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Bound states in photonic crystal waveguides and waveguide bends
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We investigate the mechanism for the appearance of bound states in two-dimensional photonic crystal
waveguides and contrast it with the corresponding mechanism for conventional guides. It is shown that the
periodicity of the photonic crystal can give rise to frequency ranges above cutoff where no guided modes exist
in the waveguides. Such mode gaps make possible the creation of bound states in constrictions and in bends.
Bound states are found to correspond to analogous cavity modes and it is shown that their appearance strongly
depends on the lattice geometry and cannot be described in a one-dimensional framework.
[S0163-18298)06331-0

[. INTRODUCTION components, photonic band gdpBG materials are well
suited as building blocks of devices comprising all-optical

Bound states in waveguides, and especially in waveguideircuits}°~1* PBG waveguides, linear defects in PBG mate-
bends, have recently been the subject of widespread theoretals, are capable of guiding light at optical wavelengths
ical and experimental investigation. Goldstone and Jaffavithout appreciable lossé3.Furthermore, it has also been
proved that bends, which behave like local bulges in thedemonstrated that such guides can transmit EM waves effi-
guide, always support bound states in constant cross-secti@iently through sharp cornet$.The question of whether
guantum waveguides under the condition that the wave fundound states exist in PBG waveguide bends arises naturally.
tion vanishes on the boundary. Papers by Cairil>"*deal  In this paper, we study the conditions and the mechanism for
with calculating energies of single and multiple bound stateshe appearance of bound states in such guides. For simplic-
in bent quantum waveguides and comparing them to resultgy we consider only two-dimensional photonic crystals.
from microwave experiments. Much effort has also beemnqowever, the analysis presented here applies also to three-
spent on finding new and calculationally efficient approachegimensional crystals. We present general arguments on PBG
for determining bound-state energies in waveguide b&fids. waveguide band structures, mode gaps, and bound states and
Such research was ultimately prompted by an interest ifjystrate the arguments with specific examples. We find that
semiconductor device miniaturization. Since electronic transppG waveguides, unlike conventional ones, can possess
port properties through such quantum wires are influenceghode gaps. These gaps make it possible for bound states to
by the existence of localized statedhaving a good under- exist in bends and in constrictions even above the cutoff
Standing of bound states in bends is relevant to buildingrequency for gu|ded modes_ It iS a|So Shown that the appear-
small-scale integrated circuits. ance of bound states in bends cannot be described in a purely

There is also considerable current interest in designingne-dimensional framework and that these states are closely
integrated optoelectronic or all-optical circuits. A set of es-re|ated to cavity modes.
sential ComponentS in these circuits are EIGCtromagnetiC The outline of the paper is as follows. In Sec. Il the meth-
waveguides. Traditionally, two main types of guides are usegds of calculation are presented and in Sec. Il PBG
in controlling the linear propagation of electromagnéBid!)  \aveguides are studied. In Sec. IV, we investigate bound

waves: metallic guides for microwaves and dielectric guidesstates in photonic crystal waveguides in both straight and
for optical light. In two-dimensional2D) structures, planar pent waveguides.

symmetry implies that the waveguide modes can have either

TM or TE polarizations.One can then reformulate the prob-

lem for metallic waveguides in terms of a single scalar field.

On the boundary the field amplitude is zero for TM modes Il METHODS OF CALCULATION

and the field derivative vanishes for TE modes. The results The dispersion relations for the PBG waveguides in this

of Ref. 1 thus carry over to electromagnetic waves with TMpaper are calculated by solving Maxwell’'s equation in the

polarization in 2D metallic waveguides as well: Any bulge or frequency domain for given dielectric configuratidns su-

bend will generate a bound state. We note that in the case glercell with periodic boundary conditions is taken as the

a dielectric waveguide with a high dielectric contrast, thecomputational domain. The length of the cell corresponds to

fields are similar to those of a metallic guide, so we expecthe periodicity of the dielectric in the direction of the guide,

that bulges and bends in these waveguides will also generatehereas the width was taken to be sevénalially 12 lattice

localized states in a similar manner. However, since theseonstants. The photonic crystal simulated in this way con-

states can couple to free space modes, they will be decayirtgins parallel, evenly spaced waveguides. We increased the

