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Bound states in photonic crystal waveguides and waveguide bends

Attila Mekis, Shanhui Fan, and J. D. Joannopoulos
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 17 March 1998!

We investigate the mechanism for the appearance of bound states in two-dimensional photonic crystal
waveguides and contrast it with the corresponding mechanism for conventional guides. It is shown that the
periodicity of the photonic crystal can give rise to frequency ranges above cutoff where no guided modes exist
in the waveguides. Such mode gaps make possible the creation of bound states in constrictions and in bends.
Bound states are found to correspond to analogous cavity modes and it is shown that their appearance strongly
depends on the lattice geometry and cannot be described in a one-dimensional framework.
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I. INTRODUCTION

Bound states in waveguides, and especially in wavegu
bends, have recently been the subject of widespread the
ical and experimental investigation. Goldstone and Ja
proved1 that bends, which behave like local bulges in t
guide, always support bound states in constant cross-se
quantum waveguides under the condition that the wave fu
tion vanishes on the boundary. Papers by Cariniet al.2–4 deal
with calculating energies of single and multiple bound sta
in bent quantum waveguides and comparing them to res
from microwave experiments. Much effort has also be
spent on finding new and calculationally efficient approac
for determining bound-state energies in waveguide bend5,6

Such research was ultimately prompted by an interes
semiconductor device miniaturization. Since electronic tra
port properties through such quantum wires are influen
by the existence of localized states,7,8 having a good under
standing of bound states in bends is relevant to build
small-scale integrated circuits.

There is also considerable current interest in design
integrated optoelectronic or all-optical circuits. A set of e
sential components in these circuits are electromagn
waveguides. Traditionally, two main types of guides are u
in controlling the linear propagation of electromagnetic~EM!
waves: metallic guides for microwaves and dielectric guid
for optical light. In two-dimensional~2D! structures, planar
symmetry implies that the waveguide modes can have ei
TM or TE polarizations.9 One can then reformulate the pro
lem for metallic waveguides in terms of a single scalar fie
On the boundary the field amplitude is zero for TM mod
and the field derivative vanishes for TE modes. The res
of Ref. 1 thus carry over to electromagnetic waves with T
polarization in 2D metallic waveguides as well: Any bulge
bend will generate a bound state. We note that in the cas
a dielectric waveguide with a high dielectric contrast, t
fields are similar to those of a metallic guide, so we exp
that bulges and bends in these waveguides will also gene
localized states in a similar manner. However, since th
states can couple to free space modes, they will be deca
resonances and not bound states.

As an alternative to conventional~metallic or dielectric!
PRB 580163-1829/98/58~8!/4809~9!/$15.00
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components, photonic band gap~PBG! materials are well
suited as building blocks of devices comprising all-optic
circuits.10–14 PBG waveguides, linear defects in PBG ma
rials, are capable of guiding light at optical wavelengt
without appreciable losses.13 Furthermore, it has also bee
demonstrated that such guides can transmit EM waves
ciently through sharp corners.14 The question of whethe
bound states exist in PBG waveguide bends arises natur
In this paper, we study the conditions and the mechanism
the appearance of bound states in such guides. For sim
ity, we consider only two-dimensional photonic crysta
However, the analysis presented here applies also to th
dimensional crystals. We present general arguments on P
waveguide band structures, mode gaps, and bound state
illustrate the arguments with specific examples. We find t
PBG waveguides, unlike conventional ones, can poss
mode gaps. These gaps make it possible for bound state
exist in bends and in constrictions even above the cu
frequency for guided modes. It is also shown that the app
ance of bound states in bends cannot be described in a p
one-dimensional framework and that these states are clo
related to cavity modes.

The outline of the paper is as follows. In Sec. II the me
ods of calculation are presented and in Sec. III PB
waveguides are studied. In Sec. IV, we investigate bou
states in photonic crystal waveguides in both straight a
bent waveguides.

