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a b s t r a c t

We describe S4, a free implementation of the Fourier modal method (FMM), which has also been
commonly referred to as rigorous coupled wave analysis (RCWA), for simulating electromagnetic
propagation through 3D structures with 2D periodicity. We detail design aspects that allow S4 to be a
flexible platform for these types of simulations. In particular, we highlight the ability to select different
FMM formulations, user scripting, and extensibility of program capabilities for eigenmode computations.
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1. Introduction

The study of layered photonic structures is of great practical
importance due to planar fabrication technology. An important
subset of layered structures is those with in-plane periodicity,
representing a large class of interesting devices and systems from
the standpoint of both engineering and fundamental physics. Fig. 1
shows an example of such a structure which is periodic in the xy-
plane, and piecewise constant in the z-direction. We present here
the Stanford Stratified Structure Solver (S4), a frequency-domain
computational electromagnetics tool to simulate the interaction of
light with such structures.

There are a great variety of general-purpose tools available
for computational electromagnetism (CEM), such as the finite-
difference time-domain (FDTD) method [1], finite-difference
frequency-domain (FDFD) method [2], and the finite element
method (FEM) [3], that can be adapted to simulate three-
dimensional structures with 2D periodicity. However, for the
specific class of periodic structures composed of layers invariant
in the direction normal to the periodicity, the Fourier modal
method (FMM) [4], also called rigorous coupled wave analysis
(RCWA) [5–9] or the scattering matrix method (SMM) [10–12],
is particularly suitable due to its Fourier basis representation.
S4 is an implementation of the FMM for computing modal
expansions within layers, combined with a scattering matrix
(S-matrix) algorithm [10,13] to join together layers for solving
electromagnetic fields throughout a three-dimensional structure.

The basic idea behind the FMM is to expand the electromagnetic
fields within each layer into eigenmodes with an exponential
dependence in the normal direction. In the case of the FMM, the
fields and eigenmodes are represented using a Fourier basis in
the plane of periodicity, with each Fourier component coupled
via the dielectric distribution within a layer. The modal expansion
coefficients are then related at layer interfaces to satisfy field
continuity conditions in the Fourier basis. Alternatively, one may
take the viewpoint that the scattering matrix of propagation
through a layer is diagonalized in the modal basis, and so
knowledge of the complete set of eigenmodes in each layer allows
construction of the total scattering matrix by combining the
scattering matrices of adjacent layers. We should note that the use
of RCWA in the study of gratings is closely related to two other
methods: the differential method [14], and the C-method [15].
Both of these methods are better suited for non-lamellar gratings
or structures which are not inherently planar.

The earliest works using coupled wave analysis studied
grating diffraction problems for holograms, mostly involving a
sinusoidally varying dielectric function in a single layer [5,6,16].
These core principles were summarized by Moharam and Gaylord
detailing the original RCWA formulation [7], and subsequently
reformulated into a numerically stable method [9]. The extension
to crossed gratings and general two-dimensionally periodic
structures occurred later with improved computational power and
numerical algorithms [8,10].

It was noted for some time that RCWA and related modal
methods suffer from very slow convergence (with respect to
the number of Fourier series terms used) when analyzing
metallic gratings under TM polarization [17]. It was further noted
that a simple reformulation of the dielectric coupling matrix
Fig. 1. Left: schematic of the problem formulation for a stack of layers. A single
square unit cell is highlighted among the four shown. The incident radiation is
assumed to be a plane wave with wavevector kinc , and its projection into the xy-
plane is k. Right: schematic for the cross-section of layer i. The arrows indicate the
propagation directions of forward and backward layer modes.

could result in vastly superior convergence [18,19]. In 1996,
Li published his seminal explanation for this drastic difference
in convergence rate [20]. At the heart of the issue are the
different boundary conditions for the normal and tangential
electric field components at an interface, requiring different
‘‘Fourier factorization’’ rules. Li’s reformulation of the FMM
using proper Fourier factorization rules [4] resulted in improved
convergence for staircase-discretized structures, but proved to be
computationally demanding and inadequate for modeling large
classes of structures with smooth dielectric inclusions. The recent
work on the fast Fourier factorization (FFF) methods [21–23]
has enabled more efficient application of the correct Fourier
factorization rules, at the cost of requiring knowledge of a local
polarization basis at all points within the unit cell. The FMM using
FFF has been applied using custom tailored basis fields [24–26] as
well as automatically generated fields [27] and has been extremely
successful at substantially improving the accuracy of the original
methods.

Our development of S4 includes all formulations known to the
authors with the notable exception of recent work on using adap-
tive spatial resolution (ASR) [28–30]. Although ASR can be used for
structures with significantly different patterning in different lay-
ers [31], its implementation is complicated and requires projec-
tion of fields onto a common basis at layer interfaces, which may
cause a loss in accuracy and may also violate energy conservation.
The use of ASR falls beyond the scope of the unified derivation we
present in this paper and so we opted to keep S4 a relatively sim-
ple and general FMM solver. The architecture of S4 enables rapid
experimentation and inclusion of new extensions to the FMM, and
it would not be difficult to extend it with ASR techniques.

This paper is organized as follows: Section 2 describes the
problem geometry and coordinates. Section 3 formulates the
eigenmode problem for the plane wave Maxwell’s equations
within a single layer. Section 4 explains in more detail the
various formulations mentioned above and summarizes the
implementations in S4. In Sections 5–7 the various solution
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capabilities of S4 are described, as well as the user interface. In
Section 8, we briefly comment on the convergence properties of
the various formulations. In Section 9 we remark on the use of the
FMM formetallic structures. Finally we summarize the capabilities
of S4 in Section 10.

