for other B values, as long as 6> 6,,. A plot
verifying Eq. (30) for A=0 is shown in Fig. 8. The calcu-
lations were carried out by directly using the basic ex-
pressions in Egs. (1) and (20).

It is interesting how the Brewster angle is involved in
the mechanisms behind PBS operation of a PCS. The
Brewster angle in this case serves as a boundary, merely
separating two ranges of angles (<6, and 6> 6,,) that
affect the PCS differently in separating an incoming
beam into its orthogonal constituents. This is in contrast
to standard PBS or polarizer applications, where the
Brewster angle itself is directly relevant (6=6,,) to the
mechanism of polarizing and beam splitting.

5. RESULTS

Here we present results of an FDTD simulation for a cir-
cular PBS device (Fig. 9) and some experimental data on
a fabricated structure [scanning-electron-microscope im-
age (SEM) shown in Fig. 10)].

Figure 9 shows FDTD results for a PCS structure act-
ing as a circular PBS. The simulations were done for a
plane wave that was linearly polarized at 45° incident on
a form-birefringent PCS. The spectra are normalized with
respect to an incident wave spectrum calculated in an
identical simulation without the PCS present. To obtain
the normalized reflection spectrum, the incident wave
data are subtracted from the reflected wave before nor-
malization. The phase is calculated directly from the com-
plex wave amplitude. The simulated PCS structure was
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Fig. 9. FDTD simulations showing (a) transmission results and
(b) reflection results for a circular PBS.

designed through the method described in Appendix A.
This particular structure has a dielectric constant of 12
(which roughly corresponds to the dielectric constant of Si
or GaAs at optical wavelengths) and a thickness of A
=0.85a. The form birefringence is due to the capsule-
shaped holes illustrated in Fig. 11. We prefer this shape
in generating form birefringence over elliptical holes (or
different lattice constants in the two directions) because

Fig. 10. SEM image of a fabricated sample with capsule shaped
holes on a silicon slab.
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Fig. 11. Capsule-shaped holes. The shape defined by two pa-
rameters, the rectangle width w and semicircle radius u, is re-
sponsible for the form birefringence in the PCS.

of its simplicity in simulations and fabrication. The cap-
sule shape is built up of a rectangle with semicircles on
each end, hence is defined by two parameters, the rect-
angle width w and semicircle radius u. The parameters
for the holes used in the simulation are w=0.35¢ and u
=0.1a. The wq frequency for these split guided resonances
is 0.3485 (2mwc/a) with a linewidth of 0.0010 (27c/a). We
clearly see that the phase and amplitude responses have
the behavior predicted by our analysis in Section 2. Such
simulation results provide parameters for real devices
that we can fabricate. The single-dielectric nature of such
a structure makes it relatively easy to fabricate through
lithography techniques. Below we describe how we fabri-
cate some simple structures on silicon.

The starting material for fabrication of the PCS device
shown in Fig. 10 is silicon-on-insulator wafers with (100)
crystal orientation. To create 100 um X100 um free-
standing silicon membranes, we patterned 808 um wide
square apertures on the back of the wafers and used 30%
KOH in water to etch through the 500 um thick sub-
strate. For defining the holes, we employ an electron-
beam lithography tool and plasma etching. The size of in-
dividual crystals is 100 um X 100 um, matching the size
of the KOH etched diaphragms. The final PCS structure
has a slab thickness of 450 nm. The capsule-shaped holes
have the parameters w=125 nm and ©=250 nm and are
on a square lattice with a lattice constant of a=1000 nm.

After fabrication, the devices are characterized in a
simple measurement setup. To measure the transmission
spectrum of the structures, we use a broadband light
source that emits spatially coherent light through
a single-mode fiber in the wavelength range
1300-1600 nm. A linear rotating polarizer is placed in
front of the fiber output, which illuminates the PCS. The
core of the fiber is imaged by a microscope objective with a
magnification of 5 onto the PCS, giving an illumination
spot with a diameter equal to 50 um, 5 times the 10 um
fiber mode diameter. The microscope objective used in the
setup has a numerical aperture of 0.1 and a rear conju-
gate at 160 mm, where the PCS is placed and illuminated
at normal incidence. The transmitted light is picked up by
an identical microscope objective that demagnifies the
spot onto a single-mode fiber, which is connected to an op-
tical spectrum analyzer. The diameter of the spot on the
PCS that is captured by the single-mode fiber is =50 um,
5 times the 10 wm fiber mode diameter; hence it falls well
within the area of the PCS.