II. METHODS OF CALCULATION

The dispersion relations for the PBG waveguides in t
paper are calculated by solving Maxwell’s equation in t
frequency domain for given dielectric configurations.15 A su-
percell with periodic boundary conditions is taken as t
computational domain. The length of the cell corresponds
the periodicity of the dielectric in the direction of the guid
whereas the width was taken to be several~usually 12! lattice
constants. The photonic crystal simulated in this way c
tains parallel, evenly spaced waveguides. We increased
distance between the guides by taking wider and wider u
cells until the frequencies obtained for the eigenmodes
4809 © 1998 The American Physical Society
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longer depended on the cell size. In this way we ensure
the distance between the guides is sufficient so that mo
localized in the guides do not appreciably couple to e
other through the bulk. Therefore, we obtain the correct
quencies for the localized modes associated with an i
vidual waveguide at each wave vector.

The bound states in various PBG waveguide configu
tions are studied by solving Maxwell’s equations in the tim
domain. The computational domain used is rectangular
is bounded by a perfectly matching layer material16 to mini-
mize back reflections. Modes with a wide range of frequ
cies are excited by a dipole source with a Gaussian temp
profile. The modes that remain after transient ones decay
either bound states or slowly decaying resonances; they
show up as peaks on the time Fourier transform of the fi
measured inside the waveguide. The resonances can e
be distinguished from bound states by noting that bou
states have an essentially infinite quality factor when a la
enough supercell is used. Also, in waveguide configuratio
resonances occur at frequencies corresponding to zero g
velocity in the waveguide or in the frequency range cor
sponding to guided modes, whereas bound states exist in
the mode gaps. The frequencies of all the bound states ca
identified by using a pulse short in time. Each bound st
can be studied individually by using a long excitation pu
whose Fourier spectrum is peaked at the bound state
quency. The electric field configurations shown in this pa
are snapshots taken after a long time once every trans
mode has decayed, leaving only a single mode.

III. GUIDED MODES IN PHOTONIC CRYSTAL
WAVEGUIDES

Just as the regular arrangement of atoms in a crystal g
rise to band gaps, the periodicity of the spatial dielec
distribution in a photonic crystal may prevent electroma
netic waves of certain frequencies from propagating ins
the bulk. Because of the periodicity, the modes of the e
tromagnetic waves in the crystal can be expanded in Bl
functions defined by their wave vectorsk. While in the pho-
tonic band gap there are no solutions to Maxwell’s equati
for an infinite crystal for any realk, one does obtain solu
tions with complexk’s. These solutions will only becom
physical if the periodicity of the crystal is broken by intro
ducing a defect.

We consider a square array of parallel, infinitely long hi
dielectric rods in air. The removal of a row of rods breaks
periodicity in one spatial direction. If the parameters of t
crystal are such that there is a complete band gap for w
vectors perpendicular to the rods, then this defect can in
duce modes that decay exponentially away from the de
but can still be described by a wave vector pointing along
missing row of rods. Such a defect acts like a wavegui
Waves of the right frequencies can propagate down
guide.17

For definiteness, we assume GaAs rods of circular cr
section, with an index of refraction of 3.4, appropriate
optical wavelengths. From now on we restrict our analysis
TM modes. The largest TM band gaps~38%! occurs when
the rods have a radiusr 50.18a, where a is the distance
between two neighboring rods.17 The gap is centered at fre
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quencyv50.3732pc/a, which corresponds to the canon
cal free-space wavelength for light of 1.55mm when a
50.57 mm.

We determine the TM band structures for two differe
PBG waveguides in order to illustrate their features that
different from those in conventional waveguides. The resu
are shown in Fig. 1. The horizontal axis is the wave vecto
the direction of the guide, and we show the band structur
the reduced Brillouin zone scheme. The gray areas are
projections in the direction perpendicular to the guide of e
ery mode in the band structure of the perfect crystal; Th
are extended modes in the crystal bulk. The modes inside
gap are localized to the row of missing rods.