resonances and not bound states. distance between the guides by taking wider and wider unit
As an alternative to convention@inetallic or dielectri¢  cells until the frequencies obtained for the eigenmodes no
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longer depended on the cell size. In this way we ensure that 0.5
the distance between the guides is sufficient so that modes
localized in the guides do not appreciably couple to each 2 0.4
other through the bulk. Therefore, we obtain the correct fre- 3
quencies for the localized modes associated with an indi-@ £ 08 A
vidual waveguide at each wave vector. g 0.2
The bound states in various PBG waveguide configura- g
tions are studied by solving Maxwell's equations in the time E o
domain. The computational domain used is rectangular and
is bounded by a perfectly matching layer matéfiab mini- 0o B P — e

mize back reflections. Modes with a wide range of frequen-
cies are excited by a dipole source with a Gaussian temporal
profile. The modes that remain after transient ones decay are
either bound states or slowly decaying resonances; they bott
show up as peaks on the time Fourier transform of the field
measured inside the waveguide. The resonances can easil

Wave vector (ka/2r)

0.5 &=

—~ 0.4 «—E
be distinguished from bound states by noting that bound § ¢
states have an essentially infinite quality factor when a large g o3
enough supercell is used. Also, in waveguide configurations,(b) z
resonances occur at frequencies corresponding to zero grou g 02
velocity in the waveguide or in the frequency range corre- E

sponding to guided modes, whereas bound states exist insid 0.1

the mode gaps. The frequencies of all the bound states can b ~ L .

identified by using a pulse short in time. Each bound state 0 0 0.1 0.2 0.3 0.4 0.5

can be studied individually by using a long excitation pulse Wave vector (ky2a/2n)

whose Fourier spectrum is peaked at the bound state fre-

qguency. The electric field configurations shown in this paper FIG. 1. Dispersion relations for the two photonic crystal
are snapshots taken after a long time once every transiem@aveguides. The geometry of the waveguides is shown in the in-

mode has decayed, leaving only a single mode. sets. The gray areas are the projected band structure of the perfect
crystal. The filled circles correspond to even modes and the open

circles correspond to odd modes. The frequencies at the points in-
Ill. GUIDED MODES IN PHOTONIC CRYSTAL dicated are (in units of 2wc/a) A=0.302,B=0.312,C
WAVEGUIDES =0.371,D=0.373, andE=0.400.

Just as the regular arrangement of atoms in a crystal gives . .
rise to band gaps, the periodicity of the spatial dielectricdUeéncyw=0.37x2mc/a, which corresponds to the canoni-
distribution in a photonic crystal may prevent electromag-c@l free-space wavelength for light of 1.56m when a
netic waves of certain frequencies from propagating inside=0.57 um.
the bulk. Because of the periodicity, the modes of the elec- We determine the TM band structures for two different
tromagnetic waves in the crystal can be expanded in Bloc’BG waveguides in order to illustrate their features that are
functions defined by their wave vectdts While in the pho-  different from those in conventional waveguides. The results
tonic band gap there are no solutions to Maxwell’'s equationsire shown in Fig. 1. The horizontal axis is the wave vector in
for an infinite crystal for any redk, one does obtain solu- the direction of the guide, and we show the band structure in
tions with complexk’s. These solutions will only become the reduced Brillouin zone scheme. The gray areas are the
physical if the periodicity of the crystal is broken by intro- projections in the direction perpendicular to the guide of ev-
ducing a defect. ery mode in the band structure of the perfect crystal; These

We consider a square array of parallel, infinitely long highare extended modes in the crystal bulk. The modes inside the
dielectric rods in air. The removal of a row of rods breaks thegap are localized to the row of missing rods.
periodicity in one spatial direction. If the parameters of the In Fig. 1(@ we show the band structure for the guide
crystal are such that there is a complete band gap for wavereated by removing a row of rods in tfi0) direction of the
vectors perpendicular to the rods, then this defect can introerystal, as shown in the inset. We find a single guided mode
duce modes that decay exponentially away from the defedhside the band gap. The electric field of the mode has even
but can still be described by a wave vector pointing along thesymmetry with respect to the mirror plane along the guide
missing row of rods. Such a defect acts like a waveguideaxis. The mode itself bears a close resemblance to the fun-
Waves of the right frequencies can propagate down thelamental mode of a conventional dielectric waveguide: It
guide!’ has a sinusoidal profile inside the guide and decays exponen-

