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Abstract: Waveguiding phenomena are investigated in an inverted
opal photonic crystal made of interpenetrating air spheres, coated with
amorphous Ge. Here we focus on the complete gap between the 8th and the
9th band, since a projected band analysis reveals that it is difficult to use the
large lower incomplete gap for guiding purposes. Two kinds of line defects
are analyzed within this photonic structure, with the plane-wave expansion
method. The first one consists of an air cylinder in the Γ−K direction. It
gives rise to a large number of defect modes in the bandgap. Most of these
modes have large field components at the surface. The second defect is an
array of air spheres, also along the Γ−K direction. This is shown to avoid
the surface-like modes and sustain only two modes associated with different
polarizations, in the frequency range of interest. The air mode waveguiding
bandwidth reaches up to 113 nm centered at a wavelength of 1.5μm.
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1. Introduction

Photonic crystals (PC) are periodic dielectric structures [1] which may forbid the propaga-
tion of the electromagnetic waves in a certain frequency range [2-3]. A unique feature of a
waveguide structure in a photonic crystal is its ability to guide light in air. In the last few years,
theoretical and experimental studies have shown that line defects with air in two-dimensional
(2D) dielectric photonic bandgap (PBG) structures can be used as efficient waveguides for
frequencies within the in-plane bandgap [4-5]. However, the electromagnetic waves are not
confined in the direction perpendicular to the plane. This leads to intrinsic radiation loss in the
third dimension. A solution to avoid this out-of-plane radiation is to consider air waveguides in
three-dimensional (3D) PBG materials [6-11]. In particular, air waveguides in lithographically
defined photonic crystals have been considered in [6-10].

In contrast to lithographical techniques, self-assembly methods have been explored as a sim-
ple and inexpensive way to make 3D PBG materials [12-17]. The sample quality of these col-
loidal crystals has dramatically improved in the last few years [18-19]. As a consequence, the
use of these structures may open a route towards the realization of large-scale optical integrated
circuits. Photonic bandgap based waveguides require the incorporation of a line defect within
the 3D structure. Previously, a line defect structure in a 2D slab sandwiched between two opal
structures has been considered by Chutinan and John. Such a structure, however, requires an
accurate alignment between two 3D structures.

Recently, a multi-photon polymerization technique, with the use of a laser confocal micro-
scope, has been successfully demonstrated as a pathway for pattern generation within colloidal
assemblies [20]. This method enables one to create a line defect after the opal structure has
been defined, and thus provides great flexibility in constructing integrated photonic circuits. To
our knowledge, no systematic theoretical studies on the properties of these waveguides have
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Fig. 1. Band structure of interpenetrating air spheres coated with amorphous Ge (n=4.1)
in a fcc lattice. The radius of the air spheres is 0.3645a and the external radius of the
semiconductor shell is 0.409a. A complete bandgap of 12.8%, marked by a yellow region,
exists between the 8th and 9th bands.

been published yet. In this paper, we calculate the bandstructures of these inverse opals pho-
tonic crystals containing linear air defects. Several waveguides geometries are considered and
the air mode waveguiding bandwidth is optimized.

2. Inverted opals band structure

The structure considered in this work is made of interpenetrating air spheres coated with amor-
phous Ge (n=4.1) in a fcc lattice [19]. The radius of the air spheres is 0.3645a and the external
radius of the semiconductor shell is 0.409a, where a is the lattice constant. The volume fraction
of dielectric materials is approximately 16%. The band diagram of this inverted opal photonic
crystal can be found in Fig. 1. Of particular interest for our work is the complete bandgap
between the 8th and 9th bands.

The structure also presents a wide stop band in the Γ−L direction, between the 2 nd and the
3rd band, in the normalized frequency range a/λ = 0.46− 0.56. The size of this stop band is
∼ 20% when measured as a percentage of the center frequency. Reflection using this stop band
has been extensively probed experimentally. We have found however that it is difficult to use
this incomplete gap for waveguiding purposes. The reason is as follows. Writing a waveguide
which could optimally use the mirror effect of this gap would require defining a guiding direc-
tion perpendicular to the Γ−L direction. A highly symmetric example is the Γ−K direction,
along [110]. We define this direction as the z direction. In order to create a guided mode with
a particular kz, the structure needs to have a complete gap at that particular k z point. We there-
fore project the entire band diagram onto the ω − k z plane. Figure 2 shows the projected band
structure of the infinite crystal along the Γ−K direction. The shaded regions correspond to
the frequencies of propagating electromagnetic modes in the inverse opal structure. This figure
clearly shows that there is no transverse bandgap between the 2 nd and the 3rd band for the Γ−K
direction. The same negative result has in fact been reached for all high-symmetry directions of
this fcc structure in this range of frequencies. As an example, the projected band diagram along
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Fig. 2. Projected band structure of the infinite crystal along the Γ−K and Γ−L directions