In Fig. 1~a! we show the band structure for the guid
created by removing a row of rods in the~10! direction of the
crystal, as shown in the inset. We find a single guided m
inside the band gap. The electric field of the mode has e
symmetry with respect to the mirror plane along the gu
axis. The mode itself bears a close resemblance to the
damental mode of a conventional dielectric waveguide
has a sinusoidal profile inside the guide and decays expo
tially outside.

In Fig. 1~b! the waveguide is made by removing thre
rows of rods in the~11! direction of the crystal~see the
inset!. There are now three guided modes inside the gap
can again be classified according to their symmetry with
spect to the mirror plane along the guide axis. The first a

FIG. 1. Dispersion relations for the two photonic cryst
waveguides. The geometry of the waveguides is shown in the
sets. The gray areas are the projected band structure of the pe
crystal. The filled circles correspond to even modes and the o
circles correspond to odd modes. The frequencies at the point
dicated are ~in units of 2pc/a) A50.302, B50.312, C
50.371, D50.373, andE50.400.
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the third modes are even, whereas the second mode is
It is generally true that the number of bands inside

band gap equals the number of rows of rods removed w
creating the guide. This can be understood from a sim
counting of the states in the crystal. If we decrease the
electric constant of a single rod in a perfect crystal, we p
up one defect state from the dielectric band.17,18 If we repeat
this for a whole row of rods, we pull upN localized states in
an N3N crystal: one state at eachk point for k along the
guide. Analogously, whenM rows of rods are removed, w
pull up M guided modes at eachk from the dielectric band.
Nevertheless, at somek’s the modes may have frequenci
outside the band gap and the entire band may not be
tained in the gap, as is the case, for instance, for the low
guided mode band in Fig. 1~b!.

For smallk, the dispersion relations behave like conve
tional guided modes in a metallic waveguide with a cut
v2vcutoff}uku2. For these wave vectors, the wavelengths
the light is much larger than the variation in the dielect
function, so the light ‘‘sees’’ only an average uniform diele
tric in the direction of the guide. However, close to t
boundary of the Brillouin zone the bands level off. Becau
of the discrete translational symmetry of the crystal, the d
persion relations are repeated outside the first Brillouin zo
consequently, each band is restricted to a certain freque
range. The frequencies of the modes do not grow indefini
with increasinguku, as in the case of conventional dielectr
and metallic waveguides. This means that there may a
situations where a complete frequency gap will exist
tween the guided modes themselves. We term this freque
range amode gap.

Such mode gaps do exist for the waveguide in Fig. 1~b!: a
small complete gap between the first and second gu
mode bands, between pointsC andD. A larger gap for even
symmetry modes can be seen between pointsC andE. In the
case shown in Fig. 1~a!, there is also a frequency rang
below the cutoff, with no guided modes or extended mod
between pointsA andB.

In the Appendix we present a group-theoretical analy
on the origins and on the presence and absence of mode
in PBG waveguides. The arguments presented can facil
the design of waveguide configurations with suitable mo
gaps.

IV. BOUND STATES IN PHOTONIC CRYSTAL
WAVEGUIDES

In this section we investigate how the existence of mo
gaps affect the bound-state spectrum. As in conventio
waveguides, one can try to create a bound states in a P
waveguide in two different ways: by altering either the wid
or the curvature of the guide. First we consider what happ
if only the guide width changes.

A. Bound states in straight guides

In a metallic waveguide, a wave packet trapped in a c
striction has a larger transverse momentum than any gu
mode, so its frequency will be higher than the cutoff fr
quency~if the cutoff exists!. Such a state would decay int
open channels in the guide. Therefore, to create a bound
in a metal guide, one has to put a bulge into the guide
d.
e
n

le
i-
ll

n-
st

-
f
f

e
-

e;
cy
ly

se
-
cy

d

s,

is
aps
te
e

e
al
G

ns

-
ed
-

ate
e-

cause bound states can exist only below the cutoff freque
for guided modes. If we view the guide with a bulge as thr
waveguide sections, two semi-infinite sections and one
finite length, the above requirement translates in terms of
dispersion relations for the two types of waveguide secti
as follows: The existence of bound states requires the e
tence of guided modes for the finite guide section within
frequency range where no guided modes exist in the se
infinite section.

