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Abstract—We present a newmodel of the noise and drift induced
by coherent backscattering in a fiber optic gyroscope (FOG) inter-
rogated with a light source of arbitrary temporal coherence. This
study is critical to understand whether a FOG driven with a laser
instead of a broadband source can attain high sensitivity and sta-
bility, which would have the overwhelming benefit of improving
the FOG scale factor stability by at least ten-fold and would en-
able the use of FOGs for inertial navigation of aircrafts. Analytical
and numerical solutions bring to light two significant new predic-
tions. First, coherent-backscattering noise can be made negligibly
small by utilizing a laser with a very narrow linewidth (less than
20 kHz), although in this regime the drift is high. Second, by

using a laser with a broad linewidth (greater than 10MHz), both
the noise and the drift are low enough for aircraft inertial naviga-
tion. The dependencies of the noise and drift on fiber loss, loop cou-
pling coefficient, and backscattering coefficient are also presented
to define the optimummode of operation of this new class of FOGs.

Index Terms—Backscattering drift, backscattering noise, co-
herent backscattering, fiber optic gyroscope, laser phase noise,
Sagnac interferometer.

I. INTRODUCTION

I NTENSE research efforts throughout the 1980s and early
1990s showed that the three main error sources in a fiber

optic gyroscope (FOG), namely Rayleigh backscattering, [1]
the Kerr effect, [2] and polarization coupling, [3] all originate
from the use of coherent laser light to interrogate the FOG,
and that these errors limited the performance of a laser-driven
FOG far above inertial-navigation requirements. These errors
were subsequently mitigated by replacing the laser with a
source of very low coherence. The additional developments
of advanced closed-loop signal-processing schemes, polariza-
tion-maintaining (PM) fibers, multifunction integrated optical
circuits (MIOCs), and special fiber windings to reduce the
Shupe effect, led to further performance improvements. The
bias drift and angular random walk (ARW) noise of modern
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FOGs now match or even exceed the performance of competing
optical inertial-navigation technologies such as ring laser gyros
(RLGs) [4], [5].
The only primary performance metric where modern FOGs

continue to lag other technologies is the scale-factor stability.
The scale factor is the constant of proportionality that relates the
applied rotation rate to the Sagnac phase shift induced
by a rotation in the FOG’s Sagnac interferometer [6]. It is given
by , where is the loop length,
is the mean wavelength of the light, and is the loop diam-

eter. A FOG measures , and the instantaneous rotation rate
is recovered from this measured value by dividing it by the

scale factor. Any error in the knowledge of therefore leads to
a commensurate error in . For aircraft navigation, the max-
imum tolerable error in is 1 part per million (ppm) [6], [7].
The main source of scale-factor error is thermal instability in ;
stabilizing this mean wavelength to the ppm level has proven
challenging [8]. As a result, the best FOGs achieve scale-factor
stabilities of 10–100 ppm, [4], [5] at least 10 times higher than
the 1-ppm scale-factor stability of RLGs, and than the stability
requirement for aircraft navigation. Because the inferred rota-
tion rate is directly proportional to the source wavelength ,
any improvement in the wavelength stability leads to a directly
proportionate improvement in the minimum detectable rotation
rate.
A possible method for increasing the scale-factor stability is

to replace the broadband source with a 1.5- semiconductor
laser. Widely used in telecom systems, these lasers are com-
mercially available with a wavelength stability of 1 ppm or
better. Furthermore, because telecom lasers exhibit negligible
excess noise, they would also remove the excess noise inherent
in broadband sources, ultimately lowering the FOG ARW. Be-
cause for a given measurement bandwidth (BW) the minimum
detectable rotation rate equals , reductions in
ARW lead to direct improvements in the minimum detectable
rotation rate. Finally, the use of a laser would reduce power con-
sumption, complexity, and cost.
The challenge, of course, is overcoming the errors resulting

from the use of coherent light, errors which were the very
reason for abandoning lasers in FOGs years ago. However,
since that time, intervening technological advances have altered
the FOG landscape. Improvements in the optical components
used in FOGs have led to much lower losses. Lower losses
imply reduced circulating power in the sensing fiber and hence
significantly reduced Kerr-induced drift. The development of
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improved PM fibers and MIOCs with high-extinction-ratio
polarizers diminishes polarization-related errors. Backscat-
tering-induced errors are also expected to be reduced, in part
because Rayleigh scattering is much lower at 1.55 than at
the shorter wavelengths used in early FOGs.
Of these three parasitic effects, we expect backscattering to

