
Efficient computation of equifrequency surfaces
and density of states in photonic crystals

using Dirichlet-to-Neumann maps

Victor Liu* and Shanhui Fan

Department of Electrical Engineering, Stanford University, Stanford, California USA
*Corresponding author: vkl@stanford.edu

Received February 15, 2011; revised May 14, 2011; accepted June 1, 2011;
posted June 9, 2011 (Doc. ID 142730); published July 6, 2011

We present an efficient method for computing the equifrequency surfaces (EFSs) and density of states of a photonic
crystal. The method is based on repeatedly solving a small nonlinear eigenvalue problem formulated using the
Dirichlet-to-Neumann map of the unit cell. A simple contouring algorithm is presented for sampling EFSs as well
as computing group velocity vectors. We compare our method with several published results to demonstrate its
efficiency and accuracy. © 2011 Optical Society of America
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1. INTRODUCTION
The concepts of density of states (DOS) and the EFS have pro-
ven essential in the study of electromagnetic wave propaga-
tion through periodic structures. The EFSs of a photonic
crystal are derived from its band structure, usually written
as ωðkÞ describing the frequency ω of a mode that satisfies
the wave equation in the crystal for a particular Bloch wave
vector k. At a particular frequency ω0, the EFSs are the set of k
such that ω0 ¼ ωðkÞ. The EFSs of the band structure are of
great importance in understanding negative refraction behav-
ior [1,2]; in designing superprisms, splitters, and lenses [3–5];
in modeling graded index structures; and recently, in design-
ing transformation optics [6,7]. In all these applications, more-
over, it is important to calculate the local group velocity
vector normal to the EFS, as the group velocity vector governs
light propagation in the periodic structure.

The computation of the EFS is also closely related to the
computation of DOS. The DOS is usually defined as

NðωÞ ¼
X
m

1
ABZ

Z
BZ

δðω − ωmðkÞÞd2k; ð1Þ

where the integral is taken over the m-th band and ABZ is
the area of the Brillouin zone (BZ). Equation (1) can also
be written as

NðωÞ ¼
X
m

1
ABZ

Z
EFSm

‖
dk
dω‖ds; ð2Þ

where the integral is taken along the m-th EFS at frequency ω
and v−1g ¼ dk=dω is the inverse group velocity. The DOS was
first used in understanding the modification of spontaneous
emission in photonic crystals [8]. The design of photonic crys-
tals and metamaterials for the modification of the DOS has
been extensively studied [9,10]. More recently, it was shown
that the DOS plays an important role in light trapping for solar

cells [11] and in mode confinement in photonic crystal
structures [12].

Existing methods for computing EFSs first compute the full
band surface over the BZ, and then extract the EFSs as con-
tours or surfaces from the bands [13–15]. These methods are
slow as they require a fine sampling of the BZ in order to ac-
curately resolve the EFSs. Moreover, if the EFSs at a single
frequency or a narrow range of frequencies is desired, then
computing the full band structure represents a significant
waste of effort since only those bands near the frequency
of interest are needed.

There are related problems in existing methods for comput-
ing the DOS of a photonic crystal. The definition in Eq. (1)
suggests the typical method by which the DOS is computed:
using the full band structure and binning by frequency to ap-
proximate the integral. The frequency binning method can be
improved if the group velocities are also available. The DOS
can also be obtained from the local density of states by an
integral over the real space unit cell, or from the angular den-
sity of states by an integral over the BZ [16]. These integration
methods are computationally intensive since they require re-
peated computation of Green’s functions in the process of
performing the integration. A survey of DOS integration tech-
niques was presented in [17].