As in conventional guides, it is possible to find boun
states in photonic crystal waveguides with a bulge as w
except that we have the additional restriction that the state
inside the band gap. If the bottom of the first guided mode
higher in frequency that the lowest frequency of the ba
gap, bound states can be created by increasing the widt
the guide by, for instance, removing another row of rods
one section of the guide. However, in PBG waveguides,
also has an unconventional choice: We can look for a stat
the gapsbetweenthe guided modes. As long as a part or
of a guided mode for the finite section falls into the mo
gap, there is a possibility that bound states can exist wit
that frequency range. We illustrate this point in the follow
ing.

A guide with a mode gap for the rectangular array of ro
can be formed by taking out four rows of rods in the~11!
direction of the lattice. The band structure for the guide
shown in Fig. 2~a!. We find four guided modes inside th
gap. Because of the symmetry of the dielectric function
the guide, the modes can again be classified as even or
with respect to a glide plane operation consisting of a tra

FIG. 2. Dispersion relations for the two PBG waveguides sho
in the insets. The gray areas are the projected band structure o
perfect crystal. The filled circles correspond to even modes and
open circles correspond to odd modes.
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4812 PRB 58ATTILA MEKIS, SHANHUI FAN, AND J. D. JOANNOPOULOS
lation by a/A2 parallel to the guide axis and of a reflectio
across the axis. the filled circles in the figure correspond
even modes and the open circles to odd modes. The u
two bands, having different symmetries, do cross. The
odd modes repel each other, creating a mode gap fromv
50.39032pc/a to 0.41732pc/a.

In order to emphasize the contrast between PBG and
ventional waveguides, we use a narrow constriction as
finite section to form a bound state: the guide in the~11!
direction consisting of only one missing row of rods. Figu
2~b! displays the band structure of this guide. The sin
mode in the gap is even with respect to the mirror plane
covers a frequency range fromv50.38432pc/a to 0.388
32pc/a.

For the rod radius used so far (r 50.18a) the mode gap
and the guided mode do not overlap. However, we can t
r so that the guided mode of the narrow guide falls inside
mode gap of the wide guide. Figure 3 shows the freque
range of the mode gap~horizontal hatch! and that of the
guided mode~vertical hatch! as a function of the radius o
the rods. In the black shaded area the two frequency ran
overlap. The optimal radius is found to ber 50.12a for the
creation of bound states. Figure 4 shows the two band st
tures at this value ofr superimposed on one another. T
entire guided mode band of the guide chosen as the cons
tion falls inside the mode gap, thereby enabling the crea
of a bound state in the constriction.

By choosing a configuration such that the constriction
length 3A2a, we indeed find a bound state atv50.411
32pc/a. The electric field of the mode is displayed in Fi
5. We note that, in general, a dielectric defect in a meta
waveguide gives rise to a completely different field distrib
tion for the defect mode. In that case, most of the field l
inside the high dielectric region, whereas in our case mos
the field is confined to the inside of the narrow guide secti
Since the mode is close in frequency to the mode gap e
the decay constantk is small (k>0.27/a) ~Ref. 19! and the
electric field decays slowly in the semi-infinite section. Ne

FIG. 3. Range of frequencies~black shaded area! for which
bound states are allowed as a function of the radius of the r
Horizontally hatched area, frequency range of the mode gap for
guide in Fig. 2~a!; vertically hatched area, frequency range cove
by the guided mode at the guide in Fig. 2~b!; black shaded area
overlap of the two frequency ranges. The gray areas are the
jected band structure of the perfect crystal.
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ertheless, it is a bona fide bound state whose counter
would be impossible to obtain in conventional waveguide