be the dominant source of error. Unfortunately, while backscat-
tering has been studied in other optical gyroscopes [9], [10],
there is no model to predict the magnitude of the noise or drift
due to backscattering in an interferometric laser-driven FOG.
Cutler published an analysis [1] that was insightful for recog-
nizing the potentially limiting effects of scattering, but it as-
sumed that all scatterers in the fiber loop scattered in phase,
leading to a vastly overestimated spurious drift. Cutler’s model
also did not account for the significant effects of the time-de-
pendent phase modulation typically used to bias a FOG, for
source phase noise, and for the symmetry of light scattered in the
clockwise (cw) and counter clockwise (ccw) directions. Takada
modeled backscattering noise more accurately, but he limited
his study to short coherence lengths and did not include phase
modulation [11]. Mackintosh et al. performed theoretical calcu-
lations and presented experimental results that included phase
modulation [12]. Importantly, they showed that under certain
conditions the use of modulation and of a 50% coupler can sig-
nificantly reduce the effects of backscattering, but again only in
the limit of short coherence lengths. Using a different approach,
Krakenes et al. developed a more robust model of the effect of
laser phase noise on backscattering-induced noise in Sagnac in-
terferometers [13]. This model, however, also assumed a co-
herence length much shorter than the loop length. In this limit,
an increase in noise with increasing coherence length was pre-
dicted [12], [13].
This paper reports the development and exploitation of a

more thorough theory that expands on earlier work to model
the backscattering-induced noise and drift for an arbitrary
coherence length in the presence of phase modulation. We first
present a brief background of the physics of the noise and drift
arising from coherent backscattering in a Sagnac interferom-
eter. We then describe numerical and analytical models that
quantify these two errors. We apply these models to a particular
laser-driven gyroscope to examine the dependence of noise
and drift on coherence length. We predict that by choosing a
coherence length either much longer or much shorter than the
loop length, the backscattering-induced noise can be reduced
well below the excess-noise level of the same FOG driven with
a broadband source. We show that in the opposite limit of a
moderate coherence length ( 10 m), by selecting appropriate
system parameters (namely push-pull phase modulation at
the loop proper frequency, a low-loss fiber, and a 50% loop
coupler) a laser-driven FOG can exhibit low enough noise and
drift to meet navigation-grade requirements. These predictions
establish for the first time the path to a FOG with noise, drift,
and scale-factor performance that exceeds that of RLGs and
other inertial-navigation optical gyros, all in a system that is
simpler, cheaper, and more energy-efficient than existing FOGs.
Experimental evidence of these predictions will be presented
in a separate upcoming journal article.

Fig. 1. Diagram of the open-loop laser-driven fiber optic gyroscope.

Fig. 2. Effect of backscattering in a Sagnac interferometer.

II. PHYSICS OF BACKSCATTERING IN A FOG

The diagram of the laser-driven FOG is shown in Fig. 1.
It consists of the standard minimum-configuration open-loop
FOG [6] in which the broadband source has been replaced with
a laser. The components are a laser source, a photo detector,
an input/output coupler, an in-line polarizer, the loop coupler,
one or two phase modulators for biasing, and the fiber coil. One
can use all-fiber passive components, or the polarizer, loop cou-
pler, and modulators can be combined on an MIOC, as shown
in Fig. 1. Closed-loop signal-processing techniques can also be
added. Since operation with a laser is not expected to change
the benefits of closed-loop operation, only open-loop operation
is considered here.
Interferometric FOGs utilize the well-known Sagnac effect

[6]. When two light signals traverse a closed path in opposite di-
rections simultaneously, a rotation about an axis perpendicular
to the plane of the path induces a differential phase shift pro-
portional to the rotation rate. This phase shift can be measured
in a Sagnac fiber interferometer (Fig. 2), which splits an input
light signal into two signals of nominally equal power with a
coupler, launches each signal in the loop in opposite directions,
then recombines the signals on exit at the coupler. Under zero
rotation and in the absence of other nonreciprocal and asym-
metric time-dependent effects, the optical paths followed by the
two signals are identical resulting in complete destructive inter-
ference at port 2 and fully constructive interference at port 1 [6].
Rotation breaks this reciprocity and results in each signal expe-
riencing optical paths that differ by an amount proportional to
the rotation rate [6]. Through interference, some of the power
then exits at port 2, reducing the power at port 1. The rotation
rate is inferred from a measurement of this power change.
The two primary sources of backscattered signal in a fiber are

