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Abstract: We demonstrate that the transmission properties of surface 

plasmon-polaritons (SPPs) across a rectangular groove in a metallic film 

can be described by an analytical model that treats the groove as a side-

coupled cavity to propagating SPPs on the metal surface. The coupling 

efficiency to the groove is quantified by treating it as a truncated metal-

dielectric-metal (MDM) waveguide. Finite-difference frequency-domain 

(FDFD) simulations and mode orthogonality relations are employed to 

derive the basic scattering coefficients that describe the interaction between 

the relevant modes in the system. The modeled SPP transmission and 

reflection intensities show excellent agreement with full-field simulations 

over a wide range of groove dimensions, validating this intuitive model. 

The model predicts the sharp transmission minima that occur whenever an 

incident SPP resonantly couples to the groove. We also for the first time 

show the importance of evanescent, reactive MDM SPP modes to the 

transmission behavior. SPPs that couple to this mode are resonantly 

enhanced upon reflection from the bottom of the groove, leading to high 

field intensities and sharp transmission minima across the groove. The 

resonant behavior exhibited by the grooves has a number of important 

device applications, including SPP mirrors, filters, and modulators. 

© 2009 Optical Society of America 
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1. Introduction 

The realization that structured metallic surfaces can be utilized to realize nanoscale photonic 

circuitry has opened up a wide range of opportunities for new fundamental research and 

technological developments [1–3]. A key building block in such circuits is a groove in a 

metallic film. Individual and periodic arrays of grooves have been used to launch surface 

plasmon-polaritons (SPPs) from free space optical beams and to generate mirrors, filters, 

optical cavities, and systems exhibiting light localization [4–16]. These applications all 

involve a number of fundamental interactions (generation, reflection, and/or transmission) of 

SPPs with grooves. To better understand the role of SPPs in complex multi-groove structures 

and to optimize devices based on these geometries, it is important to first understand the 

interaction of SPPs with a single groove. 

We start our study with an investigation of SPP transmission across and reflection from 

rectangular grooves of varying dimension using full-field electromagnetic simulations based 

on the 2-dimensional Finite-Difference-Frequency-Domain (FDFD) technique [17]. We then 

explain the SPP transmission and reflection using an intuitive side-coupled cavity model. The 

model treats the groove as a truncated metal-dielectric-metal (MDM) SPP waveguide that 

serves as a side-coupled cavity. The coupling between SPPs on the metal surface and MDM 

SPPs within the groove is described by a set of complex scattering coefficients, similar to the 

work by Lalanne et al. on SPP generation at slit apertures [10]. The reflection of MDM SPPs 

from the bottom of the groove is quantified by a complex reflection coefficient. All of these 

coefficients were determined for a range of groove widths using numerical simulations. The 

groove response predicted by the side-coupled cavity model shows excellent agreement with 

full-field simulations over a wide range of groove dimensions, validating this intuitive model. 

The work complements various analytical techniques and simulation approaches that have 

been utilized to approximate or fully quantify the interaction of SPPs with metallic slits and 

grooves [9,18]; in our work we provide a quantitative validation of the side-coupled cavity 

picture that was also suggested by Kuttge et al. earlier this year [16]. For our plasmonic 

system we directly link the transmission minima with MDM SPP resonances inside the 
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groove and show how minima result from the destructive interference between directly 

transmitted SPPs and forward scattered SPPs reemerging from the groove. Our analysis also 

brings to light the unique role of the magnetic field anti-symmetric MDM SPPs. For 

sufficiently narrow grooves, this mode is below propagating cutoff and it is evanescent and 

reactive in nature. For this reason, one might expect it to rapidly decay and be of no 

consequence in our analysis. Interestingly we find that it can be resonantly enhanced on 

reflection and give rise to strong groove resonances in the low-loss limit. 

2. Calculating SPP transmission, reflection and scattering 

We start by describing the results from 2-D FDFD simulations of SPP transmission across a 

rectangular groove at normal incidence. The simulation boundaries were taken to be perfectly 

matched layers, and the incident SPP was directionally sourced with a two-layer dipole array 

using the total field scattered field method and the well-known mode profile for a single 

interface SPP [4,17]. In this analysis, we use an idealized, lossless metal with εm = −10 and a 

dielectric of εd = 1. 