B. Bends in waveguides

Let us now turn our attention to bends in photonic crys
waveguides. Like straight waveguides with a bulge, b
waveguides can also be viewed as one finite and two se
infinite waveguide sections of different wave vectors a
dispersion relations joined together.14 In analogy to the
straight waveguide, we can create a bound state in a ben
joining three sections, the two semi-infinite sections havin
mode gap and the finite section having a guided mode in
mode gap. As an example, we show a 180° bend in Fig
where each of the three sections is identical to the th
sections in Fig. 5. We indeed find a bound state in the wa
guide bend, atv50.41132pc/a. Note that the localized
electric field of this mode is nearly the same as that in Fig

We again emphasize that in a metallic waveguide w
this bend configuration a state inside such a narrow b
section would have a higher transverse momentum than
lowest guided mode of the semi-infinite section. This st
then would decay by coupling into guided modes. This do
not happen in the PBG case, even though the finite sectio
roughly two and a half times narrower than the semi-infin
sections. The bound state also lies closer to the guided m

s.
he
d

ro-

FIG. 4. Superimposed dispersion relations for the two guide
Fig. 2 when the radius of the rods isr 50.12a. Black line, guided
modes for the wider guide, gray line, guided mode for the narr
guide. Filled circles correspond to even modes and open cir
correspond to odd modes. The gray areas are the projected
structure of the perfect crystal.

FIG. 5. Electric field for the bound state atv50.41132pc/a in
a constriction of length 3a. Most of the field power is concentrate
in the constriction itself. White circles indicate the dielectric rod
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than to the bulk modes in frequency, so the decay cons
for the state is smaller in the guide that in the bulk. Th
implies that, from an experimental point of view, couplin
into this bound state would be easier through the guide t
through the bulk.

In order to investigate further the mechanism for the
pearance of bound states in bends, we need a configur
that allows for a number of bound states to exist. Suc
configuration preferably would consist of a finite sectio
whose guided mode covers most of the bulk gap, and of
semi-infinite sections, each possessing a guided mode
with a narrow bandwidth. We create one such configurat
by removing one row of rods from the square array in
~10! and ~11! directions, respectively. The guides and th
band structures atr 50.18a are shown in Fig. 7 superim
posed on one another. The dispersion relations indeed sa
our requirements.

As the lengthL ~indicated by the arrow in the inset! of the
bend section is changed, we observe bound states of diffe
frequencies. WhenL53a, we find three bound states, tw
even and one odd mode with respect to the mirror plane.
dielectric function and the electric field for these states
shown in the left panels of Fig. 8. We note that the high
frequency mode is above the upper cutoff frequency of
guided mode of the infinite guide section. Such a mo
would not exist in analogous conventional waveguide str
tures, where there can only be a lower cutoff.

These bound states resemble cavity modes. Indeed,
removing the semi-infinite guide sections on both sides
the bend, we obtain similar eigenmodes at frequencies
most identical to the bound-state frequencies. These mo
are shown in the right panels of Fig. 8.

We present two arguments to explain the close corresp
dence between bound states in PBG guides and ca

FIG. 6. Electric field for the bound state atv50.41132pc/a in
the 180° bend. White circles indicate the dielectric rods.
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modes. In a metallic waveguide the boundary conditions
a TM bound state areE50 at the guide boundaries. Th
bound-state frequencies are determined by matching the
caying solution outside the bend to the field inside the be
By closing off the bend section, we require that the field
zero at the ends of the bend section, so the frequencies o

FIG. 7. Superposition of two band structures inside the photo
band gap. Black line, guided mode for the guide in the~1,0! direc-
tion with one row of rods removed; gray line, guided mode for t
guide in the~1,1! direction with one row of rods removed, gra
area, extended modes in the crystal.