Rayleigh scattering and reflections at splices and terminations.
Rayleigh scattering originates from inhomogeneities of random
amplitude randomly distributed along the fiber. For time scales
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on the order of the loop delay, these two random processes can
be considered stationary in time.While reflections at splices and
terminations can, in theory, be minimized, Rayleigh scattering
is an inherent property of fibers that cannot be avoided.
When the primary cw field is backscattered at a particular

point A (see Fig. 2), a small portion of it, , is backscattered
in the ccw direction and travels back to the loop coupler, where
it adds either coherently or incoherently to the two primary sig-
nals and . The fields , , and have traveled
different optical paths (except for the scattering center located
at the loop’s midpoint). If this difference is smaller than the co-
herence length of the light, these fields are coherent and in-
terfere. This is true for all scatterers located within of
the midpoint (region 1, see Fig. 2). The rest of the scatterers
produce backscattered fields with a path difference greater than
. These fields are incoherent with the primary fields and do

not interfere but add in intensity.
This process leads to two deleterious effects. First, because

backscattered fields generated in region 1 interfere coherently
with the primary fields, and because there is a path imbalance
between interfering fields, as with any unbalanced interfer-
ometer the interference process converts source phase noise
into random fluctuations in the output power. This constitutes
a source of noise. Backscattered fields generated outside of
region 1, on the other hand, add in intensity leading to consid-
erably weaker and essentially negligible intensity noise. In a
FOG, this noise is generally quantified either as a random-walk
noise (in ) when expressed in terms of phase error, or
an angle random-walk noise when converted to an
equivalent rotation-rate error. Importantly, source phase noise,
not random variations in the scatterers’ phase or location distri-
butions, causes the backscattering-induced noise in a FOG.
The second deleterious effect of backscattering is drift. Be-

cause the optical paths traversed by the fields backscattered in
the cw and ccw directions are inherently different, backscat-
tering generally produces a non-zero mean signal, i.e., a bias
error. This error could be easily compensated if it were constant.
However, environmental perturbations of the coil, in particular
temperature variations and acoustic noise, cause the bias error
to fluctuate. These fluctuations are generally slow compared to
the loop delay and give rise to bias drift. This drift is indistin-
guishable from a rotation-induced change and thus constitutes
an error. Bias drift is measured in rad when expressed in terms
of phase, or in deg/h for a rotation-rate error. Here too the ma-
jority of this effect arises from fields backscattered in region 1;
the fields backscattered outside of region 1 add in intensity and
contribute to negligible drift.
In summary, the only portion of the coil that contributes sig-

nificantly to backscattering noise and drift is region 1. When
interrogating a FOG with light of very long coherence length
(e.g., , typically 100–1000 m), this region is as long as
can be and all scatterers contribute to coherent noise and drift.
As a result, these two sources of error are very large, as observed
in early FOGs driven with a laser. On the other hand, when the
light has a very short coherence length (typically less than 100
), region 1 is exceedingly short and both errors are reduced

to the point of being negligible [6].

III. MODELING COHERENT BACKSCATTERING IN A FOG

We begin with the same basic field equations used in [11],
[13], but considering the FOG configuration of Fig. 1. We as-
sume single-mode operation with a single state of polarization
throughout the fiber, thus scalar fields are used. The output field
from the fiber loop at port 1 (see Fig. 2) consists of four com-
ponents, namely the two primary signals and , and the
two backscattered signals and . Expressing the complex
input field at port 1 as , where is the center
angular frequency and is the source phase noise, the two
primary fields can be written as

(1)

(2)

(3)

(4)

where are the complex coupling coefficients between ports
and of the loop coupler (the coupler is reciprocal, so
), is the effective phase velocity of the fundamental mode

in the fiber, is the power loss coefficient of the fiber, and
and are the phase modulations imparted by the two phase
modulators placed in the loop for biasing (when only one mod-
ulator is used ). Similarly, the two total backscattered
fields can be expressed as

(5)

(6)

(7)

(8)

where is a random variable representing the scattering co-
efficient at position . Rayleigh backscattered light suffers a
phase shift relative to the incident field, [11], [13] which ex-
plains the factor of in (7) and (8). These equations do not in-
clude a Sagnac phase shift, an approximation valid in the limit
of even fairly large rotation rates.