in the Brillouin zone. The K point is located at a distance (3
√

2
4 )( 2π

a ) away from Γ along

[011]. The L point is located at a distance (
√

3
2 )( 2π

a ) away from Γ along [111]. The shaded
regions correspond to the propagating electromagnetic modes in the inverse opal structure.

the Γ− L direction is also shown in Fig. 2. Thus, the gap between the 2 nd and the 3rd band
cannot be exploited to propagate light through a line defect, whatever the direction chosen for
the waveguide.

In order to guide light in an inverted opal photonic crystal, it is therefore necessary to use the
large complete bandgap of 12.8% between the 8 th and 9th bands, in the normalized frequency
range a/λ = 0.80−0.91. Experimentally, in the two-photon polymerisation technique, writing
waveguides is easiest in any of the directions in the (111) plane, and one of these is the Γ−K
orientation. Thus, line defects in this direction are considered in this work.

3. Cylindrical waveguide

We first consider a cylindrical air waveguide introduced through the inverted opal structure. The
guide is specifically oriented along the Γ−K (i.e. [110]) direction, named the z axis in the rest
of this work. Its axis passes through the point ( 1

2 ,0,0) in a non-primitive unit cell defined by the
orthogonal lattice vectors: −→a1

′ = ( a
2 , a

2 ,0), −→a2
′ = (0,0,a), −→a3

′ = ( a
2 ,− a

2 ,0), with the origin of the
lattice vectors chosen to coincide with the center of a sphere in the opal structure. Therefore, in
this non-primitive basis defining an orthorhombic lattice, the two elementary spheres defining
the fcc structure are located at the points (0,0,0) and ( 1

2 , 1
2 , 1

2 ).
Line-defects modes are analyzed with the plane-wave expansion method, where Maxwell’s

equations are solved in the frequency domain [21]. A supercell with the size 5
√

2
2 a×5a×1

√
2

2 a,
shown in Fig. 3, is used to calculate the dispersion relations of the waveguide modes and ap-
proximately 820 000 plane waves are used in the calculation. The projected bands correspond-
ing to bulk modes are computed using a defect-free supercell. Each supercell contains 50 prim-
itive unit cells. As a consequence, in the case of a perfect crystal, 400 bands appear below the
photonic bandgap.

The band diagram for the waveguides are shown in Fig. 4. The frequency regions of propagat-
ing electromagnetic modes in the three-dimensional photonic crystal are represented as shaded
blue regions on the projected band diagrams. The frequencies of these modes are plotted as a
function of kz, the component of the wavevector along the direction of the linear defect, which
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Fig. 3. Supercell used to calculate the dispersion relations of the waveguide modes. The

size of the supercell is 5
√

2
2 a× 5a× 1

√
2

2 a. The blue regions correspond to the Ge shells,
which lie at the interstitial region between the air spheres of the inverted opal structure.
A cylindrical waveguide of radius R = 0.3a is located at the center of the supercell and is
oriented along the [110] direction represented by the red arrow.
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Fig. 4. Projected band structure for the inverse opal photonic crystal with a linear defect
created by an air cylinder of radius R. The cylinder is along the [110] direction. The peri-

odicity p in this direction is
√

2
2 a. The shaded blue areas indicate the propagating modes

in the perfect three-dimensional photonic crystal. The thick line indicates the band that
possesses a significant fraction of energy in air.
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takes on values between 0 and π/p, where p =
√

2a/2. For waveguides of radius R = 0.25a
and R = 0.30a, the band diagrams are shown in Fig. 4(a) and (b), respectively. The choice of
these particular radii for the waveguides is based on an analogy with a metallic waveguide. In a
metallic waveguide, for a guided mode, the field must vanish exactly at the perfectly reflecting
walls. We therefore chose the radius such that for a frequency inside the complete bandgap,
approximately half a wavelength would fit between the walls. This produces a waveguide ra-
dius varying between 0.28a and 0.31a. By perturbing the photonic crystal with the cylindrical
waveguide, we push several bands into the omnidirectional gap between the 8 th and 9th bands.