2. Geometric definitions

To facilitate the discussion in this paper, the coordinate system
is oriented such that the z-axis is normal to the layers of the
structure, and the structure is assumed to be periodic in the
xy-plane with primitive lattice vectors l1 and l2. We will lump the
transverse coordinates in the xy-plane into a vector r. Each layer
is indexed by i with thickness di and extending from z = zi to
z = zi + di, with layer 1 extending from z = z1 = 0 to z = d1,
layer 2 extending from z = z2 = d1 to z = d1 + d2, and so on.
The infinite half-space z < 0 in front of the structure is denoted
layer 0, and the infinite half-space behind the structure is denoted
layerM . Each layer is assumed invariant in the z-direction; that is,
in layer i, the spatial dielectric distribution ϵ(x, y, z) is constant for
fixed x and y, and zi < z < zi + di.

To determine the reciprocal lattice of the Fourier domain, we
first define a real space primitive lattice vector matrix whose
columns are l1 and l2:

Lr =

l1 l2


=


l1x l2x
l1y l2y


. (1)

Then the reciprocal lattice is defined by the columns of

Lk = 2πLr−T (2)
where −T denotes the transpose of the inverse matrix.

Typical problems require solving for transmission, reflection, or
absorption spectra of structures. In these cases, incident radiation
from layer 0 is assumed to be a plane wave propagating in the
positive z direction towards layer 1. The incident wavevector is
kinc with in-plane component k. There are also instances in which
an embedded source within the structure is required. In these
instances, the source is a current source in the form of a spatial
harmonic jeik·rδ(z − zi) specified between layers i − 1 and i.

3. Maxwell’s equations in a layer

3.1. Units and conventions

We will adopt a derivation and notation similar to those used
in [10]. The starting point isMaxwell’s equations in time-harmonic
form, assuming an exp(−iωt) time dependence:
∇ × H = −iωϵ0ϵE ∇ × E = iωµ0H. (3)
For simplicity we assumed that materials are linear and nonmag-
netic. These assumptions are satisfied for most calculations for
nanophotonics. From here on after, we will use Lorentz–Heaviside
units, so that the speed of light c and vacuum impedance Z0 =√

µ0/ϵ0 are both unity (making c, µ0, and ϵ0 drop out). These
units are effectively the same as starting with SI units and scal-
ing

√
µ0ϵ0ωSI → ω and

√
µ0/ϵ0HSI → H and ESI → E. This

change of units brings the electric and magnetic fields onto the
same scale and the temporal and spatial frequency scales onto the
same scale, providing better numerical conditioning in the imple-
mentation, and simplifying notation. In these new units, Maxwell’s
equations become
∇ × H = −iωϵE ∇ × E = iωH. (4)

3.2. Fourier transforms

The next step is to take the spatial Fourier transform in the
xy-plane. Because of the periodicity and separability of the z-axis,
the fields must have the form

H(r, z) =


G

HG(z)ei(k+G)·r (5)

where k is the in-plane component of the k-vector set by the
excitation (for example, by the angle of incidence for an incident
plane wave) and G is a reciprocal lattice vector (L−1

k G ∈ Z2). An
analogous equation holds for E. The truncation to a finite set of G
for a simulation is, in principle, the only ‘‘discretization’’ required
for the FMM. There have been numerous discussions concerning
the best way to choose a set of G [4]. For general lattices, the best
choice is to use ‘‘circular truncation’’ where all theG vectors within
a circular region around the origin in reciprocal space are used. In
S4, the user only specifies an upper bound for the number of G,
and the circular region is chosen automatically. The exact number
of reciprocal lattice vectors that is used is determined based on
symmetry considerations (e.g. if G is included, then−G should also
be included). Assuming that a fixed set ofG has been chosen aswell
as an ordering (the same for all layers), denote by h(z) the vector
[HG1(z),HG2(z), . . .]

T, and similarly for e(z).
The Fourier transform of the in-plane dielectric function is

ϵG =
1

|Lr |


cell

ϵ(r)e−iG·rdr (6)

where the integral is over one unit cell of the lattice. In general ϵ
can be a tensor [23,32], but we will assume the z-axis is separable
for simplicity; i.e. that it is of the form

ϵ =


ϵxx ϵxy 0
ϵyx ϵyy 0
0 0 ϵz


. (7)

In this case, each component can be Fourier transformed sepa-
rately, andweobtain five sets of coefficients: ϵ̂G,xx, ϵ̂G,xy, ϵ̂G,yx, ϵ̂G,yy,
and ϵ̂G,z . Using the same ordering of G as for h(z), we can form the
block Toeplitz matrix ϵ̂xx whose (m, n)-th element is defined by

ϵ̂xx,mn = ϵ(Gm−Gn),xx. (8)

That is, the (m, n) entry of ϵ̂xx is the Fourier coefficient
corresponding to the reciprocal lattice vectorGm−Gn. Thematrices
ϵ̂xy, ϵ̂yx, ϵ̂yy, and ϵ̂z are defined analogously. Generally, we will use
the hat symbol (ˆ) to refer to square matrix operators acting in G
space.

Using these definitions, we can Fourier transform Maxwell’s
equations for each field component:

ik̂yhz(z) − h′

y(z) = −iωdx(z) (9)

h′

x(z) − ik̂xhz(z) = −iωdy(z) (10)

ik̂xhy(z) − ik̂yhx(z) = −iωϵ̂zez(z) (11)

ik̂yez(z) − e′

y(z) = iωhx(z) (12)

e′

x(z) − ik̂xez(z) = iωhy(z) (13)

ik̂xey(z) − ik̂yex(z) = iωhz(z) (14)

where primes denote differentiation with respect to z, and k̂x
is a diagonal matrix with entries (kx + G1x, kx + G2x, . . .) and
analogously for k̂y. The last two equations contain dx and dy which
are the Fourier coefficients of the displacement field D. To obtain
a closed set of equations, we will need to relate the displacement
field dx and dy, to the electric field ex and ey. This turns out to be
subtle due to the need to apply the proper Fourier factorization
rules, taking into account discontinuities in both ϵ and E. For now
we assume that there exists a matrix E such that

−dy(z)
dx(z)


= E


−ey(z)
ex(z)


. (15)
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As we will see in Section 4, different formulations compute E in
different ways, but they all take on the above form.