A. Complex Scattering Coefficient
Equations (7) and (8) contain important differences from ear-

lier formulations. In [13], each backscattering coefficient was
assumed to have a real random amplitude and a fixed phase rel-
ative to the incident light of . However, in investigations
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Fig. 3. Distributed scatterers along segment of the sensing fiber.

dealing with general Rayleigh scattering not specific to FOGs,
both the scattering amplitude and phase were assumed to be
random [14], [15]; the scattering coefficient was therefore repre-
sented as a circularly complex Gaussian random variable. This
apparent inconsistency in the treatment of the phase appears to
be attributable to the scale considered.
When scattering is considered at themicroscopic, single-scat-

terer level, light scattered by Rayleigh scattering is shifted rel-
ative to the incident light by a fixed value of , regardless
of the direction of incident light [13]. However, if scattering is
considered at the mesoscopic scale, where scattering from a seg-
ment of length is taken as the sum of the contributions of the
many scatterers along the segment (Fig. 3), then the phase shift
is no longer . Instead, because the scatterers are randomly
located along , the complex sum of the fields they scatter re-
sults in a complex scattering coefficient with a random phase
and amplitude [14], [15]. Because of the fixed phase shift
of each individual scatterer, these random phases are clustered
around a mean value of . For light incident from the right in
Fig. 3, scattering can be represented by the complex scattering
coefficient . For light incident from the left, the scat-
terers are encountered in the reverse order. Aside from the
phase shift, this reversal results in the backscattered light having
the same amplitude but the opposite phase. However, because
each individual scatterer still also imparts a phase shift, the
net effect is a scattering coefficient . This formula-
tion is valid at any scale, with changes in scale being reflected
only in the distribution of the complex scattering coefficient .
For further discussion of this issue, refer to [16]. For maximum
flexibility, the model presented here assumes complex scattering
coefficients.

B. Output Intensity and Backscattering Error

The time-dependent output intensity of the FOG is
. When using two symmetrically lo-

cated phase modulators and a standard push-pull modulation
scheme , with the help of (1)–(8)

becomes

(9)

where is the intensity incident on the loop coupler and
represents the complex conjugate of the preceding term. The
rotation-rate information is contained in the interference of the
primary waves (first term in (9)). The bias error due to
backscattering is dominated by the interference of the primary
and backscattered fields (second through fifth terms). The sum
of these four terms can be simplified to

(10)

The sixth term in (9) is the interference between the cw and
ccw backscattered fields, while the final term is the intensity
of each backscattered field. Since the backscattered fields are
typically much weaker than the primary fields these last two
terms are neglected.
Equation (10) depends on two independent random pro-

cesses: the temporal fluctuations of the source’s phase , and
the complex scattering coefficient , which is a function of
position along the fiber. The time-dependent phase modulation

causes to be a non-stationary random process.
Equation (10) represents the total backscattering-induced

error. Because the FOG output is measured with a syn-
chronous-detection system, the noise that is actually measured
is only the portion of this bias error that falls within the finite
bandwidth of the detection system, centered on the modulation
frequency . Thus the expected value ((10)) at
represents the bias error, while the standard deviation of
after filtering around represents the noise.
As explained previously, the bias error is not stationary, due to

time-varying external perturbations of the coil. These temporal
perturbations change the relative phases of individual scattered
fields, since fields scattered at different points encounter the per-
turbation at different times. This changes the magnitude and
phase of the complex sum of these individual scattered fields,
i.e., of the total scattered fields and . A brute-force
calculation of the effect of such a perturbation could, of course,
be carried out. However, the problem could no longer be treated
as a linear time-invariant system because of the time-varying
nature of the perturbation. This would significantly increase the
complexity of the simulations. Alternatively, the standard devia-
tion of the expected bias error across all possible distributions of
scatterers can serve as an upper bound on the expected drift. The
rationale is that this standard deviation gives a measure of the
expected change in the bias error as the magnitude and position
of the scatterers are changed, while a time-varying perturbation
is expected to change only the phase of the scatterers, which is
equivalent to changing only their position. The standard devi-
ation is therefore expected to overestimate the bias drift. This
is the approach used in this work to estimate an upper bound
value of the bias drift. The standard deviation was calculated
from the power spectral density of . It should be noted that
the symmetric windings of the sensing coil used to minimize the
effect of such thermal perturbations on the primary fields [17]
will not necessarily reduce the bias drift induced by backscat-
tering because the latter does not occur symmetrically about the
loop midpoint.
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C. Statistics of Backscattering and Source Phase Noise