In this paper, based upon the recently proposed Dirichlet-
to-Neumann (DtN) method for photonic crystal modeling, we
present an efficient and direct method of computing EFSs,
which simultaneously allows efficient semianalytic computa-
tion of the group velocity vector on an EFS. This method, in
turn, enables the efficient computation of the DOS at a single
frequency without having to compute anything at any other
frequency. We will focus on photonic crystals with circular
inclusions (cylindrical rods or holes) since such geometries
are the most practically interesting. The DtN method itself
can be used for geometries with arbitrarily shaped inclusions.
Our methods are also applicable in those general cases since
all we require as input is the DtN map. For circular inclusions,
the DtN method is certainly one of most efficient algorithms,
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with computational speed and accuracy likely comparable to
the more widely used multiple multipole method [18] since
both methods are based on cylindrical wave expansions.
Our aim here is to extend the capability of DtN methods since
it has already proven to be a highly efficient method for photo-
nic crystal simulation.

The paper is organized as follows: We first provide an over-
view of the DtN method as it applies to computing band struc-
tures and EFSs in Section 2. In Section 3, we describe a basic
unit of the algorithm we call the “oracle” that, given a line seg-
ment, computes all points of intersection between the seg-
ment and EFSs. We use the oracle as a building block in
the sampling algorithm described in Section 4. In Section 5,
we build on the capabilities of the preceding sections to
develop integration techniques for computing the DOS. In
Section 6, we present numerical examples and compare our
methods against existing results. Throughout this paper for
the purposes of illustration, we will work in 2D so that we
work with only scalar fields (either the out-of-plane electric
or magnetic field, depending on polarization). For the pur-
poses of numerical simulation, we consider only photonic
crystals with either a square lattice of circular dielectric cylin-
ders in air, or a triangular lattice of circular air holes in a
dielectric background. This method can also be generalized
to photonic crystals with arbitrary unit cells and to 3D
structures.

2. OVERVIEW OF DtN METHOD FOR EFS
COMPUTATION
The DtN map has been used for computing band structures of
2D photonic crystals [19], analyzing waveguides [20], and anal-
yzing photonic devices [21]. Such a method has also been
shown to provide a basis for efficient optimization in systema-
tic design of photonic structures [22,23]. We briefly summar-
ize the essentials of the DtN method here. The DtN mapΛ is a
linear operator that maps the value of a function on the bound-
ary of a region to its normal derivative over the boundary. We
may write this as

Λf jΩ ¼ ∂f
∂ n̂

����
Ω
; ð3Þ

where f is a function defined over a simply connected region
of space Ω, and the partial derivative denotes the outward nor-
mal derivative of the function on the boundary. In practice, the
function values are discretized into a finite number of points
along the boundary of the region and Λ becomes a matrix
operator.

In our case, when we model a photonic crystal (Fig. 1), we
choose the region to be the unit cell containing a cylindrical
rod or hole so the DtN matrix approximation may be com-
puted analytically using a cylindrical wave decomposition
of the fields within the unit cell. First, we compute the Dirich-
let mapΛD, mapping from coefficients of the cylindrical wave
expansion to field values at the boundary of the cell. The ði; jÞ-
th element of the matrix is given explicitly by

ðΛDÞi;j ¼ ϕjðriÞ; ð4Þ

where ri is the position of the i-th field discretization point on
the boundary of the unit cell, and ϕj is the j-th cylindrical wave

basis function. Similarly, we also compute the Neumann map
ΛN , mapping from cylindrical wave coefficients to the normal
derivative of field values over the boundary of the cell.
Clearly, in order for these maps to be one-to-one, we must
use as many cylindrical waves as there are discretization
points. The DtN map is thenΛ ¼ ΛNΛD

−1. Details for comput-
ing the DtN map for unit cells containing cylindrical features
are given in [19], and for arbitrary unit cells in [24].

Once the DtN map at a given frequency ω is known, an ei-
genvalue equation can be formed for the Bloch wave vector k
by applying Bloch periodic boundary conditions to the unit
cell. Starting with Eq. (3) and assuming the boundary discre-
tization points are chosen to match on opposite edges of the
unit cell, we may partition Eq. (3) as

�
Λuu Λuv

Λvu Λvv

��
u
v

�
¼

�
∂nu
∂nv

�
; ð5Þ

where the vector v contains field values displaced from those
in u by a lattice vector. We may think of each element in u
being “matched” to its corresponding element in v after apply-
ing the Bloch periodic boundary conditions, as illustrated
in Fig. 1.