Eliminating the z components using Eq. (11), Eqs. (12) and (13)
become

−k̂yϵ̂−1
z k̂xhy(z) + k̂yϵ̂−1

z k̂yhx(z) + iωe′

y(z) = ω2hx(z) (16)

−iωe′

x(z) + k̂xϵ̂−1
z k̂xhy(z) − k̂xϵ̂−1

z k̂yhx(z) = ω2hy(z) (17)

or in matrix form

(ω2I − K)


hx(z)
hy(z)


= −iω


−e′

y(z)
e′

x(z)


(18)

K =


k̂yϵ̂−1

z k̂y −k̂yϵ̂−1
z k̂x

−k̂xϵ̂−1
z k̂y k̂xϵ̂−1

z k̂x


(19)

where I is the identity matrix of the proper dimensions. Similarly,
eliminating the z components using Eq. (14), Eqs. (9) and (10)
become

iωh′

x(z) + k̂xk̂xey(z) − k̂xk̂yex(z) = ω2dy(z) (20)

−k̂yk̂xey(z) + k̂yk̂yex(z) − iωh′

y(z) = ω2dx(z) (21)

which can be written as
ω2E − K

 
−ey(z)
ex(z)


= −iω


h′

x(z)
h′

y(z)


(22)

K =


k̂xk̂x k̂xk̂y
k̂yk̂x k̂yk̂y


. (23)

Therefore the originalMaxwell’s equations are reduced to Eqs. (18)
and (22).

3.3. Layer eigenmodes

The basic idea behind the FMM is to expand the fields within a
layer into eigenmodes which have a simple exp(iqz) dependence
for some complex number q. We assume the form of the magnetic
field eigenmode is

H(z) =


G


φG,xx + φG,yy

−
(kx + Gx)φG,x + (ky + Gy)φG,y

q
z


ei(k+G)·r+iqz (24)

where x, y, and z are the Cartesian unit vectors and φG,x and φG,y
are expansion coefficients. These expansion coefficients may be
written as vectors φx = [φG1,x, φG2,x, . . .]

T, and analogously for φy.
We then have

h(z) =


φxx + φyy − q−1(k̂xφx + k̂yφy)z


eiqz (25)

where h(z) is a column vector whose elements correspond to
G vectors. With this, and using Eqs. (18) and (22), Maxwell’s
equations above become

(ω2I − K)


φx
φy


= ωq


−ey
ex


(26)

ωq

φx
φy


=


ω2E − K

 
−ey
ex


(27)

wherewe have dropped the z dependence on ex and ey to represent
a fixed mode with exp(iqz) variation. Eliminating the electric field
and using the fact that KK = 0,
E(ω2

− K) − K

Φ = Φq2 Φ =


φx
φy


(28)
where q2 is the diagonal matrix whose diagonal elements are
the eigenvalues q2n. The columns of the square matrix Φ are
[φx,n, φy,n]

T, the Fourier coefficients of the eigenmodes.
The solution of the eigenvalue equation forms the bulk of

the computing time and is solved using Lapack [33]. One can
see directly that the size of the eigenvalue problem scales as N ,
the number of G. Thus the storage requirements for an entire
simulation scale as O


MN2


whereM is the number of layers. This

can be reduced if certain intermediate layer-dependent matrices
are not needed for output computations, making the required
storage space proportional to the number of layers for which
fields must be computed [13]. However, S4 does not make this
optimization in order to permit a more flexible programming
interface. The solution to the eigenvalue problems dominates the
computation time, and using standard variants of the QR algorithm
requires on the order of O(N3) operations [34]. Thus the total run
time of a single simulation scales as O


MN3


.

3.4. Field recovery

Using the eigenmode basis determined by solving Eq. (28), the
transverse magnetic field in layer imay be represented as
hx(z)
hy(z)


=


n


φx,n
φy,n

 
aneiqnz + bneiqn(di−z) (29)

where n indexes the eigenmodes, an is the coefficient of a forward
propagating wave (towards positive z) at z = zi, and bn is the
coefficient of a backward propagating wave at z = zi + di. For
q = ±


q2 there are two choices depending on the sign chosen.

For numerical stability, the sign is chosen such that Im q ≥ 0 so
that the coefficients are the maximum amplitudes within a layer.
Let us now define a diagonal matrix operator f (z) with entries

f (z)nn = eiqnz (30)

which represents the modal phase accumulation operator. Let us
also define transverse field component vectors in the Fourier basis:

ht(z) = [hx(z), hy(z)]T (31)

et(z) = [−ey(z), ex(z)]T, (32)

as well as mode amplitude vectors for forward and backward
waves:

a = [a1, a2, . . .]T (33)

b = [b1, b2, . . .]T. (34)

With these definitions, we may relate the mode amplitudes to the
physical fields:
et(z)
ht(z)


=


ω2I − K


Φq−1

−

ω2I − K


Φq−1

Φ Φ


×


f (z)a

f (d − z)b


. (35)

Note that the mode decomposition in Eq. (35) does not rely
on any orthogonality relations; to decompose fields into mode
amplitudes, the inverse of the matrix in Eq. (35) must be used. The
z components of the fields may be recovered using Eqs. (11) and
(14).

The next stages of solution involve forming the layer S-matrix,
and constructing the total S-matrix from the S-matrix of each
layer. The details of each of these steps will not be repeated here
since our implementation follows [10] quite closely. One particular
optimization to note is that often many layers have identical
dielectric profiles. S4 allows the user to duplicate layers to avoid
redundant modal calculations.



V. Liu, S. Fan / Computer Physics Communications 183 (2012) 2233–2244 2237
4. FMM formulations

The preceding section related the Fourier components of the
displacement field dx and dy to those of the electric field ex and
ey via a matrix E without describing how it is computed. In fact,
all the various reformulations of RCWA and the FMM mentioned
in the introduction simply reduce to different definitions of E .