 

Fig. 1. Full-field electromagnetic simulation of SPPs on metallic grooves and slits. The real 

value of the magnetic field, Hz, is plotted. εmetal = −10 and εd = 1. The groove and slits are all 

0.16λ wide, where λ is the free space wavelength. The metal-dielectric interface is demarcated 

by the black dashed lines. (a) shows a SPP incident on a groove from the left. The depth is 

0.48λ. (b) and (c) show a single interface SPP and a MDM SPP, respectively, incident on the 

mouth of a slit and are used to calculate scattering coefficients at the mouth of the groove. (d) 

shows a MDM SPP reflecting from the bottom of a groove, which is used to calculate a 

reflection coefficient. The incident SPPs have a Hz amplitude of unity along the metal-

dielectric interface. 

Figure 1(a) shows a FDFD simulation for the H-field of a SPP incident on a groove. The 

amplitude of its H-field at the metal-dielectric interface was taken to be unity. The groove is 

near resonance for the incident wavelength, resulting in some SPP back-reflection (22%), 

significant scattering into free space modes (50%), and a reduced SPP transmission (28%). 

The power and phase of the transmitted SPP is found by projecting the simulated fields past 

the groove onto the SPP mode profile. Waveguide theory shows that for a translationally 

invariant structure reciprocity leads to the orthogonality relation in the numerator of Eq. (1) 
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[19] (valid for lossy materials as well). This allows us to project the total field (away from the 

groove) onto any eigenmode as: 

 
( )1
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,
total mode mode total
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mode total mode mode

modesmode mode
S

E H E H dA
c E c E

E H dA

× + × ⋅
= =
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∫
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where Etotal and Htotal are the total electric and magnetic fields taken from the simulations, and 

cmode is the coefficient representing the portion of the total fields in a given mode specified by 

fields Emode and Hmode. S is taken as a plane normal to the metal film and the SPP propagation 

direction [9]. For the bound and highly confined SPP modes, the finite area of our simulation 

is sufficient for accurately evaluating these integrals. The dispersion relation and fields for the 

single interface SPPs are detailed in Raether [4]. Figures 2(a) and 2(c) show the transmitted 

and reflected SPP power calculated from simulations on grooves of varying dimension using 

Eq. (1). Overall there are broad regions of high SPP transmission punctuated by sharp 

transmission minima at narrow groove widths which then broaden at larger widths. The 

minima occur periodically with increasing depth, and high fields within the groove are 

observed at all of these minima along with corresponding reflection maxima. 

 

Fig. 2. SPP power transmitted across and reflected from single grooves of different depth and 

width. (a) and (c) The transmission and reflection, respectively, are calculated from full field 

2D FDFD simulations using Eq. (1). (b) and (d) Transmission and reflection, respectively, are 

calculated from the side-coupled MDM SPP cavity model. The black lines indicate the location 

of predicted MDM SPP resonances within the groove. Strong transmission minima are 

observed to be caused by MDM SPP resonances within the groove. 

3. Side-coupled cavity model 

Below we continue by developing a side-coupled MDM cavity model to explain the presence 

of the transmission minima and their dependence on the groove parameters. To this end we 

break-up the interaction of an incident SPP with a groove into its basic processes. An incident 

SPP can directly be transmitted across a groove or couple sideways to the MDM SPP modes 

within the groove. The groove itself can serve as a plasmonic cavity in which the MDM SPPs 

may build up a high energy density after multiple reflections from the mouth and bottom of 
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the groove. At the mouth of the groove, a fraction of the MDM SPPs will scatter back out into 

single-interface SPPs. The SPPs that couple in the forward direction will then interfere with 

the SPPs that are directly transmitted across the groove. According to this line of thinking, 

dips in the SPP transmission can occur when the SPPs that reemerge from the cavity pickup a 

substantial amount of phase in the cavity (near π) and destructively interfere with the directly 

transmitted SPPs. The conditions for this to occur depend on the groove depth, the 

wavevector of the MDM SPP, and the reflection from the groove terminations. To analyze 

this in more detail, we first need to quantify the basic scattering processes (scattering into the 

groove, reflection from terminations, and scattering out of the groove) in terms of a set of 

complex coefficients. 

Figures 1(b)-(d) show simulations of the basic scattering processes that govern SPP 

transmission across the groove shown in Fig. 1(a). Figure 1(b) shows the interaction of a 

single interface SPP from the left with a metal slit (i.e. an infinitely deep groove). The 

scattering coefficients, sij, describe the coupling from an incident mode i into an outgoing 

mode j. Here, we will use the index “1” to refer to a single interface SPP on the left side of the 

groove, “2” to refer to a MDM SPP, and “3” to refer to the SPP on the right side of the 

groove. Figure 1(c) shows a simulation of the MDM SPP incident on the mouth of a slit. 