For the system of Fig. 1, the Bloch periodic boundary
conditions impose

v ¼

2
666666664

eik·L1

. .
.

eik·L1

eik·L2

. .
.

eik·L2

3
777777775
u ð6Þ

¼ diagðeik·L1I; eik·L2IÞ ¼ Qu ð7Þ

∂nv ¼ −Q∂nu; ð8Þ

where the operator Q is block diagonal, with each block being
the identity operator of appropriate dimension multiplied by a
Bloch phase factor using the corresponding lattice vector L1

or L2 (in the case of a hexagonal unit cell, Eqs. (5)–(8) would
have three blocks instead of two). Combining Eqs. (5)–(8), we
obtain

½Λvu þΛvvQþ QΛuu þ QΛuvQ�u ¼ 0; ð9Þ

u

v

L2

L1

Fig. 1. (Color online) Illustration of a unit cell in a square lattice of
dielectric rods (gray). The unit cell is discretized with five points per
edge. The points on red edges correspond to field values in the u vec-
tor, while the blue points correspond to v. The shapes of the points
indicate how they should be matched for the Bloch periodic boundary
conditions. The lattice vectors corresponding to each pair of matching
edges are indicated by the labeled arrows.
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which is a generally nonlinear eigenvalue equation in k and
parameterized by frequency ω (Q is a function of k and Λ
is a function of ω), which we can write as

Aðk;ωÞu ¼ 0: ð10Þ

We will suppress the explicit parametric dependence on ω in
the remainder of the text, since all computations are per-
formed at a fixed frequency. To determine the EFSs, we will
in the next two sections discuss the procedure for determining
all the k at a given frequency ω by repeatedly solving Eq. (10).

The eigensystem derived above is similar to that obtained in
band structure calculations using scattering or transfer ma-
trices [25,26]. However, the field representation within the
unit cell is of much lower rank in the DtN method compared
to these prior works, leading to much smaller eigensystems.

3. THE ORACLE
A. Motivation
In 2D, computing the EFSs corresponds to approximating the
level set contours of Eq. (10) in the BZ. Any of the conven-
tional methods for isosurface extraction can be used, such
as marching cubes [27] or mesh refinement techniques [28].
All of these methods query the surface by way of an “oracle”
that, given a line segment, determines all points on the seg-
ment that lie on the surface. Therefore, we present here an
implementation of an oracle that can efficiently answer such
queries for the purposes of computing EFSs and DOS.

We require the oracle to compute two things. First, on a
specified simple 1D curve within the BZ (we focus here on
line segments), the oracle must solve the eigensystem on the
curve to compute all k points lying on an EFS. Second, at each
point found on an EFS, the oracle must also compute the
eigenderivatives to determine an in-plane tangent vector along
the EFS as well as the (inverse) group velocity at that point.
Below we describe an efficient and numerically stable imple-
mentation of these two steps. The algorithm presented here is
limited to computing only real-valued solutions; evanescent
solutions are beyond the scope of this work.