There are a number of reasons to implement a variety of FMM
formulations in a single package. Having a variety of formulations
is beneficial because certain formulations may be more applicable
or lead to better results for certain kinds of problems. Here
we provide an overview and a final summary of the various
formulations of the FMM that are implemented in S4.

4.1. Closed-form Fourier transform

For many problems of interest, the dielectric constant profile
in each layer can be specified in a non-discretized way using
simple geometric shapes, within which the dielectric constant
is assumed constant. Almost all engineered structures fall into
this class of piecewise-constant dielectric functions, and other
structures may be well approximated using piecewise-constant
functions. The important idea here is that the shapes are specified
exactly, and not initially discretized into pixels (they are specified
by ‘‘vector’’ paths instead of ‘‘bitmaps’’). For later use, we define
the indicator function of a shape to have value 1 inside the shape
and 0 otherwise. Each of the allowed shapes admits a closed form
Fourier transformof their respective indicator functions: rectangle,
circle, ellipse, and any simple closed (not necessarily convex)
polygon [35].

Although only a few shapes can be Fourier transformed using
efficient closed formequations, they admit a great deal of flexibility
in specifying most structures of interest, and the inclusion of
polygons allows the approximation of arbitrary structures to
any desired precision. Note that in this model of specifying the
dielectric constant, shapes cannot intersect each other. Shapes
must either be completely containedwithin another shape, or their
interiors must be disjoint. With these considerations, we formally
express the dielectric constant as

ϵ(r) = ϵb +


j


ϵj − ϵ⊃j


Ij(r) (36)

where the sum is over all shapes, ϵb is the background dielectric
constant (in the absence of any patterning), ϵj is the dielectric
constant within the j-th shape, and Ij is the indicator function for
the j-th shape. As shown in Fig. 2, ϵ⊃j is the dielectric constant in
the shape that immediately contains shape j. The Fourier transform
of Eq. (36) then becomes a simple sum over the scaled Fourier
transforms of the indicator functions.

The most basic FMM formulation in S4 uses

E =


ϵ̂xx ϵ̂xy
ϵ̂yx ϵ̂yy


(37)

where ϵ̂ is calculated using Eq. (8) using closed form transforms.
This formulation is identical to the classical formulations [7,10] in
the scalar case, and extends the birefringent model in [11]. Note
that this formulation does not use proper Fourier factorization
rules, as will be discussed in Section 4.4, and can suffer poor
convergence (with respect to the number of G used) if the
solution electric field has significant components normal to in-
plane material interfaces.

4.2. Fast Fourier transform

A simple alternative to using closed form Fourier transforms
as described in the previous section is to discretize the dielectric
Fig. 2. Illustration of the shape containment constraint when specifying dielectric
constants within a layer. Shapes must be entirely contained within another shape
and cannot intersect.

constant onto a grid and apply the fast Fourier transform (FFT)
to approximate the Fourier series coefficients of ϵ. With the
availability of closed form Fourier transforms, there is usually no
advantage to this approach since it is inferior in both accuracy
and speed if simple staircasing is used on material boundaries.
However, this method is useful for structure optimization since it
is often simpler to parameterize the dielectric function on a grid
rather than as a composition of a set of shape outlines. When the
geometry is specified using shapes, the discretization method in
S4 calculates exact pixel overlap areas with each shape to avoid
staircasing effects.

4.3. Subpixel anisotropic averaging

Closely related to the FFT discretization is the method
using subpixel averaging of the dielectric function within each
discretization pixel to compute an anisotropic permittivity tensor.
This techniquewas originally derived from the perturbation theory
of dielectric interfaces and has been applied with great success to
discretized electromagnetic simulations [36]. Subpixel averaging
is widely used in the time-domain code Meep [37] as well as the
mode-solver code MPB [38]. We have implemented the subpixel
anisotropic averaging in 2D for each layer. The Fourier series
coefficients of the in-plane dielectric function of each layer are
then obtained using a fast Fourier transform. To our knowledge,
the application of subpixel averaging to the FMM has not been
reported in the literature and we will discuss the convergence
behavior of this method in Section 8.

4.4. Vector-field-based formulations

The Fourier factorization rules presented by Li in [20] dictate
that the Fourier coefficients of the displacement and electric field
components parallel to a material interface should be related by
Laurent’s rule:

d∥ = ϵ̂ e∥ (38)

where ϵ̂ is the matrix of Fourier components of ϵ given by Eq. (8)
and repeated below in Eq. (41). In contrast, the components normal
to an interface should be related by the inverse rule:

e⊥ = η̂ d⊥ (39)

where η̂ is defined similarly to ϵ̂ except that in Eq. (6), the spatial
distribution of η = ϵ−1 is Fourier transformed.

In the reformulation of the FMM by Li [4], the expression
obtained for E using the proper Fourier factorization rules involved
multiple 1D Fourier transforms of inverses of Toeplitz matrices,
making its implementation both difficult and time-consuming.
Inherent to his formulation is an effective staircasing effect that
arises from taking 1D transforms in the principal lattice directions.
Methods were soon developed that alleviate these difficulties by
using a normal vector field defined over the entire unit cell, dubbed
fast Fourier factorization (FFF) [23]. We briefly outline the details
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of computing E under these approaches since S4 implements three
different FFF methods.

We will assume scalar ϵ for this section for simplicity (for ten-
sorial ϵ, S4 currently does not perform proper Fourier factoriza-
tion). Original formulations of the FMMdid not perform the proper
Fourier factorization in computing dx and dy. Most formulations
[7,10] used Laurent’s rule directly:

−dy
dx


=


ϵ̂

ϵ̂

 
−ey
ex


. (40)

Recall that ϵ̂ is defined as the Fourier convolution matrix with ma-
trix elements defined by

ϵ̂GG′ =
1

|Lr |


cell

ϵ(r)e−i(G−G′)·rdr. (41)

Wewill adopt thismeaning for the hat (ˆ) symbol for the remainder
of this section.