For definiteness, we assume GaAs rods of circular crossally outside.
section, with an index of refraction of 3.4, appropriate at In Fig. 1(b) the waveguide is made by removing three
optical wavelengths. From now on we restrict our analysis tadows of rods in the(11) direction of the crystaksee the
TM modes. The largest TM band gaf®8%) occurs when insed. There are now three guided modes inside the gap that
the rods have a radius=0.181, wherea is the distance can again be classified according to their symmetry with re-
between two neighboring rodé.The gap is centered at fre- spect to the mirror plane along the guide axis. The first and
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the third modes are even, whereas the second mode is odd. 0.5¢

It is generally true that the number of bands inside the
band gap equals the number of rows of rods removed when
creating the guide. This can be understood from a simple
counting of the states in the crystal. If we decrease the di- )
electric constant of a single rod in a perfect crystal, we pull
up one defect state from the dielectric bafAd® If we repeat
this for a whole row of rods, we pull ul localized states in
an NX N crystal: one state at ead¢hpoint for k along the
guide. Analogously, wheM rows of rods are removed, we = e ]
pull up M guided modes at eadhfrom the dielectric band. 0 0.1 0.2 0.3 0.4 0.5
Nevertheless, at sonil€s the modes may have frequencies Wave vector (kv2a/2r)
outside the band gap and the entire band may not be con-
tained in the gap, as is the case, for instance, for the lowest
guided mode band in Fig.(4).

For smallk, the dispersion relations behave like conven-
tional guided modes in a metallic waveguide with a cutoff
o — ooy | K| 2. For these wave vectors, the wavelengths of
the light is much larger than the variation in the dielectric
function, so the light “sees” only an average uniform dielec-
tric in the direction of the guide. However, close to the
boundary of the Brillouin zone the bands level off. Because
of the discrete translational symmetry of the crystal, the dis-
persion relations are repeated outside the first Brillouin zone;
consequently, each band is restricted to a certain frequency
range. The frequencies of the modes do not grow indefinitely Wave vector (kv2a/2m)
with increasinglk|, as in the case of conventional dielectric

and metallic waveguides. This means that there may arise FIG. 2. Dispersion relations for the two PBG waveguides shown

situations where a complete frequency gap will exist beldn the insets. The gray areas are the projected band structure of the
rfect crystal. The filled circles correspond to even modes and the

tween the guided modes themselves. We term this frequen@’a irei 4 1o odd mod
range amode gap. pen circles correspona to o moaes.

Such mode gaps do exist for the waveguide in F{g):1a cause bound states can exist only below the cutoff frequency

smzll gomdplege gap betv_vr(etig (tjhg erst and secfond guide]q)r guided modes. If we view the guide with a bulge as three
mode bands, between pol nab. A larger gap for even waveguide sections, two semi-infinite sections and one of

symmetry modes can be seen between pdnasidE. In the finite length, the above requirement translates in terms of the

Ealse sf;]own mﬁﬁg.éa), the_rde ('js alsdo a frequendcydran%e, dispersion relations for the two types of waveguide sections
elow the cutofl, with no guided modes or extended Moaes, s fo|jows: The existence of bound states requires the exis-
between point andB.

. tence of guided modes for the finite guide section within the

In the_Appendix we present a group-theoretical analys'?requency range where no guided modes exist in the semi-
on the origins and on the presence and absence of mode 9aRfinite section

in PBG _waveguides. The arguments presgnted can facilitate As in conventional guides, it is possible to find bound
the design of waveguide configurations with suitable mOdestates in photonic crystal waveguides with a bulge as well,

0.4

0.3

0.2

Frequency (wa/2nc)

0.1

Frequency (wa/2rc)

9aps. except that we have the additional restriction that the state lie
inside the band gap. If the bottom of the first guided mode is
IV. BOUND STATES IN PHOTONIC CRYSTAL higher in frequency that the lowest frequency of the band
WAVEGUIDES gap, bound states can be created by increasing the width of

éhe guide by, for instance, removing another row of rods in
fne section of the guide. However, in PBG waveguides, one
%so has an unconventional choice: We can look for a state in
t

In this section we investigate how the existence of mod
gaps affect the bound-state spectrum. As in convention
waveguides, one can try to create a bound states in a PB .
waveguide in two different ways: by altering either the width € 9apsbetweerthe guided modes. As long as a part or all

or the curvature of the guide. First we consider what happengf a guideq mode fqr.t_he finite section falls into th_e qu(_a
if only the guide width changes. gap, there is a possibility that bound states can exist within

that frequency range. We illustrate this point in the follow-
ing.