Figure 12(a) shows the measured transmission for the
two polarizations for a structure with =0 at w=w,. We
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Fig. 12. (a) Experimental results showing two guided reso-
nances corresponding to two different polarizations that are
separated by one linewidth. This corresponds to 8=~0. (b) Experi-
mental results showing the transmission spectrum for the PCS
that is illuminated with linearly polarized light at 45° (solid
curve). As expected, the spectrum is the average of the two spec-
tra in (a). When we put a quarter-wave plate followed by a linear
polarizer at 45° after the PCS, we observe a drop in the trans-
mission (dashed curve). For ideal conditions, the drop in the
transmission at the center frequency should be 100%. Here, how-
ever, we observe a 60% drop in transmission, suggesting some el-
lipticity in the polarization. The inset shows the polarization
state of the transmitted light calculated from these measurement
data. Compared with the ideal case, a circular polarization state
(shown as a dotted circle in the inset), we clearly see that there is
a significant amount of ellipticity in the transmitted light.

see that the two resonances are separated by one line-
width. To test the quarter-wave retardation [Fig. 12(b)] in
the vicinity of the center frequency, we first measure the
spectrum of the PCS structure by illuminating it with lin-
early polarized light (polarization plane at 45°), obtaining
the average of the spectra of Fig. 12(a). Then we place a
quarter-wave plate followed by a linear polarizer (polar-
ization plane at 45°) after the PCS structure with the fast
and slow axes aligned to the PCS. For ideal conditions,
the drop in transmission at the center frequency with the
quarter-wave plate present should be 100%. We observe a
60% drop in transmission instead, suggesting some ellip-
ticity in the polarization, but showing the principle of op-
eration that by splitting the guided resonances through
an introduction of form birefringence turns the PCS into a
retarder. We also have characterized a sample with
B~=~-1 at w=wq that acts as a linear PBS (Fig. 13).
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Fig. 13. Experimental results showing two guided resonances
corresponding to two different polarizations that are separated
by one linewidth. This corresponds to a linear PBS with g~-1.

6. DISCUSSIONS

The analysis we have provided in Sections 2—4, together
with the results consistent with this analysis that we
have presented in Section 5, show that the PCS structure
we describe is feasible for real applications. Besides regu-
lar PBS applications, this structure can be employed in
polarization control in vertical cavity surface-emitting la-
sers, and can be used as a key element in various optical
interconnection schemes. The PCS-based PBS is espe-
cially suitable for the latter applications due to the single
dielectric nature of the structure and its tunability
through simple geometrical parameters that can be arbi-
trarily defined in a single lithography step.

There are several limitations of such PBS structures
that can constitute obstacles depending on the applica-
tion. Let us analyze the limitations of the structures that
were reported in [3] for this type of PBS application.
First, the structure possesses chromaticity. The wave-
length range AN where the PCS structure acts as a PBS is
determined mainly by 7y, i.e., the linewidth of the guided
resonance. For a typical @ value range for guided reso-
nances of =100 to =5000 [29], the operation bandwidth
ranges from 0.3 nm to 15 nm at telecom wavelengths
(=1500 nm). Note, however, that the diattenuation varies
faster (see, e.g., Fig. 4). That means, although in the
bandwidth Aw= 7y the incoming light is separated into two
orthogonal polarizations, the respective powers in the two
polarizations vary over that frequency range. This means
that the reflected and transmitted waves remain orthogo-
nal over that range, but the polarization varies, such as
from linear to circular.

For a large bandwidth, a large linewidth is preferred.
However, a large linewidth corresponds to a small @ fac-
tor. And as we discussed in Section 3, we made our analy-
sis with the assumption that the @ factors of guided reso-
nances are typically large. At this point we need to ask
the question, How small can @ be to have an efficient PBS
operation? To find an answer to this, we need to consider
the relative changes in the linewidths when two reso-
nances are split by the order of one linewidth. When the
two resonances split, their linewidths will change by a
small amount 8y so that the resonance with the lower fre-
quency acquires a linewidth decreased by this amount,
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and that with the higher frequency acquires a linewidth
increased by this amount. We showed that §y/ vy is of the
order of 1/@, which was the reason that we considered it
insignificant for high-@ resonances. Using the expres-
sions provided by the analysis in Section 3, we find the in-
teresting result that the equal-power condition Tr(J:Jt)
=Tr(JjJ,) and the orthogonality condition Tr(JZJ =0 are
still satisfied to the first order of §y/y. Further analysis
yields the result that there is a higher-order dependence
on 6Sy/y, so that we have approximately Tr(J:Jt)
~Tr(JJ,)=1/Q? and Tr(J]J,) ~1/Q.

Therefore, the conditions for attainment of a PBS even
hold for @ values that are smaller than we assumed in the
first place. Hence, the orthogonal and equal-power split-
ting properties of the structure are robust to first-order
variations in the linewidth. The diattenuation D, on the
other hand, can change by amounts of this order. It turns
out that D=¢5y/y for =0, and D=1 for B=+1. Therefore,
a circular PBS becomes slightly elliptical, while a linear
PBS is not affected to this order. These effects on the di-
attenuation, however, can be compensated for by chang-
ing wg slightly during design, so that the resonances re-
side on slightly different background values.