In order to efficiently simulate 1D metallic gratings in TM
polarization, Refs. [18,19] used the inverse rule instead:

ex = ϵ−1dx (42)

where ϵ−1 denotes the Fourier transform of ϵ−1 (that is, first
taking the pointwise inverse in real space, then taking the Fourier
transform). The correct application of these rules to a structure
with 1D periodicity along the x direction would require

−dy
dx


=


ϵ̂ ϵ−1

−1

 
−ey
ex


. (43)

It is straightforward to implement the proper rules for structures
with only 1D periodicity, but this fails for general 2D periodicity
since the two spatial dimensions are no longer separable.

A proper Fourier factorization requires decomposing the E field
into components normal and tangential to material interfaces. Let
us assume that we have available a smooth (possibly complex)
vector field t = [tx, ty]T which is periodic and tangent to all
material interfaces within the unit cell. As in Ref. [23], we can then
perform a coordinate transformation from x and y components of
the fields into a coordinate system locally defined by the t vector.
At material interfaces, the tangential and normal components are
given by
Et
En


=


tx −t∗y
ty t∗x

−1 
Ex
Ey


(44)

where ∗ denotes complex conjugation (so this applies to a general
complex t field). Thus, to relate the D and E fields in real space,
−Dy
Dx


=


ty t∗x

−tx t∗y

 
ϵ

η−1

 
ty t∗x

−tx t∗y

−1 
−Ey
Ex


(45)

= T

ϵ

η−1


T−1


−Ey
Ex


(46)

where in real space ϵ = η−1. This distinction is important when
applying the inverse rule when Fourier transforming these
equations.

There aremanyways to implement Eq. (46) in Fourier space and
we outline two below. As the first example, one can define

E1 = T 
ϵ̂

η̂−1

 T−1 (47)

where T−1 indicates the inverse should be taken in the spatial
domain and then Fourier transformed (it is understood that the
Fourier transforms forT and T−1 are applied separately to each of
Fig. 3. An example t vector field generated automatically for a square unit cell with
two inclusions: one circle and one triangle. Note the excellent field alignment with
the boundaries of the inclusions.

the four blocks of these matrices). Note that here η̂−1 refers to the
inverse of the matrix of Fourier coefficients of the ϵ−1 distribution,
whereas ϵ̂ is composed of Fourier coefficients of the ϵ distribution.

Alternatively, we can wait to take the Fourier transform and
instead simplify Eq. (45) to

−Dy
Dx


=

1

|tx|2 +
ty2


|tx|2 ϵ +

ty2 η−1 t∗x ty

η−1

− ϵ


txt∗y

η−1

− ϵ


|tx|2 η−1
+

ty2 ϵ



×


−Ey
Ex


. (48)

Denoting ∆ = ϵ − η−1,
−Dy
Dx


=


ϵ

ϵ


−

1

|tx|2 +
ty2


∆

∆

 ty2 t∗x ty
txt∗y |tx|2



×


−Ey
Ex


(49)

=


ϵ

ϵ


−


∆

∆

 
Pyy Pyx
Pxy Pxx

 
−Ey
Ex


. (50)

Fourier transforming, we obtain

E2 =


ϵ̂

ϵ̂


−


∆̂

∆̂

 Pyy PyxPxy Pxx


, (51)

which can be seen as a correction upon the naive application of
Laurent’s rule.

Both E1 and E2 have been used in the literature. In imple-
menting either approach, one needs to generate a t field. A real
t field that is smooth and locally tangential to the edge of closed
curves must have a null somewhere in the interior. As we can see
from Fig. 3, for a circular inclusion, for example, the field vanishes
near the center of the circle. Thus there is an additional compli-
cation in choosing the t field because the denominator of Eq. (48)
vanishes. Below we summarize various approaches that we have
implemented in S4.
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4.4.1. Vector field generation
The t field generation in S4 is fully automatic. There have

been previous studies employing automatic vector field generation
using electrostatic potentials or conformal mapping [25] and
numerical gradient interpolation [27]. The conformalmapping and
gradient interpolation techniques can produce discontinuities and
tend to generate vector fields of low quality. In contrast, S4 uses
a very simple and rigorous approach by minimizing an energy
functional while enforcing tangent vector constraints in a least
squares sense [39]. This approach is capable of generating high
quality conforming fields for very complex patterns. Fig. 3 shows
an example of a vector field generated completely automatically
using this method. Note that these fields are generated on a
mesh over the unit cell and the discretely sampled field is Fourier
transformed using an FFT. All the vector fields that are required by
the different formulations in S4 are generated by this method.

4.5. Summary of implemented algorithms

S4 implements six different FMM formulations, which are listed
below with shorthand names that will be used in later sections.

1. Closed: Eq. (37) is applied directly to the closed-form Fourier
transforms of the layer shape pattern. This corresponds to the
earliest FMM formulations.

2. FFT : The Fourier transform of the layer shape pattern is
computed with an FFT and Eq. (37) is used to compute the E
matrix.

3. Subpixel: The anisotropic average of the dielectric function is
first computed over a discretized unit cell, and then the FFT is
used to apply Eq. (37).

4. Normal: The vector field t is generated on the discretized unit
cell using themethod in Ref. [39], and normalized to unit length
at each discretization point. Eq. (51) is applied to the FFT of the
layer shape pattern sampled on the same discretization grid.
This formulation corresponds to Ref. [25]. At locations where
the t field vanishes, the normalization is undefined, leading
to discontinuities in the field and so the components of P̂ in
Eq. (51) suffer from slow convergence.

5. Jones: A tangential vector field t is generated on the discretized
unit cell and used to compute a Jones vector field J using the
formula:

J =
eiθ

|t|

t t⊥

 
cosϕ i sinϕ


(52)

where t is uniformly scaled to have unit maximum length, t⊥ =

[−ty, tx]T, θ = ̸ t (the angle of the vector with respect to the x-
axis), and ϕ =

π
8 (1 + cosπ |t|) is a scalar field defined over the

entire unit cell. Eq. (47) is then applied to the FFT of the layer
shape pattern using J instead of t. This is a generalization of the
method described in Ref. [26].