Figure 1(d) shows a simulation of an SPP reflecting from a metal terminated MDM SPP 

waveguide (i.e. the bottom of a groove). The reflection process is characterized by a complex 

reflection coefficient rmdm. In addition, both H-field symmetric and anti-symmetric MDM SPP 

modes exist within the groove and their coefficients will be distinguished by a “+” and “–“ 

respectively. These scattering and reflection coefficients are calculated from the simulated 

total fields using Eq. (1) with the outgoing SPP and MDM SPP mode profiles. The scattering 

coefficients between SPPs and MDM SPPs are all normalized by the time averaged 

magnitude of the incident power. The square of the scattering coefficients represents a 

fractional coupled power between propagating modes. Following convention, all the 

reflection and scattering coefficient phases are specified by the E component in the dielectric 

perpendicular to the axis of translational invariance at the boundaries of the groove. 

By considering these basic scattering processes, we can now construct our proposed side-

coupled MDM cavity model to predict the steady state transmission and reflection amplitudes: 
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, ,

2 2

1(2 ) (2 )3 , 1(2 ) (2 )1 ,
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where βmdm is the propagation constant of the MDM SPP modes and j is either + or - referring 

to the H-field symmetric and anti-symmetric MDM SPP modes respectively. In the derivation 

of these equations, we use the fact that symmetric and anti-symmetric MDM SPP modes 

cannot scatter into each other at a boundary with mirror symmetry. The predicted 

transmission and reflection intensities, |t|
2
 and |r|

2
, according to this model are plotted in Fig. 

2(b) and 2(d) for comparison to the projected transmission and reflection from full-field 

simulations. The super-imposed black lines show the locations of MDM SPP groove cavity 

resonances determined as the depths that minimize the denominators of Eq. (2) at each width. 

The good agreement between the side-coupled MDM SPP cavity model and the FDFD 

simulations validates our model and shows that the sharp transmission minima are caused by 

destructive interference between the directly transmitted SPPs and the forward scattered SPPs 

emerging from groove. Figure 3(a) and 3(b) display detailed agreement between the 

transmission amplitude and phase as calculated from the full-field simulations and Eq. (2) (the 

time dependence of phase is taken as e
-iωt

). This further lends credibility to our model. 
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Fig. 3. Transmission amplitude (a) and phase (b) for square grooves (depth equal to width) of 

varying dimension. Transmission calculations from the FDFD simulation ( + green) show 

excellent agreement with the side-coupled MDM cavity model predictions (- blue). 

3.1 Assumptions and limitations of the side-coupled cavity model 

Two approximations were used in the derivation of Eq. (2). In a MDM modal expansion there 

are an infinite number of higher order metal clad waveguide modes within the groove, but for 

sufficiently narrow grooves they have complex propagation constants that correspond to 

rapidly decaying waves [20, 21]. For this reason, they should not scatter back out of a groove 

with significant depth and can be neglected. The other assumption we make is that the single 

interface SPP scatters into or out of MDM modes at the top of the groove and not the bottom. 

This is accurate for sufficiently deep grooves as the SPP field decays quickly inside the metal. 

These assumptions break down though in the wide and shallow groove limits as evidenced by 

the discrepancies in this regime in Figs. 2(a)-(d). In particular the first TM metal clad 

waveguide mode exhibits cutoff at a groove width of 0.9λ (Eq. (3)), and the side-coupled 

MDM SPP cavity model fails to accurately predict the FDFD results for widths greater than 

0.85λ. The penetration depth of the SPP in the metal is 0.05λ so the model also fails to 

accurately predict FDFD results for depths less than approximately 0.1λ. Aside from these 

regions the side-coupled MDM SPP cavity model shows excellent agreement with the full-

field simulation. Identical levels of agreement are seen when comparing transmission and 

reflection phase between the FDFD simulation and the side-coupled MDM SPP cavity model 

(not shown here). 