FIG. 8. Left panels, electric fields and frequencies of the th
bound state inside the gap for the bend with length of the b
sectionL53a; right panels, electric fields and frequencies of t
corresponding cavity modes.
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cavity modes may differ considerably from those of bou
states. In the case of photonic crystals, zero boundary co
tions are not required at the guide edges because ther
exponentially decaying solutions in the crystal bulk. Thus
mode-matching requirement at the ends of the open b
~decaying field into the guide! does not differ greatly from
the boundary condition for a cavity mode~decaying field into
the bulk!.

Another reason for the small shift in the frequencies wh
the waveguide is closed off is the following. To calculate t
TM modes of a 2D photonic crystal structure with dielect
function e(r ), one can solve the following eigenvalue equ
tion for the scalar electric fieldE(r ):

2S ]2

]x2
1

]2

]y2 D E~r !5
v2

c2
e~r !E~r … ~1!

by minimizing the energy functional

E 1

e~r !
E* ~r !S ]2

]x2
1

]2

]y2 D E~r !dr

2E E~r !2dr

. ~2!

If the waveguides are open, the solutionE(r ) is small
outside the bend section since the bound states decay e
nentially into the guide. Changinge(r ) in that part of the
guide by closing off the bend section then causes onl
small perturbation in the quantity in the numerator, so
frequencies change only minimally.

For shorter bend sections, we find the following bou
states: forL52a, v50.33032pc/a ~even! andv50.379
32pc/a ~odd!; for L5a, v50.34432pc/a ~even!, all cor-
responding to cavity modes~the fields are not shown!. In
analogy, we might expect the 90° bend (L50) to have one

FIG. 9. Left panels, electric fields and frequencies of the t
bound state inside the gap for the 90° bend; right panels, ele
fields and frequencies of the corresponding cavity modes.
di-
are
e
nd

n

-

po-

a
e

bound state, in the bend corner, corresponding to the ca
mode for one missing rod in an otherwise perfect crys
Yet, instead we find two bound states, neither of which
localized in the corner. One of the states is even and
other one is odd with respect to the mirror plane, as show
the left panels of Fig. 9. Both states are localized at the
vacancy sitesA2a away from the corner.

This anomalous behavior is due to the fact that the f
quency of the mode for the single rod cavity isv50.385
32pc/a, which falls in the guided range of the semi-infini
sections of the guide.~This is reasonable because this cav
mode locally is similar to the guided mode for waveleng
l52A2a or for k5p/A2a.) This cavity mode couples with
the guided modes and it shows up as a resonance in the
corner.

The two bound states instead correspond to the cou
cavity modes shown in the right panels of Fig. 9. The cav
is composed of two vacancies, with their centers separa
by two lattice constants. As pointed out earlier, each vaca
by itself supports a cavity mode atv50.38532pc/a,
which would lie in the guided range of the infinite sections
the guide. However, since the vacancies are in close prox
ity to each other, there is a finite coupling between the
which in turn splits the other wise degenerate levels into
odd and an even bound state, with frequencies that res
tively fall just below and just above the guided mode fr
quency range. Such unconventional bound states dem
strate that bound-state creation in PBG waveguide be
cannot always be described in a one-dimensional framew
and they can strongly depend on dielectric function.

V. SUMMARY

We have shown that the periodicity of the photonic cry
tal waveguide gives rise to mode gaps between differ
guided modes. Such mode gaps make it possible to cr
bound states in a waveguide with a constriction and in ben
Bound states in PBG bends closely correspond to ca
modes. We have also observed that the existence of ce
bound states can critically depend on the geometry of
bend in question and cannot always be predicted using a
ments based on one-dimensional models.
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APPENDIX

In this part of the paper we demonstrate how it is possi
to give a simple explanation of the main qualitative a
quantitative characteristics of the PBG waveguide dispers
relations, including the appearance of mode gaps. We s
that the different types of mode gaps in band structures s
earlier arise from simple symmetries of the dielectric fun
tion. The following group-theoretical analysis allows one
design waveguides with suitable mode gaps easily.