A guide with a mode gap for the rectangular array of rods

In a metallic waveguide, a wave packet trapped in a conean be formed by taking out four rows of rods in ttil)
striction has a larger transverse momentum than any guidedirection of the lattice. The band structure for the guide is
mode, so its frequency will be higher than the cutoff fre-shown in Fig. 2a). We find four guided modes inside the
quency(if the cutoff exist3. Such a state would decay into gap. Because of the symmetry of the dielectric function of
open channels in the guide. Therefore, to create a bound statee guide, the modes can again be classified as even or odd
in a metal guide, one has to put a bulge into the guide bewith respect to a glide plane operation consisting of a trans-

A. Bound states in straight guides
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Frequency (wa/2rc)

Frequency (wa/2rc)

0.1 0.15 0.2 0.25 0.3 - < o e
radius (r/a) 0 0.1 0.2 0.3 0.4 0.5

Wave vector (kvza/2n)

FIG. 3. Range of frequenciefblack shaded argaor which
bound states are allowed as a function of the radius of the rods. FIG. 4. Superimposed dispersion relations for the two guides in
Horizontally hatched area, frequency range of the mode gap for th&ig. 2 when the radius of the rodsiis=0.12a. Black line, guided
guide in Fig. 2a); vertically hatched area, frequency range coveredmodes for the wider guide, gray line, guided mode for the narrow
by the guided mode at the guide in Figb® black shaded area, guide. Filled circles correspond to even modes and open circles
overlap of the two frequency ranges. The gray areas are the pre@orrespond to odd modes. The gray areas are the projected band
jected band structure of the perfect crystal. structure of the perfect crystal.

lation by a/+/2 parallel to the guide axis and of a reflection ertheless,. It is a bona fide .bqund state.whose coun.terpart
would be impossible to obtain in conventional waveguides.

across the axis. the filled circles in the figure correspond to
even modes and the open circles to odd modes. The upper

two bands, having different symmetries, do cross. The two B. Bends in waveguides
odd modes repel each other, creating a mode gap #0mM | et us now turn our attention to bends in photonic crystal
=0.390x2mc/a to 0.417<2mc/a. waveguides. Like straight waveguides with a bulge, bent

In order to emphasize the contrast between PBG and cofvaveguides can also be viewed as one finite and two semi-
ventional waveguides, we use a narrow constriction as thinfinite waveguide sections of different wave vectors and
finite section to form a bound state: the guide in th4)  dispersion relations joined togethér.In analogy to the
direction consisting of only one missing row of rods. Figurestraight waveguide, we can create a bound state in a bend by
2(b) displays the band structure of this guide. The singlgoining three sections, the two semi-infinite sections having a
mode in the gap is even with respect to the mirror plane anehode gap and the finite section having a guided mode in that
covers a frequency range from=0.384x 2zrc/a to 0.388  mode gap. As an example, we show a 180° bend in Fig. 6,
X 2mcla where each of the three sections is identical to the three

For the rod radius used so far=£0.18) the mode gap Sections in Fig. 5. We indeed find a bound state in the wave-
and the guided mode do not overlap. However, we can tunguide bend, aiw=0.411xX2mc/a. Note that the localized
r so that the guided mode of the narrow guide falls inside theélectric field of this mode is nearly the same as that in Fig. 5.
mode gap of the wide guide. Figure 3 shows the frequency We again emphasize that in a metallic waveguide with
range of the mode gafhorizontal hatch and that of the this bend configuration a state inside such a narrow bend
guided mode(vertical hatch as a function of the radius of Section would have a higher transverse momentum than the
the rods. In the black shaded area the two frequency rang&west gmded mode of the semi-infinite section. This state
overlap. The optimal radius is found to be=0.12a for the  then would decay by coupling into guided modes. This does
creation of bound states. Figure 4 shows the two band strudot happen in the PBG case, even though the finite section is
tures at this value of superimposed on one another. Theroughly two and a half times narrower than the semi-infinite
entire guided mode band of the guide chosen as the constrigections. The bound state also lies closer to the guided modes
tion falls inside the mode gap, thereby enabling the creation
of a bound state in the constriction.