B. Eigensystem
We must solve the nonlinear eigensystem AðkÞu ¼ 0 where
A ∈ Cn×n where k is constrained to a line segment and n is
half the total number of discretization points on the boundary
of the unit cell. A line segment is parameterized by kðtÞ ¼ k0 þ
tðk1 − k0Þ ¼ k0 þ tΔk where t ∈ ½0; 1� such that the eigensys-
tem becomes AðtÞu ¼ 0. We are interested in finding those t
for which AðtÞ becomes singular, which can be done by find-
ing the zeros of detAðtÞ or minimizing the smallest singular
value σminðAðtÞÞ. The advantage of working with the determi-
nant is that its derivative is available; however, the smallest
singular value is a more reliable indicator of singularity. To
address these considerations we use a combination of a re-
laxed Newton’s method and Müller’s method, which solve
for the roots of detAðtÞ by iteratively refining an initial guess
[29]. We initialize the approximation to the eigenvalue t by
using a fixed number of Newton iterations (for all examples
presented here we use 5), then if convergence is not achieved,
switch to Müller’s method to minimize σminðAðtÞÞ. The imple-
mentation of Müller’s method with deflation closely follows a
textbook description [29], so we will only describe the details

of the Newton iteration since it contains nontrivial formulas
concerning derivatives.

If the i-th estimate ti is known, then a relaxed Newton’s
method gives the next estimate as

tiþ1 ¼ ti − α detAðtiÞ
d
dt detAðtiÞ

; ð11Þ

where 0 < α < 1 is the relaxation factor. A value of α ¼ 0:5
was used; the exact value did not strongly affect convergence
of the iteration unless αwas very near 0 or 1. The derivative in
Eq. (11) may be computed analytically:

d
dt

detAðtÞ ¼ Tr

�
adjðAðtÞÞ d

dt
AðtÞ

�
¼ Tr½adjðAÞΔk ·∇kAðkÞ�;

ð12Þ

where adjðAÞ is the adjugate of A. The adjugate of a matrix is
the transposed matrix of its cofactors. For a nonsingular
matrix adjðAÞ ¼ detðAÞA−1 [30]; hence, with the use of
Eq. (12), the Newton iteration in Eq. (11) simplifies to

tiþ1 ¼ ti − α½TrðA−1Δk ·∇kAðkÞÞ�−1: ð13Þ

In the course of the Newton iteration, we expect A to be non-
singular except at an eigenvalue. We therefore write Eq. (13)
keeping in mind that A−1 must be computed with care later on.

The gradient with respect to k of A is

∇kAðkÞ ¼ Ak ¼ k̂x
∂

∂kx
AðkÞ þ k̂y

∂

∂ky
AðkÞ

¼
� ∂
∂kx

AðkÞ
∂
∂ky

AðkÞ
�
≡

�
Akx
Aky

�
: ð14Þ

Hence,

Δk · Ak ¼ ΔkxAkx þΔkyAky ; ð15Þ

which is an n × n matrix. Substituting in the form of A from
Eq. (9),

Δk · Ak ¼ ΛvvRQþ QRΛuu þ QRΛuvQþ QΛuvRQ; ð16Þ

with R ¼ diagðiΔk · L1I; ik · L2IÞ.
In order to compute multiple roots using a Newton itera-

tion, it is typically necessary to deflate the method. This
may be accomplished easily; if rm are previously found roots,
then the deflated expression is simply

tiþ1 ¼ ti − α
�
TrðA−1Δk · AkÞ −

X
m

1
ti − rm

�
−1
: ð17Þ

Note that often we are searching for roots in the neighborhood
of a previously found root, and we may thus initialize the New-
ton iteration with a value of t0 near the previous root, greatly
accelerating convergence. Once all the roots in t and hence
the corresponding k are found, the first requirement of the
oracle is satisfied.

We return now to the difficulty of computing A−1. One
would naturally expect that the step size tends to zero near
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an eigenvalue t, and thus should be well behaved. However,
the naive application of Eq. (17) clearly results in an ill-
conditioned A−1 as A becomes nearly singular, which arises
often in practice during the Newton iteration. In order to com-
pute the update expression in Eq. (17) robustly, we perform a
singular value decomposition (SVD) of A ¼ UΣVH . Then,
A−1 ¼ VΣ−1UH , and we may simplify the trace expression:

TrðVΣ−1UHΔk · AkÞ ¼ Tr½Σ−1UHðΔk · AkÞV �
¼ diagðΣ−1Þ · diagðUHðΔk · AkÞVÞ; ð18Þ

where the operator diagð·Þ in this context refers to the vector
formed from the diagonal entries of its argument. The last ex-
pression above is still ill-conditioned since Σ may have arbi-
trarily small entries. However, designate σmin the smallest
singular value, then we may compute the update equation
robustly by

tiþ1 ¼ ti − α σminP
j

σmin
σj uH

j ðΔk · AkÞvj −
P
m
ðti − rmÞ−1

; ð19Þ

where the sum runs over all the σj (the j-th singular value),
and uj and vj are the j-th left and right singular vectors, re-
spectively. Equation (19) is correct and numerically stable
even when A is singular. In the numerical implementation
of Eq. (19), we compute the SVD of the matrix A using stan-
dard routines in LAPACK [31].

Finally, we note that the field pattern at any point on an EFS
can be computed easily by computing the null space of A eval-
uated at the point. The null space will be rank one at all non-
degenerate points on an EFS and gives the vector u in
Eqs. (6)–(8), from which the field at all boundary points
may be found. In fact, during the iteration, successive approx-
imations to the null space are computed from the SVD in vn. In
our implementation, the DtN map is computed using the Di-
richlet map derived from a cylindrical wave basis [19]. This
map may be inverted to obtain the cylindrical wave coeffi-
cients and obtain the field at any point in the interior. In
the general case, the field along the boundary of the cell un-
iquely determine the fields in the interior via knowledge of the
Green’s function of the cell.

C. Eigenderivatives
In order to compute the tangent vector to an EFS, we take the
gradient of detAðkÞ. The same derivative expression as in
Eq. (12) is used to obtain

g≡∇k detAðkÞ ¼ Tr½adjðAÞAk�: ð20Þ

Using Eq. (14),

g ¼
�
Tr½adjðAÞAkx �
Tr½adjðAÞAky �

�
: ð21Þ

Since the level set detAðkÞ ¼ 0 corresponds to an EFS, the
gradient vector gmust be normal to the EFS. A tangent vector
may be obtained by a 90° rotation. Since g only depends on Ak,
which was computed in solving the eigensystem, computing
tangent vectors requires very little additional effort.

Note that in Eq. (21), adjðAÞ cannot be computed from A−1

since it is assumed that A is exactly singular; we must

compute the adjugate by another method. Utilizing the SVD
of A and the identity adjðAÞ ¼ detðUVHÞVadjðΣÞUH , we no-
tice that by the cofactor expansion of adjðΣÞ at a singular A,
adjðΣÞ may only have a single nonzero element in the last en-
try of its diagonal, assuming A only has a single zero eigenva-
lue. This is true except at points where multiple EFS intersect,
when adjðΣÞ ¼ 0 identically due to multiple zero eigenvalues
of A. In the case where A only has a single zero eigenvalue,

adjðΣÞ ¼ diagð0;…; sÞ where s ¼
Yn−1
j¼1

σj ; ð22Þ

assuming the singular values are ordered such that σi ≥ σj for
i < j. The quantities s, un, and vn can be obtained from the
SVD of the matrix A, which was already computed in the pre-
vious section when solving the eigensystem.

The group velocity for a given ðω;kÞ point on an EFS may
be obtained by setting to zero the total derivative of the eigen-
equation with respect to frequency:

d
dωdetA ¼ g ·

dk
dωþ Tr½adjðAÞAω� ¼ 0; ð23Þ

where Aω is the partial derivative of Aðk;ωÞ with respect to ω
evaluated at k and ω, and can be obtained from Eq. (9) by re-
placing eachΛ block by its frequency derivative. The DtNmap
for simple geometries can be computed from an analytic set of
basis functions, so the frequency derivative of the DtN map
may also be computed analytically. For arbitrary geometries,
the lack of analytic basis functions does not pose a problem as
it is always possible to compute derivatives using techniques
such as automatic differentiation [32].