As we have seen, photonic crystal guided mode fie
resemble modes in conventional waveguides. So, in orde

ic
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FIG. 10. Left panels, dispersion relations calculated from symmetrizing a set of basis functions for the symmetry groupG. The
periodicityd and the relative widthv used are shown on each of the graphs. Right panels, band structures for the PBG waveguides d
in the insets. The gray areas are the projected band structure of the perfect crystal. Black lines, even modes; gray lines, odd mo
th
o
lli
-
r

t

ith

re
are
find the band structure for PBG guides, we start out with
exactly solvable case of TM modes in a straight hollow tw
dimensional metallic waveguide. First we consider a meta
waveguide of widthb, on which we have imposed an artifi
cial periodicity d. For TM modes, Maxwell’s equations fo
the electric fieldE5E(x,y)eivt yield

S ]2

]x2
1

]2

]y2 D E~x,y!5
v2

c2
E~x,y!, ~A1!
e
-
c

with boundary conditionsE(x,y)50 at y56b/2. Because
of the periodicity in thex direction, we can classify the
modes by their wave vectork5(2p/d) k̂x̂. One possible se

of basis functions for thisk is $e2(l 1 k̃)p ix/d sin@mp(y/b
11

2)#%, with l 50,61,62, . . . andm51,2,3,... . Each func-
tion in the set corresponds to an eigenvalue w
v5(2pc/d)A( l 1 k̃)21m2/4v2, wherev5b/d is the rela-
tive width of the waveguide.

The dispersion relations for the metallic waveguide a
altered in two ways in PBG guides. First, the bands that
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FIG. 11. Left panels, dispersion relations calculated from symmetrizing a set of basis functions for the nonsymmetry groupG8. The
periodicityd and the relative widthv used are shown on each of the graphs. Right panels, band structures for the PBG waveguides d
in the insets. The gray areas are the projected band structure of the perfect crystal. Black lines, even modes; gray lines, odd mo
od
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outside the first Brillouin zone fold back because the peri
icity is no longer artificial. Second, bands crossing may re
each other when continuous translational symmetry is los
the metallic boundaries are replaced by the PBG mate
Yet discrete translational symmetry is always retained,
well as symmetry under a certain point groupG, which de-
pends on the dielectric function of the guide.

First, let us consider guides that are invariant underG
5$E,sx ,sy ,I %. E here is the identity operator,sx and sy
are reflections across thex and they axes, respectively, andI
is inversion through the origin.~Such are the guides in Fig
1.! Since the periodicity is only in thex direction, the irre-
ducible Brillouin zone is a line fromG( k̃50) throughD(0
, k̃, 1

2 ) to X( k̃5 1
2 ). For D, the point group is$E,sy%, so

the guided modes can be divided into ones that are eve
odd undersy . At both of the high symmetry pointsG andX
the point group is justG, which has four irreducible one
dimensional representations.

Keeping the symmetry undersx in mind, we choose the
unit cell such that the centers of the rods at the guide e
are atx50. In vacuum, a pair of degenerate modes aX
consists of an even and an odd mode undersx . They always
have the same symmetry undersy . The odd mode has a
node atx50, whereas the even one has a maximum th
Since in the PBG guide the even mode has a higher
factor20 than the odd one, it must have a lower frequency
-
l

as
l.
s

or

e

e.
ll
n

this way the degeneracy of the modes atX is removed and
the level splitting creates mode gaps at the Brillouin zo
edge.

The left panels of Fig. 10 show the band structures cal
lated from symmetrizing the basis function set, with the a
tual dispersion relations for three PBG guides to the right
each plot. The periodicityd and the relative widthv used in
the three calculations are indicated on the plots. The bl
lines denote even modes, and the gray lines denote odd o
Having taken into account the fact that degenerate mo
repel each other, a remarkable similarity can be seen betw
the corresponding band structures in the frequency rang
the band gap.