By choosing a configuration such that the constriction has
length 3y/2a, we indeed find a bound state at=0.411
X 2rc/a. The electric field of the mode is displayed in Fig.
5. We note that, in general, a dielectric defect in a metallic
waveguide gives rise to a completely different field distribu-
tion for the defect mode. In that case, most of the field lies
inside the high dielectric region, whereas in our case most of _;7—4
the field is confined to the inside of the narrow guide section.

Since the mode is close in frequency to the mode gap edge, FIG. 5. Electric field for the bound state @t=0.411x 2#c/a in
the decay constant is small (xk=0.278) (Ref. 19 and the  a constriction of length 8. Most of the field power is concentrated
electric field decays slowly in the semi-infinite section. Nev-in the constriction itself. White circles indicate the dielectric rods.

ooy
-
-
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0.45

°©
N

0.35}

Frequency (wa/2rc)

0 0.05 0.1 0.156 0.2 0.25 0.3 0.35 0.4
Wave vector (ka/2m)

FIG. 7. Superposition of two band structures inside the photonic
band gap. Black line, guided mode for the guide in th®) direc-
tion with one row of rods removed; gray line, guided mode for the
guide in the(1,) direction with one row of rods removed, gray
area, extended modes in the crystal.

modes. In a metallic waveguide the boundary conditions for
a TM bound state ar&=0 at the guide boundaries. The
bound-state frequencies are determined by matching the de-
caying solution outside the bend to the field inside the bend.
-MAX 0 MAX By closing off the bend section, we require that the field be

FIG. 6. Electric field for the bound state@t=0.411xX 27c/a in zero at the ends of the bend section, so the frequencies of the
the 180° bend. White circles indicate the dielectric rods.

w=0.322 2rc/a o=0.322 2rc/ a

[e]

than to the bulk modes in frequency, so the decay constant g
for the state is smaller in the guide that in the bulk. This
implies that, from an experimental point of view, coupling
into this bound state would be easier through the guide than
through the bulk.

In order to investigate further the mechanism for the ap-
pearance of bound states in bends, we need a configuration
that allows for a number of bound states to exist. Such a
configuration preferably would consist of a finite section,
whose guided mode covers most of the bulk gap, and of two @
semi-infinite sections, each possessing a guided mode band
with a narrow bandwidth. We create one such configuration
by removing one row of rods from the square array in the
(10) and (11) directions, respectively. The guides and their
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would not exist in analogous conventional waveguide struc-
tures, where there can only be a lower cutoff.

These bound states resemble cavity modes. Indeed, after
removing the semi-infinite guide sections on both sides of
the bend, we obtain similar eigenmodes at frequencies al- “MAX 0 MAX
most identical to the bound-state frequencies. These modes F|G. 8. Left panels, electric fields and frequencies of the three
are shown in the right panels of Fig. 8. bound state inside the gap for the bend with length of the bend

We present two arguments to explain the close corresporsectionL = 3a; right panels, electric fields and frequencies of the
dence between bound states in PBG guides and cavityorresponding cavity modes.

(o]

band structures at=0.18 are shown in Fig. 7 superim- o ooe
posed on one another. The dispersion relations indeed satisfy " . o
our requirements. o o 0o0o0
As the lengthL (indicated by the arrow in the ingetf the o o0 o
bend section is changed, we observe bound states of different w=0.404 2rc/a ®=0.403 2nc/a
frequencies. Wheh. =3a, we find three bound states, two |EEEEEEEE o 000000000000
even and one odd mode with respect to the mirror plane. The i . N T
dielectric function and the electric field for these states is [ e o e & ° 00000000000 O
shown in the left panels of Fig. 8. We note that the highest F3C] 0.0 ° a o ©o0o 06 °o °.° %900
B o O (o] O 0 0 O O O O O
fre_quency mode is ab_ov_e _the upper cut(_)ff frequency of the [ 3 . ) coo ™ ® oo
guided mode of the infinite guide section. Such a mode [ o o o 00000 00000
o (o] o OO0 O0O0Oo O O0O0O0O
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®=0375 2nc/a ®=0.375 2nc/a bound state, in the bend corner, corresponding to the cavity
mode for one missing rod in an otherwise perfect crystal.
Yet, instead we find two bound states, neither of which is
localized in the corner. One of the states is even and the
other one is odd with respect to the mirror plane, as shown in
. el the left panels of Fig. 9. Both states are localized at the two
000000000 vacancy sites/2a away from the corner.
This anomalous behavior is due to the fact that the fre-
I '332” - quency of the mode for the single rod cavity ds=0.385
5o o Ne - - - X 27rcl/a, which falls in the guided range of the semi-infinite
b et ) sections of th(_e gqidg{.‘l’his is reasc_)nable because this cavity
ot ofo qjo*o & % mode locally is similar to the guided mode for wavelength
C§ fessed § \=2y2a or for k= mr/\2a.) This cavity mode couples with
0000000000000 the guided modes and it shows up as a resonance in the bend
corner.