Calculating the power spectral density of ((10))
requires knowledge of the statistics of the backscattering coeffi-
cient and of the source phase noise . For a statistically
homogeneous medium such as the glass in optical fibers, and
for the length scales under consideration , the
autocorrelation of the Rayleigh scattering process is [15]

(11)

where is the fiber’s Rayleigh backscattering coefficient,
which depends on the Rayleigh scattering coefficient of the
material and on the fiber recapture factor.
The source phase noise is assumed to follow a Wiener-Levy

process with stationary independent increments. As such, the
statistical distribution of the phase difference between any two
points in time along the laser signal depends only on the tem-
poral delay between these two points. This phase difference

is then described by the proba-
bility density function [18]

(12)

where . This probability function depends
only on , the full width at half-maximum of the source
frequency spectrum linewidth. Furthermore, the phase changes
over two non-overlapping time intervals and

are statistically independent [18].

D. Numerical Simulation Method

The power spectral density of (10) can be calculated numeri-
cally. To simplify this calculation, it is useful to rewrite (7) and
(8) using the substitution , which gives

(13)

(14)

where

(15)

(16)

(17)

(18)

The interpretation of (13) and (14) is fairly intuitive. The fiber
acts as a linear system with an impulse response dictated by
the complex amplitude of the scatterer at point and by the

round-trip propagation time and loss between the input to the
loop and the scatterer. The output of the system is the convolu-
tion of the input (the phase-modulated light) with the impulse
response, remembering to include the additional phase modula-
tion that occurs as the light exits the Sagnac loop. Expressing
the backscattered fields as a convolution simplifies the numer-
ical calculations and allows the fields to be calculated more ef-
ficiently using a fast Fourier transform algorithm.
The backscattering-induced errors can be calculated in

a fairly straightforward manner by an iterative process. A
sample function of the source phase noise is first generated at
time-sample points by using a random number generator

and applying the known Gaussian statistics of the source’s
phase ((12)) and the independent increments property. A single
sample function of the scatterers is also generated at
spatial-sample points using the known statistical properties of

((11)). Note that the convolutions in (13) and (14) place a
constraint on the spatial sampling used, namely .
For these two sample functions, the output intensity is
calculated using (10) and (13)–(18). The power spectral density
is calculated as the modulus squared of the Fourier transform
of . The process is then repeated for different sample
functions of (each of these samples representing a fiber
with the same scattering coefficient ) and of (each of
these samples representing a source with the same linewidth).
The results of hundreds of such iterations are then averaged to
obtain the final result.
The convergence of this iterative process was determined

heuristically along three parameters. First, the number of time
samples was increased until increasing the time duration of
the simulation further led to less than 1% change in the pre-
dicted bias error. Second, was increased (or equivalently
decreased) until a similar convergence was observed. Third,
was again varied to ensure that adjusting had not altered the
convergence of . Finally, once both and were fixed,
the expected bias error was calculated repeatedly for different
sample functions of the source phase and of the fiber scattering
distribution, of lengths and , respectively. The average of
the predicted bias error over these distributions was then calcu-
lated, and the process was again repeated until changes in the
average with additional iterations were again below 1%. This
resulted in an estimate of the upper bound of the bias error. The
noise was observed to converge muchmore rapidly than the bias
error, thus the same process also yielded a reliable estimate of
the backscattering-induced noise.