Since g is parallel to dk=dω, from Eq. (23), we obtain

dk
dω ¼ −Tr½adjðAÞAω�

g
‖g‖2 : ð24Þ

Using the technique of computing adjðAÞ using the SVD of A
from above, the magnitude of the inverse group velocity is
simplified to

‖
dk
dω‖ ¼ s

‖g‖
uH
n Aωvn: ð25Þ

4. SAMPLING EFSs
Using the oracle described, we may now construct the com-
plete set of EFSs at a constant frequency. Instead of using one
of the standard methods [27,28], we implement a simpler al-
gorithm that takes advantage of the particular properties of
EFSs to improve sampling efficiency. Our algorithm is quite
robust in all the cases that we tested.

An EFSmust be a closed loop when the first BZ is treated as
a toric space. Therefore, determining a single point on an EFS
allows tracing of the entire curve, which is the basic principle
of our algorithm. In most photonic crystals, all EFSs intersect
the boundaries of the irreducible BZ (IBZ); therefore, deter-
mining the set of EFS intersections with the IBZ boundary
should produce at least two points per EFS. If there are
EFSs that lie completely within the IBZ, then additional
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intersections with segments interior to the IBZ are needed. We
do not consider this case here.

Our algorithm works by first determining the set of all EFS
intersections with the boundaries of the IBZ by invoking the
oracle on the IBZ edges. At each intersection point, the tan-
gent vector along the EFS is determined and oriented toward
the interior of the IBZ. These points along with their tangent
vectors serve as seed points for growing the curves incremen-
tally. We will refer to each of these curves as “fragments”, and
an interior endpoint of a fragment as “active” if it is still pos-
sible to grow the fragment from it.

Once the initial active fragment endpoints are determined,
we incrementally advance the endpoints by a predetermined
sampling length δ, while merging fragments that have end-
points in close proximity. Each point-tangent pair ðk;dÞ in
the set of active endpoints is advanced by performing a line
search along the line kþ δdþ td⊥, where d⊥ is a 90° rotation
of d, and t is the eigenvalue to be found as described in the
preceding sections. This is illustrated in Fig. 2 for a single frag-
ment. After each set of updates to the active set, we check the
pairwise distances between the fragment endpoints, and for
endpoints within 2δ of each other, we merge the fragments
and consider that particular EFS sample complete. We pro-
ceed in this way, alternating between growing fragments from
their endpoints and merging fragments until the total number
of fragments is half its initial value, indicating that each start-
ing fragment has been paired with another. The steps of the
algorithm are summarized in Fig. 3. The choice of δ depends
on the maximum expected curvature of an EFS, and should be
chosen so that the length of an EFS is approximately δ times
the number of desired sample points per EFS contour. This
method may occasionally fail at points where EFS have very
small radii of curvature. In that case, δmust be reduced and an
iteration limit can be imposed to guarantee termination. One
may easily imagine more sophisticated methods that use an
adaptive choice of δ. However, for the numerical examples
shown in the next section, we have found the procedure as
described above to be quite adequate.

5. COMPUTING DENSITY OF STATES
In order to compute the DOS, when sampling the EFS we re-
cord the value of the magnitude of the inverse group velocity
at each sample point. The DOS can then be directly obtained
using Eq. (2) by integrating along each EFS. Since the EFS are
closed contours, and the DOS varies smoothly along the con-
tours, we may apply the circular trapezoidal or Simpson’s
rules directly to the sampled data or to a polynomial spline
interpolation. We fit the EFS contours within the IBZ to an
interpolating polynomial spline and perform the integration
using an arc length parameterization.

Calculation of the local density of states (LDOS) is also pos-
sible under this framework. Computing the LDOS requires the
field pattern of the bands, which can be obtained using the
method described in Section 3. The details will be omitted
here since they are beyond the scope of this paper.