The two bound states instead correspond to the coupled
cavity modes shown in the right panels of Fig. 9. The cavity
is composed of two vacancies, with their centers separated

- by two lattice constants. As pointed out earlier, each vacancy
FIG. 9. Left panels, electric fields and frequencies of the twoby itself supports a cavity mode ab=0.385x<2wc/a,
bound state inside the gap for the 90° bend; right panels, electrigyhich would lie in the guided range of the infinite sections of
fields and frequencies of the corresponding cavity modes. the guide. However, since the vacancies are in close proxim-
i ) i ity to each other, there is a finite coupling between them,
cavity modes may differ considerably from those of bound, hich in turn splits the other wise degenerate levels into an
s_tates. In the case_of photonic cr_ystals, zero boundary condiyq and an even bound state, with frequencies that respec-
tions are not required at the guide edges because there g{gq|y ta)| just below and just above the guided mode fre-
exponennally decaym_g solutions in the crystal bulk. Thus th uency range. Such unconventional bound states demon-
mode-r_natc_hlng_reqwremept at the end_s of the open beng ate “that bound-state creation in PBG waveguide bends
(decaying field into the guidedoes not differ greatly from 5nn6¢ always be described in a one-dimensional framework

tEe Eo?gdary condition for a cavity modgecaying field into 5 they can strongly depend on dielectric function.
the bulk.

Another reason for the small shift in the frequencies when
the waveguide is closed off is the following. To calculate the
TM modes of a 2D photonic crystal structure with dielectric ~ We have shown that the periodicity of the photonic crys-
function e(r), one can solve the following eigenvalue equa-tal waveguide gives rise to mode gaps between different
tion for the scalar electric fiel&(r): guided modes. Such mode gaps make it possible to create

bound states in a waveguide with a constriction and in bends.
Bound states in PBG bends closely correspond to cavity
P w? modes. We have also observed that the existence of certain
- QJF Py E(r):g e(r)E(r) (1) bound states can critically depend on the geometry of the
bend in question and cannot always be predicted using argu-
ments based on one-dimensional models.

O 00000000000 O

V. SUMMARY

by minimizing the energy functional
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. . . APPENDIX
If the waveguides are open, the soluti&r) is small

outside the bend section since the bound states decay expo-In this part of the paper we demonstrate how it is possible
nentially into the guide. Changing(r) in that part of the to give a simple explanation of the main qualitative and
guide by closing off the bend section then causes only guantitative characteristics of the PBG waveguide dispersion
small perturbation in the quantity in the numerator, so therelations, including the appearance of mode gaps. We show
frequencies change only minimally. that the different types of mode gaps in band structures seen
For shorter bend sections, we find the following boundearlier arise from simple symmetries of the dielectric func-
states: forlL=2a, »w=0.330x2wc/a (even andw=0.379 tion. The following group-theoretical analysis allows one to
X 2mcla (odd); for L=a, w=0.344x2wc/a (even, all cor-  design waveguides with suitable mode gaps easily.
responding to cavity modefhe fields are not shownin As we have seen, photonic crystal guided mode fields
analogy, we might expect the 90° benid=£0) to have one resemble modes in conventional waveguides. So, in order to
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FIG. 10. Left panels, dispersion relations calculated from symmetrizing a set of basis functions for the symmetr.giidieg

periodicityd and the relative widtly used are shown on each of the graphs. Right panels, band structures for the PBG waveguides displayed

in the insets. The gray areas are the projected band structure of the perfect crystal. Black lines, even modes; gray lines, odd modes.