4. Model components: width dependence of MDM SPPs and scattering coefficients 

After having established the validity of the side-coupled cavity model, it is of value to have a 

closer look at the dependence of the scattering coefficients on the groove dimensions. A 

deeper understanding of these dependencies will also provide a better insight into the 

transmission and reflection behavior shown in Fig. 2. The dependence of the parameters on 

groove width is of particular interest as the width governs the number and type of modes that 

are supported by an MDM waveguide. To determine the number and nature of the modes that 

are allowed at each width, we start with a brief look at the dispersion relationship for MDM 

modes. Figures 4(a) and 4(b) show the width-dependence of the real and imaginary part of the 

propagation constant, βmdm, for the H-field symmetric and anti-symmetric SPP modes 

supported by an MDM waveguide. The value of βmdm is normalized by the magnitude of the 

vacuum wave vector. These plots are calculated from the dispersion relationship for 

transverse magnetic modes (TM): 

 ( )
2 2

2
2 2tan 2 0,d m d m

d mdm
d m d m

k k k k
k w i k ε βε ε ε ε
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Here, ε is the permittivity of either the dielectric or the metal, w is the width of the dielectric 

layer normalized to the wavelength. k⊥ is the magnitude of the wave vector component normal 

to the MDM interfaces. The equation is equivalent to the separate symmetric and anti-

symmetric forms used by other authors describing the MDM SPP eigenmodes in greater detail 

[22,23]. The symmetric MDM SPP is propagating for all widths with real-valued βmdm in our 

lossless case. The H-field anti-symmetric MDM SPP has a cutoff width where it transitions 

from propagating to evanescent. The evanescent, anti-symmetric MDM SPP is reactive in 

nature with an imaginary βmdm closer to cutoff and a complex βmdm at even narrower widths 

(not shown). It carries no time-averaged power in the lossless limit. 

 

Fig. 4. Plots of the real (a) and imaginary (b) parts of the propagation constant for symmetric 

(blue) and anti-symmetric (green) MDM SPP modes. εm= −10 and εd= 1. βmdm is normalized to 

the magnitude of the vacuum wavevector. 

Figure 5(a) and 5(b) shows the relevant scattering coefficients as a function of the MDM 

waveguide width. They capture the coupling between the various modes that follow from the 

dispersion relation above. The behavior of these coefficients has several characteristics that 

are worth noting. Reciprocity dictates that the coefficients describing how a single interface 

SPP incident from the left couples to a symmetric (s12+) or anti-symmetric (s12-) MDM SPP 

mode are identical to the coefficients describing the reverse processes, s2+1 and s2-1, 

respectively [19]. The scattering coefficients describing the coupling between the MDM 

modes and the SPP on the right of the groove are identical to those describing the coupling to 

SPPs on the left side with one notable exception: the H-field symmetric MDM SPP excites 

single interface SPPs on the left and right that are out of phase by π. Generally significant 

direct SPP transmission across the groove (s13) is seen even at larger widths. In contrast direct 

reflection is low (s11). The reflection coefficients for MDM SPP modes at the mouth of the 

groove (s22) is high near cutoff for the anti-symmetric SPP and near zero width for the 

symmetric SPP due to a large mismatch between βmdm and the free space wavevector 

magnitude. The observed discontinuities in slope are due to the appearance of the propagating 

or power carrying anti-symmetric MDM SPP at 0.4λ and the first transverse magnetic (TM) 

MDM waveguide mode at 0.9λ. 
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Fig. 5. Scattering and reflection coefficients. (a) and (b) show the amplitude and phase of the 

scattering coefficients calculated at the mouth of a slit. The first number in the subscript refers 

to the mode that is scattered from and the second to the mode that is scattered into. 1 and 3 

refer to the single interface SPPs on the left and right side respectively. 2+ and 2- refer to the 

field symmetric and field anti-symmetric MDM surface plasmons respectively. (c) and (d) 

show the reflection coefficient amplitude and phase as calculated from the bottom of an 

infinitely deep groove. 

Figures 5(c) and 5(d) show the reflection coefficients as calculated with Eq. (1) from 

simulations as depicted in Fig. 1(d). These coefficients deserve extra attention as they are 

responsible for several unique features in the SPP groove transmission and reflection plots of 

Fig. 2. As expected for a lossless metal, all the propagating MDM SPPs exhibit unity 

reflection. The metal bottom tends to expel the parallel E-field so the reflection phase is close 

to π for propagating modes. For metals with a finite conductivity the resulting field 

penetration results in somewhat greater reflection phases. The evanescent, field anti-

symmetric MDM SPP excites a single interface SPP mode along the metal end-face of the 

MDM and is resonantly enhanced upon reflection. The reflection peak corresponds to an 

optimal excitation of the single interface SPP mode along the metal end face of groove, and a 

π phase transition is observed at this width. For evanescent, reactive modes energy 

conservation constrains the phase not the amplitude so there is no violation as in other cases 

presented in 1-dimensional systems [24, 25]. In particular for the lossless case, the reflection 

phase for a reactive mode can only be 0 or π, which our calculations are consistent with. 