6. Pol: The vector field t is generated on the discretized unit cell
and uniformly scaled so the maximum length is unity. Eq. (51)
is applied to the FFT of the layer shape pattern sampled on the
same discretization grid. This method is original to S4.

5. Output computations

The S-matrix algorithm allows calculation of mode amplitudes
within any layer at any z-offset within a layer. To obtain physically
meaningful fields, Eq. (35) is used to recover the four transverse
field components. This amounts to performing an inverse Fourier
transform on the transverse field components. Eqs. (11) and (14)
can then be used to recover the normal components.

While in principle the fields at an arbitrary point in space
can be calculated this way, and quantities such as the power
flux can be numerically integrated pointwise, for certain common
computations it is vastly more efficient to perform the calculations
in Fourier space.

5.1. Power flux

By far the most commonly used program output is the power
flux through a plane parallel to the layers. This is used for
transmission, reflection, and absorption calculations, as well as
diffraction if it is computed separately for each G component. The
time averaged Poynting vector is defined by

S =
1
2
Re


E × H∗


. (53)

Converting the right hand side to the Fourier basis, the z-
component of the time-averaged power flux through a unit cell is

2Sz =


et(z)
ht(z)

Ď 
0 I
I 0

 
et(z)
ht(z)


(54)

where et and ht are defined in Eqs. (31) and (32) and the dagger
superscript (Ď) indicates the conjugate transpose. We understand
that the fields are the transverse fields and at the same z-
coordinate andwe suppress it in the notation.We now decompose
this into forward and backward components:

2Sforwz =


e
h

Ď

total


0 I
I 0

 
e
h


forw

(55)

2Sbackz =


e
h

Ď

total


0 I
I 0

 
e
h


back

(56)

where the forward and backward components of e and h are
obtained by using only a or b, respectively, in Eq. (35) and setting
the other to zero, whereas the total subscript means both a and b
are generally nonzero. Expanding,

2Sforwz = eĎtotalhforw + hĎtotaleforw (57)

2Sbackz = eĎtotalhback + hĎtotaleback. (58)

Using the block elements of the matrix in Eq. (35),

2Sforwz =

BΦ(ωq)−1(a − b)

Ď
[Φa]

+ [Φ(a + b)]Ď

BΦ(ωq)−1a


(59)

2Sbackz =

BΦ(ωq)−1(a − b)

Ď
[Φb]

+ [Φ(a + b)]Ď

−BΦ(ωq)−1b


(60)

where B = ω2I − K . Letting A = BΦ(ωq)−1 and simplifying,

2Sforwz =

aĎAĎΦa + aĎΦĎAa


+


bĎΦĎAa − bĎAĎΦa


(61)

2Sbackz = −

bĎAĎΦb + bĎΦĎAb


−


aĎΦĎAb − aĎAĎΦb


. (62)

Computationally, we precompute the intermediates α = ΦĎAa
and β = ΦĎAb,

2Sforwz =

αĎa + aĎα


+


bĎα − βĎa


(63)

2Sbackz = −

βĎb + bĎβ


+


bĎα − βĎa

∗
. (64)

We similarly define the power flux of an individual diffraction
order (indexed by i) as

2Sforwi =

(Aa)∗i (Φa)i + (Φa)∗i (Aa)i


+


(Φb)∗i (Aa)i − (Ab)∗i (Φa)i


(65)

2Sbacki = −

(Ab)∗i (Φb)i + (Φb)∗i (Ab)i


+


(Φb)∗i (Aa)i − (Ab)∗i (Φa)i

∗
. (66)
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We can then precompute αh = Φa, βh = Φb, αe = Aa, and
βe = Ab, resulting in

2Sforwi =

(αe)

∗

i (αh)i + (αh)
∗

i (αe)i


+

(βh)

∗

i (αe)i − (βe)
∗

i (αh)i


(67)

2Sbacki = −

(βe)

∗

i (βh)i + (βh)
∗

i (βe)i


+

(βh)

∗

i (αe)i − (βe)
∗

i (αh)i
∗

. (68)

5.2. Stress tensor

The computation of optical forces between photonic crystal
slabs has recently received interest. The integral of the stress tensor
over a surface parallel to layer surfaces over the unit cell can be
computed efficiently in the Fourier basis. The components of the
time averaged stress tensor are defined by

⟨Tab⟩ =
1
2
Re


EaD

∗

b + HaB
∗

b −
1
2
δab


c


EcD

∗

c + HcB
∗

c


(69)

where the subscripts a, b, and c can each be x, y, and z. Using the
Fourier representation of the fields, as in Eq. (5), the integral over
a unit cell becomes

cell
⟨Tab⟩ dSz =

A
2
Re


G


eG,ad

∗

G,z + hG,ab
∗

G,z

−
1
2
δaz


c


eG,cd

∗

G,c + hG,cb
∗

G,c


(70)

where A is the area of the unit cell and dSz is the differential area
normal to the z-axis.

5.3. Energy density

The energy density within a layer can also be computed in
closed form. For the i-th layer, the energy density is

U =

 zi+di

zi


cell

(E∗
· D + H∗

· B) d2r dz. (71)

Suppose we have a field vector in the Fourier basis: F(z) = [−ey,
ex, hx, hy, ez, −hz]

T. Using Eqs. (11), (14) and (35), this can be
written as

F(z) = C

f (z)

f (d − z)

 
a
b


(72)

where C is a matrix, f (z) was defined in Eq. (30), and a and
b are mode amplitude vectors defined in Eqs. (33) and (34).
All the transverse dependence of the modes is of the form
exp [i(k + G) · r], so by orthogonality,

U = A
 zi+di

zi
F ĎΛF dz (73)

where A is the area of the unit cell and Λ is a block diagonal matrix
Λ = diag(E, I, I, ϵ̂, I). Let

Q (z) =


f Ď(z)

f Ď(d − z)


CĎΛC


f (z)

f (d − z)


. (74)

Then the problem is to evaluate

U = A
 zi+di

zi


a
b

Ď

Q (z)

a
b


dz. (75)

Each matrix element of the quadratic form in the integrand can
be integrated separately in closed form. Similarly, expressions
for the electric or magnetic energy density can also be obtained
with modified forms of Λ. The ability to evaluate these densities
in closed form allows rapid evaluation of quantities such as
effectivemode volume,which is useful for optical cavity design and
optimization [40].