Some simple applications employing a PCS-based PBS
at normal incidence and oblique incidence are illustrated
in Fig. 14. The first illustration [Fig. 14(a)] shows a
Gires—Tournois configuration [39]. By changing the dis-
tance between the mirror and the PCS, it is possible to
control the polarization state of the output beam. In fact,
this configuration allows a full phase difference between 0
and 7. Such a device can be used as a mirror in a laser
cavity enabling dynamic polarization control. The second
illustration [Fig. 14(b)] shows how to use a PCS-PBS for
sensor applications. The PCS-based QWR can be designed
to be highly chromatic, normally a disadvantage for a
QWR, by employing high-@ guided resonances. In such a
case, a slight change in the PCS background, such as
through heat, mechanical stress, etc., will destroy the or-
thogonality in the polarizations of the transmitted and re-
flected waves. For the configuration shown, one would
then see interference in the output beam for any small ef-
fect on the PCS.

Another feature of such a detection scheme is that
there is no cumbersome alignment requirement, even
though it is based on two-beam interferometry. Also, in
certain cases, sharp variation of polarization properties
as a function of frequency can be advantageous. Employ-
ing a high-@ resonance may result in its utility for appli-
cations such as polarization mode dispersion.

APPENDIX A

Here we briefly present the design rules for a PBS based
on a form-birefringent PCS operating at normal inci-
dence, and which may also be used to design a PBS at ob-
lique incidence. We demonstrated in Section 3 that the
only condition for constructing such a PBS is to have a
small amount of form birefringence so that two guided
resonances corresponding to two different eigenpolariza-
tions are separated by larger than one linewidth. We will
consider the least dispersive solution, when the splitting
equals the linewidth.
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Fig. 14. (Color online) Some applications of the PCS structure.
(a) The PCS-PBS structure in a Gires—Tournois configuration. By
changing the distance between the mirror and the PCS, it is pos-
sible to control the polarization state of the output beam. Such a
device can be used as a mirror in a laser cavity enabling dynamic
polarization control. (b) The PCS can be designed to be highly
chromatic, normally a disadvantage for QWRs. In such a case, a
slight change in the PCS background, such as through heat, me-
chanical stress, etc., will destroy the orthogonality in the polar-
izations of the transmitted and reflected waves. For the configu-
ration shown, one would then see interference in the output
beam for any small effect on the PCS. The nice feature of such a
detection scheme is that there is no cumbersome alignment re-
quirement even though it is based on two-beam interferometry.

The form birefringence can be introduced into the lat-
tice through, e.g., elliptical holes, or through different lat-
tice constants in two directions. In such a case, guided
resonances that are doubly degenerate for a symmetric
crystal split into two, so that there are two distinct reso-
nances for the two eigenpolarizations. The splitting can
be controlled by the degree of ellipticity of the holes, or by
the asymmetry of the lattice constants in two directions.
That way the one-linewidth-separation condition can be
satisfied at normal incidence. The design for such a struc-
ture can be done in the following steps.

First the design, i.e., the simulation, is done for a sym-
metric PCS. In the first step we decide on the type of
beam splitter, i.e., on the value of B (at w=wg). At normal
incidence then, a guided resonance has to have one of the
following frequencies, which are found through the defi-
nition of the splitting ratio B(w) in Eq. (3):

1 2\/e
Wy, = = sin™! B|+mm
2mh/e 1-€
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m=..-2,-1,01,2,..., (A1)

where we take only the positive frequency solutions. Here
w is in units of 27(c/a), a being the lattice constant and ¢
the speed of light; A2 is in units of a. If we want to con-
struct a circular polarizer, for instance, we need to have
B=0, so that

m

- 2h \,’/;

m=1,2,3,.... (A2)

W

This actually means that for =0, a guided resonance
should be centered at a point where the background re-
flectivity vanishes, i.e., |ry?=0. Similarly, for B==1, a
guided resonance should be centered at a point where
Iral?=|tal*=1/2.

In the second step, we do a simulation for a chosen &
and u (radius of a circular hole). If a guided resonance is
not at one of the w,, frequencies, we change the u value.
Increasing or decreasing u shifts the center frequency of a
guided resonance into the positive or negative direction,
respectively. (As we demonstrated, the center frequency
changes faster than the linewidth and background.) We
change u gradually until we have a resonance centered at
a w,, (i.e., a resonance where |r;|2=0 for a 8=0 design).

In the final step, we split the doubly degenerate guided
resonance (centered now at a w,,) in two by breaking the
90° rotational symmetry. We can do it by introducing ei-
ther elliptical holes or different lattice constants in two
directions. We should change (u1,us) for an ellipse, or
(a1,aq9) for an asymmetric pitch, in such a way that we
keep the average dielectric constant the same. Therefore,
for elliptical holes we should have u;Xugy=u? (or for a
small difference Au, u1=u-Au and uy=u+Au). Similarly,
for an asymmetric pitch we should have a; X as=a? (or for
a small difference Aa, a;=a—-Aa and ay=a+Aa). The de-
gree of asymmetry should be increased or decreased to
achieve the one-linewidth-separation condition. This fin-
ishes the design, and due to the scalability of the system
in terms of a, the design frequency can be translated into
any physical frequency with an appropriate choice of a.
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