5. Analysis and interpretation 

Using our enhanced knowledge of the dependence of the scattering and reflection coefficients 

on the MDM width, we are now in a position to provide a more detailed analysis of the 

observed features in Fig. 2. As discussed previously, the transmission minima here originate 

from the destructive interference between directly transmitted SPPs and SPPs that scatter out 
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of the groove at resonance. The MDM SPP resonances that occur for the evanescent, reactive 

MDM SPP modes are different in nature than the resonances arising from the propagating 

MDM SPPs. Propagating MDM SPPs resonate whenever there is an integer 2π round trip 

phase within the groove, but the round trip amplitude decrease is always greater than zero due 

to scattering losses and this limits the intensity of the resonance. Conversely, reactive MDM 

SPP resonances occur at depths where the round trip amplitude decrease is zero, but the round 

trip phase is never exactly 2π due to losses and this limits the intensity of reactive resonances. 

Propagating resonances arise for both the field symmetric MDM SPP at widths below 0.4λ 

and the field anti-symmetric MDM SPP mode at widths between 0.4 and 0.85λ (Fig. 4(a)). 

These resonances occur periodically with depth every time the groove cavity round trip phase 

is an integer multiple of 2π. This results in several blue bands of transmission minima at 

different depths. The exact resonant depth is critically dependent on the propagation constant 

of the MDM SPPs, real{βmdm}, and the reflection phase at the terminations of the groove, s22 

and rmdm. For the symmetric MDM SPP, the sharp increase of real{βmdm} at small widths leads 

to a quick drop in the resonant depth needed to achieve an integer 2π round trip phase. 

Similarly, the rapid increase of real{βmdm} for the anti-symmetric MDM SPP starting at 0.4λ 

leads to a drop in resonant depth with increasing widths. The shift in resonant depth due to 

reflection phase is less significant than that due to βmdm because the reflection phases are 

relatively constant for the symmetric MDM SPP and roughly cancel for the anti-symmetric 

MDM SPP. 

The intensity of the resonance is limited by scattering loss which results in a reflection 

amplitude of less than unity at the mouth of the groove, s22. s22 is highest for the symmetric 

and anti-symmetric MDM SPPs near 0λ and 0.4λ respectively. The strong reflections here 

give rise to higher quality factor (Q) resonances and sharper transmission minima. As we 

move to larger groove widths, the reflection of MDM SPPs (s22) decreases and the resonances 

and corresponding transmission minima broaden. 

In addition, the transmission minima do not always coincide exactly with the groove 

resonances. At narrow widths, direct SPP transmission across the groove is close to unity so 

that scattering from the MDM SPP resonance can only interfere destructively to produce 

transmission minima (energy conservation). This results in transmission minima that coincide 

with the peak MDM SPP resonance. However, at larger widths direct SPP transmission across 

the groove decreases, and scattering from the MDM SPP resonance can interfere both 

constructively to produce transmission maxima as well as destructively to produce minima. 

This produces a distinct Fano lineshape with transmission minima and maxima located on 

opposing sides of the MDM SPP resonance as seen in Fig. 2(b). This effect is very similar to 

that in the first side-coupled cavity paper showing Fano interference by S. Fan [26]. 

Lastly, the resonance for widths between 0.374λ and 0.4λ is caused by the reactive anti-

symmetric MDM SPP (Fig. 4(b)). Despite the decay of this mode, the amplified reflection 

from the bottom of the groove (rmdm) can result in a strong resonance. This resonance is not 

allowed though for widths smaller than 0.374λ because the π phase on reflection from the 

metal produces roundtrip destructive interference. Past its peak though, rmdm goes through a π 

phase transition producing resonance within the groove. The exact depth of this resonance is 

determined by the decay of the MDM SPP and the amplification from the quickly varying 

metal reflection. A simulation of one groove displaying this resonance is shown in Fig. 6. 
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Fig. 6. FDFD simulation of a SPP incident on a groove in a metallic film. The SPP is incident 

from the left and the absolute value of the magnetic field, abs(Hz), is plotted for the case that 

εmetal = −10, and εi = 1. The metal-dielectric interface is demarcated by the white dashed lines, 

and the incident SPP has a field of unity there. The groove is 0.374λ wide and 0.62λ deep. A 

resonance is observed within the groove arising from the H-field anti-symmetric, reactive 

MDM mode and causes destructive interference with minimum transmission. 