6. Mode solving

In addition to solving for the fields in response to sources,
S4 can also solve for modes of a structure (the homogeneous
problem). This capability is of great interest for the engineering of
LED emission [41] and exploring spontaneous emission in periodic
structures [42]. Mode solving computations do not assume any
sources. The S-matrix algorithm allows the efficient determination
of the S-matrix of the entire structure for constant ω and k. Using
this basic capability, the dispersion relation of guided and leaky
modes can be obtained using a root-finding algorithmwhich seeks
the singularities of the S-matrix determinant [41].

7. User scripting and programming interface

Like many other popular CEM tools, S4 is embedded within
a scripting language environment allowing users to easily use
the solver as a basic unit in a frequency scan or design loop.
The scripting language Lua [43] was chosen for its ease of use
for both user and programmer, featuring an intuitive syntax and
easily accommodating both objective and functional programming
paradigms. The use of Lua also means that all of the user-exposed
functionality is available in a low level programming interface. In
fact, each user-callable Lua function is a thin wrapper around a
C++ API function. This allows S4 to be integrated within a higher
level package very straightforwardly.

The user manual and scripting interface to S4 are described
in detail at http://fan.group.stanford.edu/S4. Included with the
software are numerous examples of calculations appearing in
publications, which cover almost all of the available functionality.
We will describe a simple script, listed in Fig. 4, to illustrate
the basic simulation flow. We will focus on computing the
transmission spectrum of a photonic crystal slab (in fact, Fig. 12
of [44], originally computed by the FDTDmethod) whose structure
is shown in Fig. 5. The structure is composed of a silicon slab (ϵ =

12) with thickness 0.5a surrounded by air, with a square lattice of
air holes with radius 0.2a, where a is the lattice constant.

First, we obtain a new Simulation object, which forms the
basis of all user interaction with S4. The reason for interacting
through anobject instead of setting simulationparameters globally
is to enable efficient multi-threaded parallelization, a common
use-case for small to medium sized simulations. We first set the
lattice vectors which define the periodicity in the xy-plane, the
number of Fourier components to use (N = |G|), and settings to
choose a particular FMM formulation.

Next, we define the materials used in the simulation and
the structure layers. The reason for applying names to material
constants instead of supplying numbers directly is to simplify
calculations involving frequency dependentmaterials. By referring
tomaterials by name, onlymaterial definitions need to be changed
at different frequencies, rather than having to modifying the
structure description. The layers of the structure are specified
one after another in the direction of increasing z coordinate. All
layers default to unpatterned uniform layers unless patterns are
specified.

The final step of defining a simulation is specifying the
excitation condition. In the example, a plane wave is normally
incident on the structure towards the positive z direction. Up to
this point, no computations have been performed; any expensive
computations are triggered by user requests for outputs that
require them.

http://fan.group.stanford.edu/S4
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Fig. 4. Example S4 input script for reproducing Fig. 12 of [44]. The structure is shown in Fig. 5.
Fig. 5. One unit cell of a photonic crystal slab of silicon (ϵ = 12) consisting of a
square lattice of air holes with lattice constant a, hole radius 0.2a, and thickness
0.5a. An example simulation script involving this structure is listed in Fig. 4, and a
small portion of the transmission spectrum is shown in Fig. 7.

To obtain a transmission spectrum for the example structure,
wemust perform the simulation atmany frequencies in an interval.
We loop over the frequency range of interest setting the frequency
of the simulation and retrieving the transmitted and reflected
powers. Functions that compute outputs in a particular layer cache
the solutions within a layer to avoid duplication of work. For
example, if field amplitudes within the air layers were requested
at the end of the loop body, they would not require re-solving the
system.

In the example shown, there is never any implicit spatial
discretization of the structure. Throughout S4, discretizations are
always avoided unless the user explicitly requests a discretized
shape (such as polygons) or discretized formulation (such as using
FFTs). Therefore, smooth parameter variations generally always
produce smoothly varying results. This is especially important in
structure optimization where very small geometric changes must
produce correspondingly small changes to spectral features.

7.1. Parallelization

Parallelization within S4 is specified explicitly using the few
parallelization primitives provided. Any computation performed
for a single structure at a single frequency is not inherently
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Fig. 6. Convergence of the transmitted power in the (0, −1)-th diffraction order with respect to the Fourier truncation order for the checkerboard grating for two different
unit cells (shown above). The unit cell is shaded darker in the 3D structures and a planar schematic of each unit cell is shown in the insets. The direction of incident radiation
is shown with an arrow and the structure is infinite in extent into the page (as indicated by the wavy back boundary).
parallelized. However, for almost all applications, a frequency
spectrum is usually required, and the computations at different fre-
quencies are completely independent of each other. Thus, on dis-
tributedmemorymachines, eachnode can independently compute
disjoint portions of frequency spectra using only knowledge of the
node index. S4 supports the Message Passing Interface (MPI) and
the rank and size of the MPI world communicator are available as
global variables to scripts.

Parallelism is also possible on shared memory machines by
explicitly requesting solutions for multiple Simulation objects
to be performed simultaneously in different execution threads.
S4 provides basic functionality to clone Simulation objects and
to compute layer solutions for a set of Simulation objects to
achieve thread-level parallelism.

8. Convergence and computational cost for dielectric struc-
tures

The accuracy of FMM is directly related to N (the number of G
used in the simulation) and the convergence of the Fourier series
representations of the layer dielectric functions. As the number of
Fourier components used (N) increases, the dielectric distribution
within layers is represented with greater accuracy. However, the
space and time requirements of the eigenvalue problem described
in Section 3.3 make simulations involving large N prohibitively
expensive (for example, for N = 1000, storing the S-matrix alone
would require 256 MB of memory). As seen in Section 4, much
work has focused on improving the convergence of the FMM with
respect to N so that fewer Fourier components may be used.
Typically used values of N are in the low to mid-hundreds as
suggested by the convergence plots.