It is apparent in Fig. 4(b) that the waveguide of radius of R = 0.30a provides a single mode
(corresponding to the 392th band) with a relatively large group velocity over a substantial region
of Γ−K wavevectors. However this band is intersected by a large number of very flat bands
(e.g. band No. 393, 394, ...).(We note that the band numbers here are specific to our choice of
the computational cell. We retain these numbers for the convenience of description.)

Figure 5 shows, for a cylindrical waveguide of radius R = 0.30a, the energy in the electric
field at the Brillouin zone center for the bands labelled 392,393,394 and 395, respectively.
We plot the energy distribution on a plane perpendicular to the waveguide. The position of
the plane is chosen such that the cross-section cuts through the location of maximal electric
field intensities. The waveguide’s circular cross-section can be seen at the center of each map.
The defect modes are strongly localized near the defect. Only the mode in the band 392 has
a significant fraction of energy inside the air region for every position of z. (As an additional
example, the intensity plot on the plane z =

√
2a/4 is shown in Fig. 6.) For the bands 393, 394,

and 395, the electric field energy is found to be mostly in the high dielectric regions, at the
surface of the waveguide. These modes with large surface states components are undesirable as
they are more susceptible to scattering loss in the presence of disorder.

The surface-like modes are also present in other cylindrical waveguide geometry we con-
sidered. For waveguides of radius R = 0.30a with an axis passing through the point (0,0,0)
or through the point ( 1

4 , 1
4 ,0) in the non-primitive unit cell, it has been observed that a larger

number of bands arise in the photonic bandgap, compared to the case of a waveguide passing
through the point ( 1

2 ,0,0) studied earlier.

(a) band 392, z = 0 (b) band 393, z = 0 (c) band 394, z =
√

2
4 a (d) band 395, z = 0

Fig. 5. Energy in the electric field for the modes at the Brillouin zone center, in the defect
bands inside the bandgap. The gray regions represent Ge. The defect consists of a cylindri-
cal air waveguide of radius R = 0.30a along the [110] direction. For each of these bands, the
plot describes the electric energy distribution on the plane perpendicular to the waveguide,
at the z-coordinate corresponding to the largest electric field intensity. The waveguide’s
circular cross-section can be seen at the center of each map.
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band 392, z =
√

2
4 a

Fig. 6. Energy in the electric field for a mode at the Brillouin zone center for the 392th

band. The gray regions represent Ge. The structure is the same as in Fig. 4(b). Plotted here

is the energy distribution on a plane perpendicular to the waveguide, located at z =
√

2
4 a.

4. Chained spheres waveguide

In general, surface-like modes typically arise in an air defect when the interface cuts through
regions in which the bulk modes in the band right below the gap has a large electric field
intensity [22-24]. Therefore we examine the intensity profile of the mode associated with the 8 th

band in the perfect crystal. For this mode, the high intensity regions are found around ( 1
2 ,0, 1

2)
and (0, 1

2 ,0) in our non-primitive lattice vectors basis. Therefore, in the case of a cylindrical air
waveguide, it is difficult to avoid having the surface of the waveguide to cut through these high
intensity regions. Instead of a cylindrical air waveguide, we consider an array of air spheres
aligned along the [110] direction, with one sphere per non-primitive unit cell. The center of
the sphere is located at ( 1

2 ,0, 1
2 ) in the basis (−→a1

′,−→a2
′,−→a3

′), and coincides with the high intensity
region of the bulk modes. Thus the center of the sphere lies in the plane z =

√
2a/4.

The corresponding dispersion relations are displayed in Fig. 7(a), (b) and (c) for air spheres
of radius R = 0.25a, R = 0.30a and R = 0.45a, respectively. We clearly observe that for this new
defect geometry, the number of modes in the bandgap has decreased significantly. In particular,
the band 392 has now a single intersection, with the band labelled 393.