find the band structure for PBG guides, we start out with thewith boundary condition€E(x,y)=0 aty= *b/2. Because
exactly solvable case of TM modes in a straight hollow two-of the periodicity in thex direction, we can classify the

dimensional metallic waveguide. First we consider a metalliomodes by their wave vectdr= (Zw/d)ﬁi. One possible set

waveguide of widthb, on which we have imposed an artifi-
cial periodicityd. For TM modes, Maxwell's equations for

the electric fieldE=E(x,y)e'! yield

P

ax? oy

2

E(x,y>=% E(x.Y), (A1)

of basis functions for thisk is {e?(*0™X/d sifma(y/b
+3)1, with 1=0,+1,+2,... andm=1,2,3,.... Each func-
tion in the set corresponds to an eigenvalue with
w=(2mc/d) V(I +k)2+m?/4v?, wherev=b/d is the rela-
tive width of the waveguide.

The dispersion relations for the metallic waveguide are
altered in two ways in PBG guides. First, the bands that are
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FIG. 11. Left panels, dispersion relations calculated from symmetrizing a set of basis functions for the nonsymmetty’ gidep
periodicityd and the relative widtly used are shown on each of the graphs. Right panels, band structures for the PBG waveguides displayed
in the insets. The gray areas are the projected band structure of the perfect crystal. Black lines, even modes; gray lines, odd modes.

outside the first Brillouin zone fold back because the periodthis way the degeneracy of the modesXais removed and
icity is no longer artificial. Second, bands crossing may repethe level splitting creates mode gaps at the Brillouin zone
each other when continuous translational symmetry is lost asdge.

the metallic boundaries are replaced by the PBG material. The left panels of Fig. 10 show the band structures calcu-
Yet discrete translational symmetry is always retained, atated from symmetrizing the basis function set, with the ac-
well as symmetry under a certain point gro@pwhich de- tual dispersion relations for three PBG guides to the right of

pends on the dielectric function of the guide. each plot. The periodicitg and the relative widtly used in
First, let us consider guides that are invariant un@er the three calculations are indicated on the plots. The black
={E,oy,0y,l}. E here is the identity operatots, ando,  lines denote even modes, and the gray lines denote odd ones.

are reflections across thxeand they axes, respectively, and Having taken into account the fact that degenerate modes
is inversion through the originSuch are the guides in Fig. repel each other, a remarkable similarity can be seen between
1.) Since the periodicity is only in the direction, the irre-  the corresponding band structures in the frequency range of
ducible Brillouin zone is a line fronk’(k=0) throughA(0  the band gap.
<12<%) to X(~k= 1). For A, the point group iE, o}, SO In this work we also investigated another type of guide,
the guided modes can be divided into ones that are even &hown in Fig. 8a). This guide is invariant under a different
odd undero, . At both of the high symmetry point§ andX ~ group of symmetry operationsG={E {oy|f}.{oy|f},I},
the point group is justG, which has four irreducible one wheref is the fractional translation equal t2X. Because
dimensional representations. the group is now nonsymmorphic, the point group size
Keeping the symmetry under, in mind, we choose the doubles atX and we obtain five irreducible representations.
unit cell such that the centers of the rods at the guide edg€he degenerate pairs of the basis functionX atways be-
are atx=0. In vacuum, a pair of degenerate modesXat long to the same two-dimensional irreducible representation.
consists of an even and an odd mode ungerThey always This representation is compatible with the sum of an even
have the same symmetry undey. The odd mode has a and an odd representation aloAgThe essential degeneracy
node atx=0, whereas the even one has a maximum thereat X is due to the honsymmorphicity of the symmetry group
Since in the PBG guide the even mode has a higher filand is not influenced by the specific features of the dielectric
factor” than the odd one, it must have a lower frequency. Infunction; therefore, no mode gaps open up at the Brillouin
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zone edge. However, because the symmetries of individudunction set in Fig. 11. The two guides examined are ones
bands have also changed, some bands that were allowed t¢ceated by removing two and four rows of rods in {id)
cross in the case of the symmorphic group will now repelcrystal direction, respectively, as shown in the insets. The

and this effect produces new mode gaps.

periodicity d and the relative widtlhy used are indicated on

We compare two PBG guide band structures with the disthe plots. As expected, mode gaps open up solely when
persion relations calculated from symmetrizing the basidbands of the same symmetry repel.
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