E. Analytical Solution

The numerical simulation method of Section III-D allows
maximum flexibility by making a minimum number of assump-
tions about the system. However, iterating over many sample
functions of and can quickly become computation-
ally intensive. To reduce the computation time, starting from
(10)–(13) we showed that for the important particular case of the
sinusoidal phase modulation typically used to bias an open-loop
FOG, it is possible to derive a direct analytic solution for the
autocorrelation of . Specifically, this phase modu-
lation is , where is the modulation
depth and is the loop proper frequency [6]. The
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TABLE I
PARAMETERS OF THE FOG MODELED IN THIS WORK

derivation is straightforward but lengthy, and the final expres-
sion occupies about a page, so it is not reproduced here. It can
be found in [16]. This expression is a sum of two terms, each
one an infinite series of products of Bessel functions and var-
ious sinusoids of the general form

(19)

where is the power coupling coefficient of the
loop coupler, , ,
and is a polynomial in . The integrals in (19) are evalu-
ated numerically for given FOG parameters. Equation (19) rep-
resents a time average of the autocorrelation of . Calcu-
lating numerically the Fourier transform of thus yields
the desired power spectral density, fromwhich the expected bias
error and noise at can be extracted. These numerical calcu-
lations yield direct results without any need for averaging over
multiple sample functions as in the numerical simulation, which
reduces computation time in many instances by more than two
orders of magnitude.

IV. MODEL RESULTS

Both the numerical method and the analytic solution are
powerful tools to fully model the effects of backscattering in a
FOG. They were first used to model identical gyroscopes and
verify that they produced the same solutions, which added con-
fidence to the accuracy of the results. In addition, the numerical
model allows a broad exploration of the entire backscattering
parameter space. It is straightforward, for example, to set

and consider how a configuration utilizing a single
phase modulator instead of a push-pull phase modulator affects
the backscattering-induced errors. This model can therefore be
used to optimize the performance of a FOG in the presence
of backscattering in order to achieve different performance
metrics for a variety of applications.
The four parameters of primary interest are the source co-

herence, the backscattering coefficient, the loop length, and the
coupling coefficient. These parameters are discussed individu-
ally in this section. In these calculations, unless otherwise spec-
ified we modeled a FOGwith the parameters of an experimental
gyroscope that we assembled in our laboratory (see Table I). The
modulation index was selected to maximize the output signal.

Fig. 4. (a) Angular random walk and (b) bias error calculated for the laser-
driven FOG of Fig. 1 with the parameter values of Table I.

A. Source Coherence

Fig. 4(a) shows the predicted FOG random walk noise as a
function of the source linewidth . The dependence shows
several important characteristics. As the coherence length is ini-
tially increased, the noise increases. This makes intuitive sense
because as explained earlier, coherently backscattered photons
arise from a segment of fiber centered on the loop midpoint and
with a length . Thus as increases, the number of coherent
scatterers increases, leading to higher noise. When the coher-
ence length reaches the loop length , all the scatterers
present in the loop contribute to the coherent interference, hence
increasing the coherence length further no longer adds more
scatterers and the noise stops increasing. When the coherence
length is increased further , the source phase noise
decreases, which leads to diminishing fluctuations in the phase
of the backscattered signals, and hence reduced noise. A signif-
icant finding of this work is that the backscattering noise can
be reduced by increasing the coherence length beyond the loop
length.
Fig. 4(b) shows the predicted dependence of the bias error on

the linewidth. For the same reasons as the noise, the bias error
initially increases with increasing coherence length. Once
exceeds the loop length, however, the bias error flattens out and
is essentially independent of the coherence length. The reason is
also that all scattered photons then interfere coherently with the
primary photons. Therefore, as the coherence length is increased
beyond the loop length, the mean error is already maximum and
no longer increases.
Fig. 4 also make significant predictions regarding the abso-

lute values of the noise and bias drift. First, even at its maximum
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value (when ) the random-walk noise is actually quite
low, namely only . Similarly, the bias is com-
paratively low even for long coherence lengths ,
although it is still too high for more demanding applications, as
discussed later. This value is considerably lower than the early
prediction of 35 mrad [1].
Fig. 4 points, for the first time, to two possible regimes of