In this work we also investigated another type of guid
shown in Fig. 3~a!. This guide is invariant under a differen
group of symmetry operationsG5ˆE,$sxuf%,$syuf%,I ‰,
where f is the fractional translation equal tod/2x̂. Because
the group is now nonsymmorphic, the point group s
doubles atX and we obtain five irreducible representation
The degenerate pairs of the basis functions atX always be-
long to the same two-dimensional irreducible representat
This representation is compatible with the sum of an ev
and an odd representation alongD. The essential degenerac
at X is due to the nonsymmorphicity of the symmetry gro
and is not influenced by the specific features of the dielec
function; therefore, no mode gaps open up at the Brillo
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zone edge. However, because the symmetries of individ
bands have also changed, some bands that were allow
cross in the case of the symmorphic group will now re
and this effect produces new mode gaps.

We compare two PBG guide band structures with the d
persion relations calculated from symmetrizing the ba
k,

k,

C

.:

th

be

u

D

al
to

l

-
is

function set in Fig. 11. The two guides examined are o
created by removing two and four rows of rods in the~11!
crystal direction, respectively, as shown in the insets. T
periodicity d and the relative widthv used are indicated on
the plots. As expected, mode gaps open up solely w
bands of the same symmetry repel.
J.

er,

the
ruc-
the
stal

R.
1J. Goldstone and R. L. Jaffe, Phys. Rev. B45, 14 100~1992!.
2J. P. Carini, J. T. Londergan, K. Mullen, and D. P. Murdoc

Phys. Rev. B46, 15 538~1992!.
3J. P. Carini, J. T. Londergan, K. Mullen, and D. P. Murdoc

Phys. Rev. B48, 4503~1993!.
4J. P. Carini, J. T. Londergan, D. P. Murdock, D. Trinkle, and

S. Yung, Phys. Rev. B55, 9842~1997!.
5Y. A. Klimenko, L. I. Malsheyeva, and A. I. Onipko, J. Phys

Condens. Matter5, 5215~1993!.
6K. Lin and R. L. Jaffe, Phys. Rev. B54, 5750~1996!.
7O. O. Vakhnenko, Phys. Rev. B52, 17 386~1995!.
8H. Wu, D. W. L. Sprung, and J. Martorell, J. Appl. Phys.72, 151

~1992!.
9Here TM modes are defined so that the magnetic field lies in

2D plane, with the electric field normal to the plane.
10J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature~Lon-

don! 386, 143 ~1997!.
11S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schu

Phys. Rev. Lett.78, 3294~1997!.
12S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Ha

Phys. Rev. Lett.80, 960 ~1998!.
13R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand,
.

e

rt,

s,

.

A. Smith, and K. Kash, J. Appl. Phys.75, 4753~1994!.
14A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and

D. Joannopoulos, Phys. Rev. Lett.77, 3787~1996!.
15For references see R. D. Meade, A. M. Rappe, K. D. Bromm

and J. D. Joannopoulos, Phys. Rev. B48, 8434~1993!.
16J. Berenger, J. Comput. Phys.114, 185 ~1994!.
17J. D. Joannopoulos, R. D. Meade, and J. N. Winn,Photonic Crys-

tals ~Princeton University Press, Princeton, 1995!.
18The dielectric/air bands is the photonic crystal analog of

valence/conduction bands in a regular crystal. For a PBG st
ture, it is the band below the first band gap. Decreasing
dielectric constant of one rod is equivalent to replacing a cry
atom with an acceptor atom in an atomic crystal. See P.
Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B54,
7837 ~1996!.

19We can estimate the value ofk by analytic continuation of the
function v(k) to imaginaryk. If close to mode gap edgev(k)
>v02auku2, then at the bound state frequencyv1 , k
>A(v12v0)/a.

20 The fill factor is defined as the ratioI high dielectric/I crystal, where
I V5*VE(r )D(r )dr . A high fill factor means that a lot of field is
in the high dielectric, so the frequency of the mode is low.