6. Concluding remarks 

Many calculations of SPPs and waveguide modes in MDM and hole structures only include 

the propagating solutions that constantly carry power in the forward direction. Other papers 

have shown that the full spectrum of MDM modes are needed for a complete analytical 

description of scattering at the boundary of MDM structures [20, 21]. The propagation of 

reactive modes between interfaces has also been shown to provide a correction when 

calculating extraordinary transmission through an array of slits [27]. In short cavities, reactive 

modes can be expected to offer significant corrections; however, with long structures the 

greater attenuation of the reactive modes frequently makes them less important than the 

propagating modes. In a metallic groove though, reactive modes can be resonantly enhanced 

(reflection greater than one) upon reflection from the bottom metal boundary. As a result, 

reactive SPP modes can dominate the response of a groove, cause sharp transmission 

resonances, and produce high field intensities, even at depths where significant attenuation is 

expected. There is the potential to engineer grooves using reactive SP modes to achieve high 

field amplification for use with detectors or light emitters. 

For real metals exhibiting material loss, the MDM SPP groove resonances are dampened, 

but qualitatively similar behavior is observed. Figure 7(a) and 7(b) show simulated and 

modeled SPP groove transmission for Ag at λ = 875nm, using a complex dielectric constant 

of εAg = −30.240 + 2.217i [28]. With material losses the reactive MDM SPP resonance is 

dampened significantly, but its effects can still be observed close to cutoff. Gain media could 

potentially counter the loss and utilize these reactive MDM SPP modes for SPP modulation 

and switching. 
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Fig. 7. Transmitted and reflected SPP power across single grooves of varying dimension for 

Ag at λ = 875nm. εAg = 30.240 + 2.217i. (a) and (c) are full field simulations. (b) and (d) are 

calculations from the side-coupled MDM SPP cavity model. The black lines represent model 

calculated MDM SPP resonances. These resonances are dampened by loss, but the same 

general features and trends are still observable. 

In conclusion, using a numerical study of scattering and reflection coefficients calculated 

from FDFD simulations we have shown that the width and depth dependent SPP transmission 

across a groove can be accurately predicted by an intuitive side-coupled MDM SPP cavity 

model over a large range of groove dimensions. Transmission minima are shown to be caused 

by cavity resonances of the propagating and reactive MDM SPPs. Reactive SPPs were shown 

to be significantly amplified on reflection from a metal boundary leading to strong 

resonances, sharp transmission minima and high field intensities within the groove. 

Appendix: Power conservation and reflection of reactive modes 

We can obtain some general understanding of reactive modes by considering plane wave 

modes. Although a lossless, lone reactive mode carries no net power, a superposition of 

forward and backward reactive modes can carry net power. Calculating the complex power of 

a plane wave and its reflection we obtain the results of Eq. (4) below. 
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The real part of the complex Poynting vector is net, time-averaged power while the 

imaginary part represents reactive, oscillatory power whose time-averaged contribution is 

zero [29]. Energy conservation requires that real(Sx) ≥ 0 as we cannot reflect more power than 

we send in. For propagating modes k⊥ is real and energy conservation gives the amplitude 

constraint that |r|
2
 ≤ 1. For reactive plane waves k⊥ is imaginary so the imaginary part of the 

reflection coefficient results in time-averaged power flow. Thus energy conservation for a 

reactive wave results in a phase constraint requiring that imag(r) ≤ 0. For a reactive wave 

ending on a lossless metal no power is lost to absorption so the reflection phase can only be 0 

or π. 
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Even though reactive modes attenuate significantly with distance, they can be amplified 

significantly upon transmission or reflection at a metal dielectric interface as energy 

conservation now constrains the phase and not the amplitude. The reflection of a plane wave 

at a single interface is expressed by Fresnel’s equation in terms of surface impedances in Eq. 

(5). 
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where k⊥ is the wavevector component perpendicular to the interface and k
�
 is the wavevector 

component parallel to the interface. The high impedance mismatch of reactive waves at a 

metal-dielectric interface results in amplified reflection and transmission at the interface. This 

forms the basis for the well-known near-field imaging or perfect lensing with negative 

permittivity materials [24]. In imaging with a perfect lens, a flat response function is desired, 

which can be attained when εm = -εd at the surface plasmon frequency. For εm > -εd the SPP 

resonance is accessible at lower wavevectors leading to a resonant reflection peak and a π 

phase transition corresponding to the excitation of the single interface surface plasmon. At the 

surface plasmon resonance excitation of the SPP leads to significant losses in the metal and 

power transfer is maximized with a reflection phase of –π/2. 
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