Figures 8 and 9 refer to a structure containing air spheres of radius R = 0.30a. They show
the intensity profile of the bandgap modes, at the Brillouin zone center. These results should
be compared to those found with the cylindrical air waveguide of radius R = 0.30a in Fig. 5.
The 392th and 393th bands show very similar field patterns for these distinct defect geometries.
The 394th (395th) band intensity distribution in Fig. 8 is analogous to the 395 th (394th) band
intensity distribution in Fig. 5. As in the case of a cylindrical waveguide, we observe that only
the mode corresponding to the 392 th band possesses a significant fraction of energy in air. For
a sphere radius of R = 0.30a, this band appears to be essentially flat over the whole Brillouin
zone. The width of this band, however, is substantially increased when the air sphere radius is
increased to R = 0.45a. As the periodicity in the Γ−K direction is

√
2a
2 , the defect is now an

array of overlapping spheres. The calculation of the photonic bands for this structure, in Fig.
7(c), shows only two bands in the center of the gap. The 392 th band covers a wide range of
frequencies (from 0.836 to 0.901 c/a), i.e. the same order of magnitude as the range covered
with a cylindrical air waveguide of radius R = 0.30a (see Fig. 4(b)). This can be understood by
an examination of the electric field energy distribution in Fig. 10 and 11. The cross-section of
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the air sphere with the plane where the intensity is maximal (i.e. z = 0) has a radius

r =

√
(0.45a)2− (

√
2a
4

)2 = 0.28a, (1)

very close to the radius R = 0.30a of the cylindrical waveguide. This give rise to an identical
intensity distribution for the 392th band and the 393th band of both structures.

Bands 392 and 393 have different polarization properties. The color plots in Fig. 12(a) and
(b) represent the modulus of the electric field at the Brillouin zone center on the same plane
as in Fig. 10 (i.e. z = 0), where the energy in the electric field is maximum. For the 392 th

band, in Fig. 12(a), the electric fields are in the direction of the waveguide. By contrast, for
the 393th band, in Fig. 12(b), the electric fields are completely within the plane. A vector plot
of the in-plane electric field is superimposed. As these two bands are associated to modes with
different polarizations, they can be selectively coupled. For a correct polarization, band 392 can
be considered as covering a broad “single-mode” region.

For band 392, in the case of a linear defect made of an array of air spheres of radius R, the
defect band extends across the entire Brillouin zone, inside the bandgap and exhibit vanish-
ing group velocity at both the center and edge of the Brillouin zone. We plot the waveguiding
bandwidth for band 392 as a function of the air sphere radius R in Fig. 13. The waveguiding
bandwidth reaches its maximum at 113nm centered at a wavelength of 1.5μm for a sphere ra-
dius R = 0.45a = 0.58μm. In that case, the air waveguide mode exhibits a band center group
velocity of approximately 0.22c0, where c0 is the velocity of light in vacuum. It should be noted
that this maximal bandwidth is larger than the optimized single-mode bandwidth of 74nm pre-
dicted in a 2D-3D heterostructure, where a linear defect is written in a 2D PC layer embedded
between two 3D photonic bandgap cladding layers of inverse opal structure [11]. In the 2D-3D
heterostructure, the bandwidth is actually limited by the reduced gap size in the 2D layer. This
is not the case in the present geometry.

Waveguides made of a sequence of coupled resonators have been studied in previous works
with a formalism similar to the tight-binding method in solid-state physics [25]. In the periodic
array of defects, the coupling of neighbouring defects creates a narrow band of states around
the resonance frequency of the single defect. This model, giving rise to a dispersion relation
that can be written as a cosine function, was demonstrated in a diamond structure when a linear
chain of defects was introduced [26]. However, this theory assumes a weak coupling between
the resonators and an interaction limited to the nearest neighbors, which is not the case for
our waveguide made of an array of overlapping air spheres of radius R = 0.45a. Therefore
our system cannot be properly described in terms of a tight-binding model. Instead, the strong
coupling between the defects of the chain gives rise to a large bandwidth for the waveguiding
mode.
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Fig. 7. Projected band structure for the inverse opal photonic crystal with a linear defect
made of an array of air spheres of radius R. The array is along the [110] direction. The peri-

odicity p in this direction is
√

2
2 a. The shaded blue areas indicate the propagating modes in

the perfect three-dimensional photonic crystal. The brown area indicates the region covered
by the band that possesses a significant fraction of energy in air.
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(a) band 392, z = 0 (b) band 393, z = 0 (c) band 394, z = 0