6. NUMERICAL EXAMPLES
To evaluate our method, we present some numerical exam-
ples in this section. In all these examples, we exploit symme-
try to calculate EFS over the IBZ instead of the entire BZ. For
all the examples presented, run times reported are for a
2:3GHz AMD Phenom 9600 workstation.

First we consider the EFS of a square lattice of air holes in a
dielectric medium for the H polarization (in-plane electric
field). In Fig. 4, we reproduce figure 1 of [2] for a photonic
crystal of air holes with radius 0:35a, where a is the lattice
constant in silicon (n2 ¼ ϵ ¼ 12). Here the DtN map was
discretized using eight field points per edge of the unit cell
and the EFS was discretized with δ ¼ 0:005. The curves
shown correspond to EFSs of the lowest order band up to

se
ar

ch
 se

gm
en

t

active point

δ

Fig. 2. Illustration of perpendicular search direction for extending
fragments. The point of the fragment in the active set is shown in
an open circle while the dashed line shows the line segment over
which the next point is searched. The arrows indicate the directions
of the group velocity direction (gradient vectors) of the EFS (the vec-
tor g in the text).

Find initial

active points

Line search

(invoke oracle)

Check for merges

Perform merges

Fig. 3. Steps of the EFS sampling algorithm in the IBZ of a square
lattice. Open circles indicate active endpoints of fragments.

V. Liu and S. Fan Vol. 28, No. 8 / August 2011 / J. Opt. Soc. Am. B 1841



frequencies just below the bandgap starting at around
0:24 × 2πc=a. The curves when overlaid with those in [2]
are indistinguishable. The entire figure took less than 1 s to
generate. Using the MIT Photonic Bands package [33],
k-points could be solved at a rate of ∼450 per second. To pro-
duce a figure of comparable resolution (1282 points) by bin-
ning would take over 30 min. In practice, a root-finding
method similar to the one presented can be used, and to ob-
tain fully resolved curves (200 points per curve, 10 root-finder
iterations per point), the computation would take still take
over 30 min.

Next we consider the DOS of a triangular lattice of GaAs
rods for both polarizations. The DOS is shown in Fig. 5, which
correspond to figures 3 and 4 of [34]. The locations of the van
Hove singularities and relative magnitude of the DOS curves
agree with those in [34] within 5% up to about 0:8 × 2πc=a. For
the plots shown here, 11 discretization points were used per

edge of the hexagonal unit cell and δ ¼ 0:001 in units of the
reciprocal lattice constant and each plot took approximately
10 min to generate.

Finally, we remark on the convergence of our method. In
order to quantitatively analyze convergence, we computed the
DOS at particular frequencies for increasing numbers of dis-
cretization points per edge of the unit cell (N) for the structure
in the first example above. For the lower frequency bands be-
low ω ¼ 0:4 × 2πc=a, convergence to 0.5% relative error is
achieved using N ¼ 11 points per edge. Higher frequency
bands are more difficult for this class of algorithm. The main
cause for nonconvergence in our implementation is the failure
of the oracle in finding seed points in the initial scan around
the IBZ. By increasing the tolerance of the iterative root-finder
or by manually specifying the seed points, the method be-
comes quite robust and achieves convergence with N ¼ 16
for frequencies up to ω ¼ 0:8 × 2πc=a.

7. CONCLUSION AND FINAL REMARKS
We have presented an efficient method to compute the EFSs
of photonic crystals, as well as the DOS, using DtN maps. The
method is particularly efficient at computing EFS and DOS at
a single frequency or for a narrow range of frequencies. The
speed of this method enables the design and optimization of
large structures under the framework of Hamiltonian optics.
Our method may generalize to the 3D case, with the contour-
ing algorithm replaced by any surface meshing method, which
typically successively refines a coarse mesh using an oracle
exactly like the one described. Finally, the method is also ap-
plicable for computing EFS of phonon or electronic band
structures as long as the DtN map of the unit cell, along with
its derivatives, is available.
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