We begin by analyzing a dielectric structure described in [4],
composed of a checkerboard grating for two different choices of
the unit cell. The grating is made of ϵ = 2.25 material in the
incident halfspace (z < 0), and vacuum on the other side. The
width and depth of the squares of the grating are 1.25λ and 1λ,
respectively, where λ is the free space wavelength of light. A plane
wave is normally incident on the grating and polarized parallel to
the edges of the squares. Fig. 6 shows details of the structure as
well as the convergence of the transmitted power in the (0, −1)-
th diffraction order for the formulations whose names were given
in Section 4. It is clear that the vector field based formulations
achieve significantly faster convergence than the other methods.
The Pol method shows slightly faster andmore stable convergence
behavior than the Jones and Normal formulations. It is interesting
to note that for Cell A, where the material interfaces are parallel to
the coordinate directions, the subpixel averagingmethod performs
almost identically to the FFT method since the pixels do not
straddle any interfaces. However, for Cell B, the interfaces do
not align with the pixel boundaries and the Subpixel formulation
shows a clear advantage over using only the FFT.

At N = 1000, the slow converging formulations are still far
from convergence while at the same time producing relative error
on the order of 1%. Rapid convergence is extremely important for
the FMM since it may be impractical or impossible to use larger N .

In order to investigate convergence properties more relevant
to nanophotonics, we analyze the convergence of the resonance
frequencies of a photonic crystal slab described in [44] and shown
in Fig. 5. A portion of the transmission spectrum is shown in Fig. 7
which shows three total transmission peaks. The convergence
of the frequencies at which these features are observed for
increasing truncation orders is shown in Fig. 8. Once again, the
vector field based methods generally converge more rapidly than
the other methods. Among them, the Pol method described in
Section 4.4 appears to have themost rapid and stable convergence.
Surprisingly, the Subpixel formulation performs very poorly for
two of the resonance frequencies. This may be caused by the
fact that the subpixel averaging modifies the average dielectric
constant over the cell, which would cause an overall shift in
resonance frequencies. For these numerical experiments, the grid
resolution was set to eight times the maximum reciprocal lattice
extent (in terms of integer orders).

9. Using the FMM for metals

Recent interest in nano-plasmonics has led to many applica-
tions of the FMM for studying structures containing metals. The
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Fig. 7. Transmission spectrum of the photonic crystal slab shown in Fig. 5
exhibiting three total transmission peaks. The convergence behavior of the
frequencies at which these peaks occur is shown in Fig. 8.

 

 

 

Fig. 8. Convergence of the three total transmission peak frequencies in Fig. 7 for
the photonic crystal slab structure shown in Fig. 5.
dielectric constant of metals in the plasmonic regime can be very
negative (ϵ = −100 is not unusual) compared to typical positive
dielectric values on the order of 1–10. The presence of metals leads
to poor performance of the FMM, and a number of works have
explored the fundamental reasons for these problems as well as
proposing possible solutions [45–47]. We will outline several dif-
ficulties encountered when using metals in the FMM.

The first and most obvious difficulty is that in the presence
of metals, the dielectric contrast at interfaces is much greater.
Discontinuities in the dielectric function lead to very slow
convergence of the Fourier series representation due to the
Gibbs phenomenon [48]. The Fourier series coefficients of a
discontinuous function decay as 1/f where f is the spatial
frequency. Since the coefficients are generally proportional to the
dielectric contrast, to achieve approximately the same level of
accuracy with 2D periodicity,

√
N must scale in proportion to the

largest dielectric contrast in a structure.
Secondly, the Gibbs phenomenon, due to finite truncation of a

Fourier series, introduces ringing in the real space reconstruction
of a function. In the context of the FMM, this means that at
metal–dielectric interfaces, it is possible to introduce additional
fictitious interfaces where the dielectric function crosses zero,
leading to spurious modes [49]. Note that the amplitude of the
Gibbs ringing does not decrease by increasing the number of
Fourier components, so this problem is independent of N [50].

Finally, at metal–dielectric corners and edges, the electric field
can become singular due to charge buildup [51]. The Fourier
representation of fields simply cannot capture this singular
behavior, leading to poor convergence with respect to N . In fact
it has been shown that there are geometries for which the FMM
will never converge [52].

However, the applicability and proper formulation of the FMM
for metallic structures to resolve the above mentioned problems is
still an open question. The design of S4 facilitates experimentation
and development of new formulations of the FMM, and can serve
as a platform for further work in new application domains.

10. Concluding remarks

The availability of an open FMM code will be of great impor-
tance in the growing field of nanophotonics and metamaterials.
We have described S4, a flexible open-source framework for per-
forming simulations using the FMM. Common calculations, such
as computing transmission and reflection coefficients of grating
structures, are specified straightforwardly using a simple program-
ming interface. More sophisticated calculations, such as mode
solving, are enabled through the flexible scripting interface. The
interface has been designed to hide almost all of the numerical de-
tails without sacrificing efficiency, while at the same time allowing
access to all of the algorithmic flexibility. A unique aspect of our
implementation is the ease of integrating and comparing new
variants of the FMM. S4 already includes six different FMM for-
mulations, among them state-of-the-art techniques that use the
proper Fourier factorization rules to achieve superior convergence
compared to the classical formulations.

We have validated S4 against existing published FMM results,
as shown in the convergence analysis, as well as against published
results produced by other simulation methods such as FDTD and
FDFD, such as the example shown in Fig. 4. The code is bundled
with a number of these validation test cases as well as didactic
examples. In addition, S4 has already been used in the investigation
of a diverse set of phenomena, including optical forces [53], bio-
sensing [54], optical isolation [55], and light-trapping in solar
cells [56].
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