(d) band 395, z =
√

2
4 a (e) band 396, z =

√
2

4 a

Fig. 8. Energy in the electric field for the modes at the Brillouin zone center, in the defect
bands inside the bandgap. The gray regions represent Ge. The defect consists of an array
of air spheres of radius R = 0.30a along the [110] direction. For each of these bands, the
plot describes the electric energy distribution on the plane perpendicular to the waveguide,
at the z-coordinate corresponding to the largest electric field intensity. The center of one of

these spheres can be seen at the center of the maps located at z =
√

2
4 a.

band 392, z =
√

2
4 a

Fig. 9. Energy in the electric field for a mode at the Brillouin zone center for the 392th

band. The gray regions represent Ge. The structure is the same as in Fig. 7(b). Plotted here

is the energy distribution on a plane perpendicular to the waveguide, located at z =
√

2
4 a.

The center of one of the air spheres constituting the line defect is located at the center of
the plot.
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(a) band 392, z = 0 (b) band 393, z = 0

Fig. 10. Energy in the electric field for the modes at the Brillouin zone center, in the defect
bands inside the bandgap. The gray regions represent Ge. The defect consists of an array
of air spheres of radius R = 0.45a along the [110] direction. For each of these bands, the
plot describes the electric energy distribution on the plane perpendicular to the waveguide,
at the z-coordinate corresponding to the largest electric field intensity. The center of one of

these spheres can be seen at the center of the maps located at z =
√

2
4 a.

band 392, z =
√

2
4 a

Fig. 11. Energy in the electric field for a mode at the Brillouin zone center for the 392th

band. The gray regions represent Ge. The structure is the same as in Fig. 7(c). Plotted here

is the energy distribution on a plane perpendicular to the waveguide, located at z =
√

2
4 a.

The center of one of the air spheres constituting the line defect is located at the center of
the plot.
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(a) band 392, z = 0 (b) band 393, z = 0

Min Max

Fig. 12. Electric field patterns of the defect modes at the Brillouin zone center. The color
plots correspond to |E| on the same plane z = 0 as in Fig. 10, in an inverted opal structure in
which an array of air spheres of radius R = 0.45a has been drilled along the [110] direction.
(a) Band 392. The electric fields are completely perpendicular to the plane, i.e. they lie in
the direction of the waveguide. (b) Band 393. The electric fields are completely within the
plane. A vector plot of the in-plane electric field is superimposed.

Fig. 13. Waveguiding bandwidth as a function of air sphere radius, for a defect guide con-
sisting of an array of air spheres along the [110] direction in the inverse opal structure.
Considered here is band 392, centered at a wavelength of 1.5μm.
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5. Conclusion

In this work, we have reported a theoretical analysis on line defects in self-assembled pho-
tonic crystals. Several defect geometries have been considered in order to achieve a structure
with a large single-mode bandwidth. Most of these geometries, and in particular the cylindrical
air waveguides, have been shown to give rise to a large number of surface-like states in the
bandgap. These surface-like modes are inappropriate for optical circuit integration. In order to
avoid these states, the geometry of the line defect has been altered. It has been shown that a
linear chain of defect air spheres in the inverse opal structure gave rise to only two modes of
different polarizations at the center frequency of the bandgap. The structure has been optimized
in order to obtain the maximal waveguiding bandwidth of 113nm centered at a wavelength of
1.5μm.

It is known that the complete gap in inverted opal structures can be quite susceptible to dis-
orders [27]. Nevertheless, this band gap has already been very clearly observed in high-quality
experimental structures [18]. In this design, a significant portion of the waveguide dispersion
curve lies at the center of the gap, which is less susceptible to disorder effects compared with
gap edges.

The proposed structure is potentially amenable to fabrication techniques like multi-photon
polymerisation. Indeed, in our waveguide geometry where the single mode bandwidth is opti-
mized, the air spheres diameter is approximately 1.16μm, which is larger than the wavelength
of 780nm at which the pulsed laser used in the multi-polymerisation process is operating [20].

In crystalline Ge, the imaginary part of the refractive index is 5.67×10−3. That translates in
a propagation distance of approximately 50μm. In the photonic crystal structure, a significant
portion of the power is in air so that the propagation distance could be significantly longer
compared with Ge. The design principle should be applicable to Si inverted opals as well.
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