operation for laser-driven FOGs, each with several distinct
potential advantages. The first is the region shown in the
left-hand portion of the plots: using highly coherent, very
narrow linewidth lasers. The two curves predict that lasers
with linewidths falling in this region will exhibit extremely
low ARW noise, much lower than that of a typical broadband
source (typically ), but a fairly large drift.
Applications requiring extremely high accuracy for short pe-
riods of time would benefit from this regime. Alternatively,
by using a laser with a linewidth in the right-hand region
of the plots in Fig. 4, both low noise and low drift can be
achieved. For example, using a standard off-the-shelf telecom
laser with a linewidth in the range of 10–100 MHz, the noise
drops below that of a FOG operated with a broadband source
while simultaneously achieving low drift. Drift levels in this
right-hand region can meet typical requirements for inertial
navigation . This combination of low noise and
low drift comes with the important advantage that the center
wavelengths of these lasers can be stabilized below the 1-ppm
level, which again implies a good scale-factor stability.
Note that the modeling in Fig. 4 assumes a single-frequency

laser. Sources with linewidths larger than 100 MHz are
generally not single frequency, and the analysis presented here
would no longer be applicable. For example, a typical broad
spectrum source, such as a superluminescent diode (SLD),
oscillates at many different frequencies simultaneously. As
a result, the assumed Wiener-Levy statistics of source phase
noise in (12) would no longer be applicable. Indeed, the beating
of these various frequencies results in source excess noise
that increases rather than decreases with source linewidth.
Evaluating the noise for linewidths significantly larger than the
highest value shown in Fig. 4(a) (100 MHz) would therefore
require including statistics to cover errors such as excess noise,
which is not a trivial mathematical task.

B. Impact of Coupling Coefficient
Early investigations of coherent backscattering in FOGs pre-

dicted a strong dependence of the backscattering noise on the
loop coupling coefficients in the case of very short coherence
lengths [12]. Because backscattered light suffers a phase
shift relative to the primary signal, when the coupling coeffi-
cients are exactly 0.5, for an unbiased FOG it can be shown that
the backscattered signal is mostly in quadrature with the primary
signal (limited only by the source coherence), and therefore the
two signals do not interfere [12]. The result is a strong cancella-
tion of the backscattering noise as the loop coupling coefficients
approach 0.5.
For a sinusoidally biased FOG, the phase modulator has the

potential to destroy the correlation between the scattered and
primary fields because these fields arrive at the modulators at
different times. Mackintosh et al. showed, however, that the

Fig. 5. Dependence of backscattering-induced drift on the loop coupling coef-
ficient for a source with a 10-MHz linewidth.

correlation could be maintained if the FOG uses a single phase
modulator operated at the loop proper frequency and a short
coherence length ( 1 mm) [12]. All coherent scatterers are then
very close to the loop midpoint, and because the phase is modu-
lated at the loop proper frequency the scattered fields remain in
quadrature with the primary fields. However, for longer coher-
ence lengths this correlation is destroyed, potentially leading to
an increase in backscattering-induced errors.
An important contribution of this work is to show that by

biasing a FOG with push-pull modulators, the requisite phase
relation between scattered and primary fields can be restored
for much longer coherence lengths. By operating the modula-
tors at and in opposite phase, an ideal 50% coupler again
leads to cancellation of the backscattered signal, for any .
However, rather than the primary and scattered fields being
directly in quadrature, the signal resulting from the interference
between them is modulated in quadrature with the primary
signals. Therefore, with a typical phase-sensitive detection
the backscattering-induced error can be separated from the
primary signal. In fact, for a perfectly coherent source and a
symmetric coupler, no error is expected. For a finite linewidth
of 10 MHz, Fig. 5 shows that deviation from the ideal coupler
will lead to an increase in the bias drift: it more than doubles as
the coupling coefficient goes from 0.5 to 0.45. Thus, even for
longer coherence lengths, symmetric coupling and operation at
the proper frequency lowers the backscattering error.

C. Impact of Fiber Loss

Loss in the fiber coil can also reduce the symmetry between
scattered waves that is necessary for the above cancellation to
occur. Referring to Fig. 2, when the scattering center is not lo-
cated at the midpoint, the backscattered fields and tra-
verse different optical paths. Combined with the fiber’s finite
loss, this path mismatch results in a different scattering ampli-
tude upon exiting the coil, regardless of the symmetry of the
loop coupler. The result is that loss reduces the symmetry be-
tween scattered fields and results in a larger expected drift.
This increase in drift, however, is highly dependent on the

source coherence: for long coherence lengths, the solid curve
in Fig. 6 shows that increasing the loss from 0.2 dB/km to 0.5
dB/km increases the drift by more than 2 dB. However, for
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Fig. 6. Dependence of backscattering-induced drift on fiber loss, for two laser
linewidths.

Fig. 7. Calculated increase in drift due to an increase in backscattering coeffi-
cient for two laser linewidths.

a shorter coherence length (dashed curve), increasing the loss
has almost no effect over the loss range shown. For the rela-
tively short coherence length of this 5-MHz source (
in the fiber), the losses accrued over the portion of fiber that
contributes to coherent backscattering are minimal, so the sym-
metry is maintained. Broader linewidth sources are much more
tolerant to fiber losses, while greater care must be taken in se-
lecting low-loss fiber when using a narrow-linewidth source.

D. Impact of Backscattering Coefficient
Fig. 7 shows the calculated dependence of the bias error

on the backscattering coefficient for two laser linewidths.
These simulations assume that the loss is dominated by
backscattering, i.e., that the fiber loss coefficient scales pro-
portionally to [19]. This may not be valid when comparing
different types of fibers. In such cases, however, the analytical
solution makes it straightforward to predict the drift given both
the backscattering and loss coefficients.
Fig. 7 shows that for the 5-MHz laser (dashed curve) the drift

increases with increasing backscattering coefficient as .
When the linewidth is reduced to 1 kHz, the dependence on

is more rapid. In other words, increasing the backscattering
coefficient has a significant effect on the observed drift for high-
coherence lasers, but a smaller effect for low-coherence lasers.

The reason is that as the increases, the loss also does, and as
explained in relation to Fig. 6, the drift increases more rapidly
with increasing loss for a longer coherence laser.
Modeling also shows that the noise scales proportionally to
, independently of the laser coherence. For loop lengths

shorter than , we also found that the random-walk noise scales
approximately as . Since the FOG signal scales as ,
[6] this result suggests that when , shorter lengths
give an improved signal-to-noise ratio (SNR), both in terms of
bias error and noise. This is a different trend than either in the
shot-noise-limited regime, where there is in fact an optimum
coil length (generally several km), or in the excess-noise-lim-
ited regime, where noise and signal scale with length the same
way and thus the SNR is independent of length.
When , all backscattering-induced errors arise from

the same portion of fiber centered at the loop midpoint. This im-
plies that increasing the loop length will not lead to an increase
in these errors. Instead, both the noise and drift are reduced
due to the increasing propagation loss, while the rotation-in-
duced signal increases as . Therefore, in this regime,
longer coil lengths improve the SNR. While this assertion is
somewhat complicated by the changing modulation frequency,
which affects the backscattering errors in complicated ways as
explained above, it nevertheless remains valid. This is an im-
portant factor for ultimately building inertial navigation-grade
FOGs driven with a laser, which require large scale factors, gen-
erally achieved by increasing the loop length.

V. CONCLUSIONS

We have presented the first quantitative analysis of the effect
of coherent backscattering in the standard, minimum-configu-
ration FOG driven with a light source of arbitrary coherence.
Using analytic and numerical tools, this study points to sev-
eral new important observations. First, the backscattering-in-
duced noise can be made arbitrarily small by choosing either a
very short coherence length, as previously applied with broad-
band light sources, or a coherence length very long compared to
the loop length. This second regime of operation has not been
demonstrated before and has important implications for devel-
oping FOGs with high scale-factor stability. Second, the long-
term drift due to backscattering increases with increasing coher-
ence length, up to an asymptotic value reached approximately
when the coherence length equals the loop length. Even in the
asymptotic range, where it is maximum, the drift is about 100
times smaller than roughly estimated in the past. For high-coher-
ence sources this drift can be reduced by careful control of the
loop coupler and phase modulation frequency. Third, this anal-
ysis points to a new mode of operation, which is to interrogate
the gyro with a laser of modest coherence, namely with a coher-
ence length shorter than the loop length yet significantly longer
than the coherence length of a broadband source. In this regime,
the noise can be below the excess noise of a broadband source,
while the long-term drift approaches the level required for in-
ertial-grade devices. Some techniques can be applied to reduce
this drift further, including frequency modulation of the laser.
Importantly, this performance comes with the overwhelming
and unique advantage of a high scale-factor stability thanks
to the highly stable frequency of a laser. Studies of the next
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most significant source of noise and drift in a laser-driven FOG,
namely polarization non-reciprocities, are needed in order to
complete this prediction.
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